数字信号处理教案
- 格式:doc
- 大小:388.50 KB
- 文档页数:52
数字信号处理教程第二版教学设计一、教学目标•了解数字信号处理的基本概念和原理;•掌握数字信号的采样、量化和编码方法;•理解数字滤波器的设计原理和实现方法;•掌握离散傅里叶变换和快速傅里叶变换的原理和应用;•能够独立进行数字信号处理的理论分析和实际设计。
二、教学内容1. 数字信号处理基础•数字信号的概念•采样定理及其证明•量化与编码•信噪比的定义及计算方法2. 数字滤波器设计•FIR数字滤波器设计原理•IIR数字滤波器设计原理•数字滤波器的实现•均衡器设计3. 傅里叶分析•离散傅里叶变换和快速傅里叶变换的基本概念和原理•傅里叶变换的性质及其在信号处理中的应用•基于傅里叶变换的系统分析方法4. 数字信号处理实践•数字信号处理软件的使用•数字信号处理器件和系统的应用三、教学方法本课程通过教学画板、PPT演示、讲解案例和实验操作等多种形式开展,其中实验操作是重要的教学环节。
学生在教师的指导下,通过实验操作来深入理解数字信号处理相关原理和方法。
除此之外,本课程还会引导学生积极参与小组讨论和项目研究,提升学生的综合能力和实践能力。
四、教学评估本课程的教学评估包括平时成绩和期末考核两部分。
其中平时成绩包括实验报告、课堂作业、小组讨论等多个环节的综合考评。
期末考核则主要包括理论知识的考试和实验设计的考核。
同时,在课程教学过程中,我们还将鼓励学生积极参与项目研究和科技创新活动,以此来评估学生的创新能力和团队协作能力。
五、教学资源本课程的教学资源主要包括数字信号处理相关文献、实验设备和数字信号处理软件等。
同时,我们还会提供一些实用的学习资源和学习工具,如在线学习平台、教师答疑平台等,以帮助学生更好地进行学习。
六、参考教材•数字信号处理(基础篇),李伟刚等,高等教育出版社•数字信号处理(应用篇),陈肖东等,电子工业出版社•数字信号处理与应用,王成等,清华大学出版社七、总结数字信号处理是信息技术领域的核心内容之一,具有广泛的应用前景和重要的理论研究价值。
课程编号15102308《数字信号处理》教学大纲Digital Signal Processing一、课程基本信息二、本课程的性质、目的和任务《数字信号处理》课程是信息工程本科专业必修课,它是在学生学完了高等数学、概率论、线性代数、复变函数、信号与系统等课程后,进一步为学习专业知识打基础的课程。
本课程将通过讲课、练习使学生建立“数字信号处理”的基本概念,掌握数字信号处理基本分析方法和分析工具,为从事通信、信息或信号处理等方面的研究工作打下基础。
三、教学基本要求1、通过对本课程的教学,使学生系统地掌握数字信号处理的基本原理和基本分析方法,能建立基本的数字信号处理模型。
2、要求学生学会运用数字信号处理的两个主要工具:快速傅立叶变换(FFT)与数字滤波器,为后续数字技术方面课程的学习打下理论基础。
3、学生应具有初步的算法分析和运用MA TLAB编程的能力。
四、本课程与其他课程的联系与分工本课程的基础课程为《高等数学》、《概率论》、《线性代数》、《复变函数》、《信号与系统》等课程,同时又为《图像处理与模式识别》等课程的学习打下基础。
五、教学方法与手段教师讲授和学生自学相结合,讲练结合,采用多媒体教学手段为主,重点难点辅以板书。
六、考核方式与成绩评定办法本课程采用平时作业、期末考试综合评定的方法。
其中平时作业成绩占40%,期末考试成绩占60%。
七、使用教材及参考书目【使用教材】吴镇扬编,《数字信号处理》,高等教育出版社,2004年9月第一版。
【参考书目】1、姚天任,江太辉编,《数字信号处理》(第二版),华中科技大学出版社,2000年版。
2、程佩青著,《数字信号处理教程》(第二版),清华大学出版社出版,2001年版。
3、丁玉美,高西全编著,《数字信号处理》,西安电子科技大学出版社,2001年版。
4、胡广书编,《数字信号处理——理论、算法与实现》,清华大学出版社,2004年版。
5、Alan V. Oppenheim, Ronald W. Schafer,《Digital Signal Processing》,Prentice-Hall Inc, 1975.八、课程结构和学时分配九、教学内容绪论(1学时)【教学目标】1. 了解:什么是数字信号处理,与传统的模拟技术相比存在哪些特点。
课程名称:数字信号处理基础
第一章绪论
课程名称:数字信号处理基础
第一章离散时间信号与系统
课程名称:数字信号处理基础
第一章离散时间信号与系统
课程名称:数字信号处理基础
第一章离散时间信号与系统
课程名称:数字信号处理基础
第一章离散时间信号与系统
课程名称:数字信号处理基础
第二章Z变换与离散时间傅里叶变换
课程名称:数字信号处理基础
第二章Z变换与离散时间傅里叶变换
课程名称:数字信号处理基础
第二章Z变换与离散时间傅里叶变换
课程名称:数字信号处理基础
第二章Z变换与离散时间傅里叶变换。
《数字信号处理》教案第一章:绪论1.1 课程介绍理解数字信号处理的基本概念了解数字信号处理的发展历程明确数字信号处理的应用领域1.2 信号的概念与分类定义信号、模拟信号和数字信号掌握信号的分类和特点理解信号的采样与量化过程1.3 数字信号处理的基本算法掌握离散傅里叶变换(DFT)了解快速傅里叶变换(FFT)学习Z变换及其应用第二章:离散时间信号与系统2.1 离散时间信号理解离散时间信号的定义熟悉离散时间信号的表示方法掌握离散时间信号的运算2.2 离散时间系统定义离散时间系统及其特性学习线性时不变(LTI)系统的性质了解离散时间系统的响应2.3 离散时间系统的性质掌握系统的稳定性、因果性和线性学习时域和频域特性分析方法第三章:离散傅里叶变换3.1 离散傅里叶变换(DFT)推导DFT的数学表达式理解DFT的性质和特点熟悉DFT的应用领域3.2 快速傅里叶变换(FFT)介绍FFT的基本概念掌握FFT的计算步骤学习FFT的应用实例3.3 离散傅里叶变换的局限性探讨DFT在处理非周期信号时的局限性了解基于DFT的信号处理方法第四章:数字滤波器设计4.1 滤波器的基本概念理解滤波器的定义和分类熟悉滤波器的特性指标学习滤波器的设计方法4.2 数字滤波器的设计方法掌握常见数字滤波器的设计算法学习IIR和FIR滤波器的区别与联系了解自适应滤波器的设计方法4.3 数字滤波器的应用探讨数字滤波器在信号处理领域的应用学习滤波器在通信、语音处理等领域的应用实例第五章:数字信号处理实现5.1 数字信号处理器(DSP)概述了解DSP的定义和发展历程熟悉DSP的特点和应用领域5.2 常用DSP芯片介绍学习TMS320系列DSP芯片的结构和性能了解其他常用DSP芯片的特点和应用5.3 DSP编程与实现掌握DSP编程的基本方法学习DSP算法实现和优化技巧探讨DSP在实际应用中的问题与解决方案第六章:数字信号处理的应用领域6.1 通信系统中的应用理解数字信号处理在通信系统中的重要性学习调制解调、信道编码和解码等通信技术探讨数字信号处理在无线通信和光通信中的应用6.2 音频信号处理熟悉音频信号处理的基本概念和算法学习音频压缩、回声消除和噪声抑制等技术了解数字信号处理在音乐合成和音频效果处理中的应用6.3 图像处理与视频压缩掌握数字图像处理的基本原理和方法学习图像滤波、边缘检测和图像压缩等技术探讨数字信号处理在视频处理和多媒体通信中的应用第七章:数字信号处理工具与软件7.1 MATLAB在数字信号处理中的应用学习MATLAB的基本操作和编程方法熟悉MATLAB中的信号处理工具箱和函数掌握利用MATLAB进行数字信号处理实验和分析的方法7.2 其他数字信号处理工具和软件了解常用的数字信号处理工具和软件,如Python、Octave等学习这些工具和软件的特点和应用实例探讨数字信号处理工具和软件的选择与使用第八章:数字信号处理实验与实践8.1 数字信号处理实验概述明确实验目的和要求学习实验原理和方法掌握实验数据的采集和处理8.2 常用数字信号处理实验完成离散信号与系统、离散傅里叶变换、数字滤波器设计等实验8.3 数字信号处理实验设备与工具熟悉实验设备的结构和操作方法学习实验工具的使用技巧和安全注意事项第九章:数字信号处理的发展趋势9.1 与数字信号处理探讨技术在数字信号处理中的应用学习深度学习、神经网络等算法在信号处理领域的应用实例9.2 物联网与数字信号处理理解物联网技术与数字信号处理的关系学习数字信号处理在物联网中的应用,如传感器信号处理、无线通信等9.3 边缘计算与数字信号处理了解边缘计算的概念和应用场景探讨数字信号处理在边缘计算中的作用和挑战10.1 课程回顾梳理本门课程的主要内容和知识点10.2 数字信号处理在未来的发展展望数字信号处理技术在各个领域的应用前景探讨数字信号处理技术的发展趋势和挑战10.3 课程考核与评价明确课程考核方式和评价标准鼓励学生积极参与课堂讨论和实践活动,提高综合素质重点和难点解析重点一:信号的概念与分类信号的定义和分类是理解数字信号处理的基础,需要重点关注。
数字信号处理教程第四版教学设计课程概述数字信号处理(Digital Signal Processing, DSP)是将模拟信号转换为数字信号,再对数字信号进行各种处理,以达到各种不同的目的的一种技术。
它在通信、媒体、医疗、图像处理等领域广泛应用。
本课程旨在通过数字信号处理的理论与工具的学习和掌握,提高学生对数字信号处理在实际工程中的应用与解决实际问题的能力。
课程目标本课程的主要目标是:•理解基础概念,掌握常用算法;•熟悉 MatLab 和信号处理工具箱,掌握其使用;•了解数字信号处理领域的前沿技术和应用。
教学内容本课程的主要内容分为以下几个部分:1.数字信号处理基础–数字信号的定义与分类;–采样定理与插值;–离散时间信号与频率域分析;–滤波器和系统设计。
2.数字信号处理算法–时间域算法;–频域算法;–滤波器设计;–非线性数字信号处理。
3.MatLab 与信号处理工具箱应用–MatLab 的基础语法;–信号处理工具箱的使用。
教学方法本课程采用多种教学方法,包括课堂讲授、互动讨论、编程实验、课程论文等。
1.课堂讲授课堂讲授环节是本课程的主要教学方式。
在讲授的过程中,将集中介绍数字信号处理的经典算法、MatLab 工具箱的使用技巧等内容,同时对内部和外部相关性内容进行一个梳理,使学生掌握基本的理解和综合运用。
2.互动讨论在课程的教学中,将加强学生和教师之间的互动。
学生可以在授课时进行提问并得到及时解答,或者在课后通过邮件等方式与教师进行交流。
3.编程实验编程实验是本课程的重点环节。
通过实验,学生可以练习使用MatLab 工具箱,深入理解数字信号处理的理论和实践,掌握数字信号处理的基本技能、原理和方法。
4.课程论文课程论文是本课程的一项考核。
学生需要选择一个数字信号处理相关的主题,进行研究并撰写一篇结论性的论文。
论文内容应包括对该主题的深入了解和分析,以及自主编写一定的 MatLab 程序进行实验,得出一定的结论。
数字信号处理教案第一章:数字信号处理概述1.1 数字信号处理的基本概念了解数字信号处理的定义和特点理解信号的分类和数字信号的优势1.2 数字信号处理的发展历程了解数字信号处理的发展历程和重要事件理解数字信号处理技术在各领域的应用1.3 数字信号处理的基本算法掌握离散傅里叶变换(DFT)和快速傅里叶变换(FFT)了解数字滤波器的设计方法和应用第二章:离散时间信号处理2.1 离散时间信号的基本概念了解离散时间信号的定义和表示方法理解离散时间信号的采样和恢复原理2.2 离散时间信号的运算掌握离散时间信号的加减乘除运算理解离散时间信号的卷积运算2.3 离散时间系统的特性了解离散时间系统的稳态响应和暂态响应理解离散时间系统的频率响应和时域响应第三章:离散傅里叶变换3.1 离散傅里叶变换的基本概念了解离散傅里叶变换的定义和性质理解离散傅里叶变换的应用领域3.2 快速傅里叶变换算法掌握快速傅里叶变换的基本原理和实现方法理解快速傅里叶变换的优缺点和应用3.3 离散傅里叶变换的应用了解离散傅里叶变换在信号分析、处理和识别中的应用掌握离散傅里叶变换在图像处理中的应用第四章:数字滤波器设计4.1 数字滤波器的基本概念了解数字滤波器的定义和分类理解数字滤波器的设计目标和要求4.2 数字滤波器的设计方法掌握常用数字滤波器的设计方法和步骤理解数字滤波器的逼近方法和性能指标4.3 数字滤波器的应用了解数字滤波器在信号处理、通信和音视频处理等领域的应用掌握数字滤波器在实际应用中的优化和实现方法第五章:数字信号处理在通信系统的应用5.1 通信系统的基本概念了解通信系统的定义和分类理解通信系统的基本组成和信号传输过程5.2 数字信号处理在通信系统的应用掌握数字信号处理技术在调制解调、信号检测和信道编码等环节的应用理解数字信号处理技术在现代通信系统中的重要作用5.3 数字信号处理技术在无线通信中的应用了解无线通信系统的基本原理和关键技术掌握数字信号处理技术在无线通信系统中的应用和优势第六章:数字信号处理在音频处理中的应用6.1 音频处理的基本概念了解音频信号的特性及其处理需求理解数字音频处理的优势和应用场景6.2 数字音频信号处理技术掌握数字音频信号的采样与量化过程学习数字音频信号的压缩、编辑和效果处理方法6.3 音频信号处理实例分析分析数字音频处理在音乐合成、声音合成和音频恢复等领域的应用案例探讨音频信号处理技术在实际应用中的优化和限制第七章:数字信号处理在图像处理中的应用7.1 图像处理的基本概念了解图像信号的特性及其处理需求理解数字图像处理的优势和应用场景7.2 数字图像处理技术掌握数字图像的表示、转换和增强方法学习图像分割、特征提取和模式识别等高级处理技术7.3 图像处理实例分析分析数字图像处理在图像压缩、图像恢复和计算机视觉等领域的应用案例探讨图像处理技术在实际应用中的优化和限制第八章:数字信号处理在视频处理中的应用8.1 视频处理的基本概念了解视频信号的特性及其处理需求理解数字视频处理的优势和应用场景8.2 数字视频信号处理技术掌握数字视频信号的采集、编码和压缩方法学习视频信号的编辑、特效处理和质量评估技术8.3 视频处理实例分析分析数字视频处理在视频通信、视频编辑和虚拟现实等领域的应用案例探讨视频处理技术在实际应用中的优化和限制第九章:数字信号处理在通信系统中的应用(续)9.1 无线通信系统中的数字信号处理了解无线通信系统的挑战和数字信号处理解决方案掌握无线通信中常用的调制解调技术和信号检测方法9.2 信号处理在现代通信系统中的应用学习信号处理在4G/5G移动通信、卫星通信和物联网等领域的应用探讨通信系统中信号处理的挑战和发展趋势9.3 通信系统中的信号处理实践分析通信系统中信号处理算法的实际应用案例了解通信系统中的信号处理技术在实际工程中的应用和优化第十章:数字信号处理在工程实践中的应用10.1 数字信号处理工具和软件熟悉常用的数字信号处理工具和软件,如MATLAB、Python和信号处理专用硬件学习如何选择合适的工具和软件进行数字信号处理任务10.2 数字信号处理在实际项目中的应用分析数字信号处理在实际工程项目中的案例,如音频处理、图像识别和通信系统探讨数字信号处理在工程实践中的挑战和解决方案10.3 数字信号处理的实验和实践介绍数字信号处理的实验方法和实践技巧学习如何进行数字信号处理的实验设计和结果分析第十一章:数字信号处理的实现方法11.1 数字信号处理硬件实现了解数字信号处理硬件实现的基本概念和方法掌握FPGA、ASIC等硬件实现数字信号处理的优势和限制11.2 数字信号处理软件实现熟悉数字信号处理软件实现的基本概念和方法学习数字信号处理软件实现中的编程技术和算法优化11.3 混合信号处理实现方法了解混合信号处理实现的基本概念和方法探讨混合信号处理在实际应用中的优势和挑战第十二章:数字信号处理的优化方法12.1 数字信号处理优化概述了解数字信号处理优化的目标和方法理解数字信号处理优化在实际应用中的重要性12.2 数字信号处理的算法优化掌握数字信号处理常用算法的优化方法和技术学习算法优化在提高数字信号处理性能方面的应用12.3 数字信号处理的系统优化熟悉数字信号处理系统优化的基本概念和方法探讨系统优化在提高数字信号处理性能方面的作用和限制第十三章:数字信号处理的仿真与验证13.1 数字信号处理的仿真方法了解数字信号处理仿真的基本概念和方法掌握数字信号处理仿真工具的使用和仿真过程的设置13.2 数字信号处理的验证方法熟悉数字信号处理验证的基本概念和方法学习验证过程在确保数字信号处理算法正确性和性能方面的作用13.3 数字信号处理的仿真与验证实践分析数字信号处理仿真与验证的实际案例探讨仿真与验证在数字信号处理算法开发和优化方面的应用和限制第十四章:数字信号处理的应用案例分析14.1 数字信号处理在通信系统的应用案例分析数字信号处理在无线通信、卫星通信和光纤通信等领域的应用案例探讨通信系统中数字信号处理技术的挑战和发展趋势14.2 数字信号处理在音频和图像处理的应用案例分析数字信号处理在音频压缩、音频合成、图像增强和图像识别等领域的应用案例探讨音频和图像处理中数字信号处理技术的挑战和发展趋势14.3 数字信号处理在其他领域的应用案例分析数字信号处理在医疗成像、地震勘探和生物信息学等领域的应用案例探讨这些领域中数字信号处理技术的挑战和发展趋势第十五章:数字信号处理的发展趋势与展望15.1 数字信号处理技术的发展趋势了解数字信号处理技术的发展趋势和未来方向探讨新兴领域如、物联网和自动驾驶对数字信号处理技术的影响15.2 数字信号处理在未来的挑战分析数字信号处理在未来的挑战和问题探讨应对这些挑战的方法和策略15.3 数字信号处理的展望展望数字信号处理技术在未来社会的应用和发展激发对数字信号处理技术的兴趣和热情重点和难点解析本文主要介绍了数字信号处理的基本概念、算法、实现方法和应用案例等内容。
数字信号处理教案余月华课程特点:本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。
本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。
课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。
本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。
这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。
论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。
因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。
鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。
课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。
基本掌握了课堂教学内容后, 再去做作业。
在学习中, 要养成多想问题的习惯。
课堂讲授方法:1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。
.3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述.4. 要求、辅导及考试:a. 学习方法: 适应大学的学习方法, 尽快进入角色。
数字信号处理教案第一章:数字信号处理概述1.1 数字信号处理的概念介绍数字信号处理的定义和特点解释信号的分类和数字信号的优势1.2 数字信号处理的应用领域列举数字信号处理在不同领域的应用,如通信、音频处理、图像处理等1.3 数字信号处理的基本原理介绍离散时间信号和离散时间系统的基本概念解释采样定理和离散傅里叶变换(DFT)第二章:离散时间信号与系统2.1 离散时间信号的基本概念介绍离散时间信号的定义和表示方法解释离散时间信号的采样和量化过程2.2 离散时间系统的基本概念介绍离散时间系统的定义和特性解释离散时间系统的输入输出关系2.3 离散时间信号的运算介绍离散时间信号的基本运算,如加法、乘法、延迟等解释离散时间信号运算的矩阵表示方法第三章:离散傅里叶变换(DFT)3.1 离散傅里叶变换(DFT)的定义和性质介绍DFT的定义和计算方法解释DFT的周期性和共轭对称性3.2 DFT的应用介绍DFT在信号分析、频谱估计和滤波等方面的应用3.3 快速傅里叶变换(FFT)介绍FFT的概念和算法解释FFT的优势和应用场景第四章:数字滤波器设计4.1 数字滤波器的基本概念介绍数字滤波器的定义和分类解释数字滤波器的设计目标和指标4.2 低通滤波器的设计方法介绍巴特沃斯低通滤波器和切比雪夫低通滤波器的设计方法解释椭圆低通滤波器的设计方法4.3 高通滤波器、带通滤波器和带阻滤波器的设计方法介绍高通滤波器、带通滤波器和带阻滤波器的设计方法第五章:数字信号处理实现5.1 数字信号处理器的概念介绍数字信号处理器的定义和分类解释DSP处理器的主要性能指标5.2 DSP芯片的选择和使用介绍DSP芯片的选型依据和使用方法解释DSP芯片在实际应用中的配置和编程5.3 数字信号处理器的实际应用案例介绍数字信号处理器在实际应用中的案例,如通信系统、音频处理、图像处理等第六章:数字信号处理算法实现6.1 数字信号处理算法的编程实现介绍数字信号处理算法在编程语言中的实现方法解释常用的数字信号处理算法编程框架和库6.2 常用数字信号处理算法介绍介绍离散余弦变换(DCT)、离散沃尔什变换(DWT)等算法解释这些算法在图像处理、数据压缩等领域的应用6.3 数字信号处理算法的优化介绍数字信号处理算法优化的方法和技巧解释如何提高算法效率和降低计算复杂度第七章:数字信号处理应用案例分析7.1 通信系统中的应用分析数字信号处理在通信系统中的应用案例,如调制解调、信道编码等7.2 音频处理中的应用分析数字信号处理在音频处理中的应用案例,如声音增强、噪声消除等7.3 图像处理中的应用分析数字信号处理在图像处理中的应用案例,如图像压缩、边缘检测等第八章:数字信号处理实验与实践8.1 数字信号处理实验设计介绍数字信号处理实验的设计方法和步骤解释实验中所需的硬件设备和软件环境8.2 数字信号处理实验案例提供数字信号处理实验案例,如信号采样与恢复、离散傅里叶变换等解释实验报告的评价标准和指标第九章:数字信号处理发展趋势与展望9.1 数字信号处理技术的发展趋势分析数字信号处理技术的发展方向和趋势解释新兴技术如深度学习、等对数字信号处理的影响9.2 数字信号处理在前沿领域的应用介绍数字信号处理在物联网、无人驾驶等前沿领域的应用9.3 数字信号处理面临的挑战与机遇分析数字信号处理技术面临的挑战和机遇探讨如何应对这些挑战和抓住机遇第十章:总结与展望10.1 数字信号处理教案的总结回顾整个数字信号处理教案的主要内容和知识点总结数字信号处理的重要性和应用价值10.2 数字信号处理的发展前景展望数字信号处理技术在未来发展的前景和趋势强调数字信号处理在科技发展中的重要作用重点和难点解析重点环节1:数字信号处理的概念和特点数字信号处理是对模拟信号进行数字化处理的过程,其核心在于离散化和量化。
《数字信号处理》教学大纲课程类型:专业课总学时:通信工程专业70;信息工程专业64讲课学时:通信工程专业60;信息工程专业54实践学时:通信工程专业10;信息工程专业10一、课程的目的与任务本课程讲授数字信号处理的基本理论和基本分析方法,并且进行理论与算法的实践。
要求学生掌握离散时间信号与系统的基本理论,掌握离散时间系统的时域分析与 Z变换及离散傅立叶变换和快速傅里叶变换的理论计算法;掌握IIR和FIR数字滤波器的结构、理论和设计方法,为学生毕业后从事数字技术及其工程应用提供必要的训练。
二、课程有关说明《数字信号处理》是通信工程专业和信息工程专业的专业课,课程的内容包括:线性时不变离散时间系统的基础知识、数学模型(差分方程)及其求解,Z变换,离散傅立叶变换(DFT)理论及应用,快速傅立叶变换(FFT),无限长单位脉冲响应(IIR)数字滤波器设计,有限长单位脉冲响应(FIR)数字滤波器设计等内容。
除了理论教学外,还配有一定数量的上机实验。
数字信号处理在理论上所涉及的范围及其广泛。
高等数学、随机过程、复变函数等都是其数学基本工具。
电路理论、信号与系统等是其理论基础。
其算法及实现(硬件和软件)与计算机学科和微电子技术密不可分。
学生应该认真学习以上的知识,更好地掌握数字信号处理的基本理论、算法和实现技能。
主要教学方式:教师主讲,答疑、课堂讨论为辅,并结合实验教学。
考核评分方式:闭卷考试三、教学内容绪论(2学时)本章应掌握:数字信号处理的基本概念。
熟悉:数字信号处理系统的基本组成。
了解:数字信号处理的学科概貌、学科特点、实际应用、发展方向和实现方法。
第一章时域离散信号和时域离散系统(4学时)第一节时域离散信号本节应掌握:序列的运算,即移位、翻褶、和、积、累加、差分、时间尺度变换、卷积和等;序列的周期性。
熟悉:几种常用序列,即单位抽样序列、单位阶跃序列、矩形序列、实指数序列、复指数序列、正弦序列。
了解:用单位抽样序列来表示任意序列。
I数字信号处理目录绪论 (1)第1章离散时间信号与系统的时域分析 (5)1.1离散时间信号的描述及其基本运算 (5)1.1.1离散时间信号的描述 (5)1.1.2离散时间信号(序列)的基本运算 (5)1.1.3 典型时间信号及应用 (8)1.2离散时间系统的描述及性质 (10)1.2.1离散时间系统的描述 (10)1.2.2离散时间系统的性质 (10)1.2.3线性移不变离散时间系统 (12)1.3离散时间信号通过系统的时域分析 (14)1.3.1线性常系数差分方程的求解 (14)1.3.2离散时间信号通过系统的响应 (14)1.3.3离散时间系统的单位抽样响应 (15)第2章离散时间信号和系统的频域分析 (16)2.1离散时间信号的离散时间傅立叶变换 (16)2.1.1非周期序列的离散时间傅立叶变换 (16)2.1.2 离散时间傅立叶变换的性质 (19)2.1.3周期序列的傅立叶级数及其离散时间傅立叶变换 (22)2.1.4时域采样定理 (26)2.2离散时间系统的频率响应 (28)2.3离散时间信号通过系统的频域分析 (28)第3章离散时间信号与系统的复频域分析 (31)3.1Z变换 (31)3.1.1 z变换的定义 (31)3.1.2 z反变换 (33)3.1.3 z变换的主要性质 (37)3.1.4 z变换与离散时间傅立叶变换的关系 (40)3.2离散时间系统的系统函数 (40)3.2.1系统函数 (40)3.2.2 离散时间系统的稳定性和因果性 (42)3.3离散时间信号通过系统的复频域分析 (42)3.3.1 利用z变换解差分方程 (42)3.3.2频率响应的几何确定 (44)第4章离散傅立叶变换及其应用 (46)4.1离散傅立叶变换与Z变换 (46)4.1.1 离散傅立叶变换的定义 (46)4.1.2离散傅立叶变换与z变换、离散时间傅立叶变换的关系 (48)4.1.3频域采样定理 (51)4.2离散傅立叶变换的主要性质 (52)4.2.1线性性质 (52)4.2.2移位性质 (52)4.2.3 Parseval定理 (52)4.2.4对称性质 (53)4.2.5卷积性质 (54)4.3离散傅立叶变换的经典快速算法 (56)4.3.1直接计算DFT的计算量 (56)4.3.2 时间抽取基-2 FFT算法 (56)4.3.3频率抽取基-2 FFT算法 (60)4.3.4离散傅立叶反变换的快速算法 (60)4.4离散傅立叶变换的应用 (60)4.4.1信号的谱分析 (60)4.4.2线性卷积的计算 (62)第5章数字滤波器设计基础 (65)5.1数字滤波器的功能、分类与描述 (65)5.1. 1滤波器的功能 (65)5.1. 2滤波器的分类 (65)5.1.3数字滤波器的描述 (65)5.2经典数字滤波器的设计方法 (67)5.3选频数字滤波器的设计指标描述 (67)5.3.1幅频响应的技术指标 (67)5.3.2相频响应的描述与群延迟 (68)第6章无限长脉冲响应数字滤波器的系统设计 (70)6.1IIR DF的特点及其系统设计的基本方法 (70)6.1.1 IIR DF的特点 (70)6.1.2 IIR DF系统设计的基本方法 (70)6.2模仿模拟滤波器的IIR DF系统设计 (70)6.2.1模拟低通滤波器的系统设计 (70)6.2.2模拟滤波器映射为数字滤波器 (79)6.2.3频带转换技术 (87)6.2.4模仿模拟滤波器进行IIR DF的系统设计 (90)6.2.5模仿AF进行IIR DF系统设计的主要问题 (94)6.3IIR DF的直接设计法(了解) (94)6.3.1零点、极点配置累试法 (94)6.3.2 优化设计法 (94)第7章有限长脉冲响应数字滤波器的系统设计 (95)7.1FIR DF的特点及指标描述 (95)7.1.1 FIR DF的特点 (95)III数字信号处理7.1.2 线性相位FIR DF的相频指标描述 (95)7.2线性相位FIR DF的条件、特点及其系统设计的常用方法 (95)7.2.1 FIR DF具有线性相位的条件 (95)7.2.2线性相位FIR DF幅度函数的特性 (96)7.2.3线性相位FIR DF系统的零点分布特点 (97)7.2.4线性相位FIR DF系统设计的常用方法 (98)7.3线性相位FIR DF的窗函数设计法 (98)7.3.1设计原理 (98)7.3.2用矩形窗设计线性相位FIR LP DF (98)7.3.3 矩形窗的截断效应 (99)7.3.4 典型窗函数 (100)7.3.5线性相位FIR DF系统函数的窗函数法设计步骤 (102)7.3.6 设计举例 (102)7.3.7 窗函数法设计的FIR DF中的主要问题 (104)7.4线性相位FIR DF的频率抽样设计法 (104)7.4.1 算法原理 (104)7.4.2两种频率采样方式 (107)7.4.3频率抽样设计法的逼近误差及其改进 (108)7.4.4线性相位FIR DF系统函数的频率抽样设计法设计步骤 (108)7.4.5设计举例 (109)7.4.6频率抽样设计法设计线性相位FIR DF的特点 (115)7.5线性相位FIR DF的优化设计法(了解) (115)7.5.3 设计举例 (118)7.5.4线性相位FIR DF优化设计法的特点 (120)7.6FIR DF与IIR DF的比较 (121)第8章数字滤波器的算法结构 (122)8.1离散时间系统的信号流图描述 (122)8.2IIR DF的算法结构 (122)8.2.1直接型算法结构 (122)8.2.2级联型算法结构 (124)8.2.3并联型算法结构 (125)8.2.4转置型算法结构 (126)8.3FIR DF的算法结构 (126)8.3.1直接型算法结构 (126)8.3.2级联型算法结构 (126)8.3.3频率抽样型算法结构 (127)8.3.4线性相位FIR DF的算法结构 (130)8.4离散时间系统的格型算法结构简介(略) (131)8.4.2 全极点系统(IIR系统)的格型结构 (132)8.4.3 零极点系统( IIR系统)的格型结构 (133)第九章误差分析(了解) (134)9.1数的二进制表示及其量化误差 (134)9.1.1数的二进制表达 (134)9.1.2二进制数的定点运算 (135)9.1.3二进制数的浮点运算 (136)9.1.4尾数处理 (137)9.2模数转换的误差 (138)9.3数字滤波器系数量化的影响 (140)9.3.1系数量化误差对滤波器稳定性的影响 (140)9.3.2系数量化误差对滤波器零、极点位置的影响 (141)9.4数字滤波器数字运算误差 (143)9.4.1定点运算的尾数处理误差分析 (143)9.4.2 IIR DF定点舍入运算的误差分析 (144)9.4.3 IIR DF定点运算中的幅度加权 (144)9.4.4 IIR DF的零输入极限环现象 (145)9.4.5 FIR DF定点舍入运算的误差分析 (146)9.4.6 FIR DF定点实现中的幅度加权 (147)9.5数模转换的误差 (147)第10章数字信号处理应用简介(了解) (149)10.1智能仪器中常用的简单数字滤波算法 (149)10.2采样率转换技术的应用 (151)10.3频谱分析的应用 (152)10.4软件无线电技术 (153)10.5控制系统数字化 (155)10.6音乐信号的数字化处理 (156)1数字信号处理绪论数字信号处理是指用数字序列或符号序列表示信号,用数值计算的方式对这些序列进行加工的一种理论、技术和方法,用软件程序或数字器件实现,它的英文原名叫digital signal processing ,简称DSP 。
数字信号处理教案数字信号处理教案课程特点:本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。
本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。
课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。
本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。
这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。
论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。
因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。
鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。
课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。
基本掌握了课堂教学内容后, 再去做作业。
在学习中, 要养成多想问题的习惯。
课堂讲授方法:1. 关于教材: 《数字信号处理》作者丁玉美高西全西安电子科技大学出版社2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。
.3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述.4. 要求、辅导及考试:a. 学习方法: 适应大学的学习方法, 尽快进入角色。
课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1: 3 。
b. 作业: 大体上每两周收一次作业, 一次收清。
每次重点检查作业总数的三分之一。
作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。
c. 辅导: 大体两周一次。
d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。
课程的基本内容与要求第一章.时域离散信号与时域离散系统1.熟悉6种常用序列及序列运算规则;2.掌握序列周期性的定义及判断序列周期性的方法;3.掌握离散系统的定义及描述方法(时域描述和频域描述);4.掌握LSI系统的线性移不变和时域因果稳定性的判定;第二章 时域离散信号与系统的傅立叶变换分析方法1. 熟练掌握傅里叶正反变换的定义基本性质和定理;2. 了解周期序列的两种频域分析方法;3. 重点掌握利用傅里叶变换对系统进行频域分析第三章 时域离散信号与系统的Z 变换分析方法1. 熟练掌握Z 正变换和其反变换的计算方法;2. 重点掌握Z 变换收敛域的定义、收敛域的特点、收敛域的确定及收敛域与极点的关系;3. 熟悉典型序列Z 变换的收敛域(双边,因果,左、右序列);4. 掌握Z 变换的主要性质与定理(共轭对称性,时移、频移性质,时域卷积性质等),并能熟练运用这些定理进行运算和证明;5. 掌握Z 变换的意义及与DTFT (离散时间傅里叶变换)的关系;6.重点掌握LSI 系统的Z 域描述——系统函数)()()(z X z Y z H =与系统频响)()()(jw jw jw e X e Y e H =的物理意义;7. 重点掌握LSI系统Z域因果稳定性的判定;8. 掌握Z变换与连续信号拉普拉斯变换、傅里叶变换的关系,掌握S域到Z域的映射关系;第四章离散傅里叶变换1. 握DFT的定义、物理意义及与Z变换(ZT)、连续信号傅里叶变换(CTFT)、离散傅里叶变换(DTFT)和傅里叶级数(DFS)的关系;2. 重点掌握DFT隐含周期性的意义;3. 了解DFS变换对的定义及性质;4. 重点掌握DFT的一些重要性质及应用(线性,圆周共轭对称性,时域、频域循环移位性质,圆周卷积和性质);5. 掌握频域抽样理论的意义及应用;6. 了解利用DFT计算模拟傅里叶变换对(CTFT)和离散傅里叶级数(DFS)的方法;7. 了解序列的抽取与插值及其频谱的关系。
第五章快速傅里叶变换1. 了解FFT与DFT的关系:只是计算方法的改进,基本没有引入新的物理概念;2. 掌握FFT算法的原理:利用DFT的运算规律及其中某些算子的特殊性质(nkW的周期性和N对称性),找出减少乘法和加法运算次数的有效途径;3. 掌握基-2 DIT —FFT 和基-2 DIF —FFT 算法的基本思想及特点(算法思想,运算量,运算流图,结构规则等);4. 掌握线性卷积和线性相关的FFT 算法;第六章 模拟信号数字处理1. 了解模拟信号数字处理的原理;2. 重点掌握奈奎斯特抽样定理及其意义,熟悉连续信号采样前后的频谱关系及内插恢复过程。
了解理想抽样信号与实际抽样信号的频谱差别;3. 掌握用FFT 对模拟信号进行频谱分析的方法步骤及其近似性。
第七章 数字滤波器的基本结构1. 重点掌握IIR DF 的系统函数)(z H 的实现结构、各结构的特点及对滤波器性能的影响;2. 重点掌握FIR DF 的系统函数)(z H 的实现结构(直接型结构,级联结构,频率采样、线性相位结构)及其特点;第八章IIR DF 的设计方法1. 重点掌握和理解滤波器设计指标(stc ωωδδ、、、21)的描述及意义,弄懂设计规则(幅度平方响应,相位相应,群延迟)的意义;2.重点掌握最小与最大相位延时系统、最小与最大相位超前系统)(zH的零极点的特点及其应用;映射到数字滤波3.重点掌握由模拟滤波器)(sHa器)(zH的方法:冲激响应法和双线性变换法;4.掌握由模拟低通原型到数字各型滤波器的设计步骤(从技术指标到完成设计的全过程);5.了解直接在数字域设计IIR DF的方法;第九章FIR DF的设计方法1. 重点掌握FIR DF线性相位的概念,即线性相位对)(nHh、及零点的约束,了解四种FIR()DF的频响特点;2. 掌握FIR DF窗函数的设计方法及特点,熟悉六种窗函数的特点,掌握窗长对频谱的影响;3. 理解频率抽样设计法的概念及理论依据,掌握设计步骤及要点;4.了解设计FIR DF的最优化方法5.比较IIR DF 和FIR DF的优缺点。
参考文献目录1. Alan S.Oppenheim,Alan S.Willsky,S.Hamid Nawab,Signals and Systems(Second Edition) (英文版),北京,电子工业出版社,20022. A.V.奥本海姆,R.W.谢弗,J.R.巴克,离散时间信号处理(第二版),刘树棠,黄建国译。
西安,西安交通大学出版社,20013. 程佩青,数字信号处理教程(第二版),北京,清华大学出版社,20014. 程佩青,数字信号处理教程习题分析与解答(第二版),北京,清华大学出版社,20025. 胡广书,数字信号处理-理论、算法与实现(第二版),北京,清华大学出版社,20036. 丁玉美,高西全,数字信号处理(第二版),西安,西安电子科技大学出版社,20017. 高西全,丁玉美,数字信号处理(第二版)-学习指导,西安,西安电子科技大学出版社,20018. 全子一,周利清,门爱东,数字信号处理基础,北京,北京邮电大学出版社,20029. Edward W. Kamen,Bonnie S. Heck,Fundamentals of Signals and Systems—Using the Web and MATLAB (Second Edition) (英文版),北京,科技出版社,200210. 应先珩,冯一云,窦维蓓,离散时间信号分析和处理,北京,清华大学出版社,200111. Paulo S.R. Diniz,Eduardo A.B. da Silva,Sergio to,Digital Signal Processing—System Analysis and Design(英文版),北京,电子工业出版社,2002 12. Chi-Tsong Chen,Digital Signal Processing Spectral Computation and Filter Design(英文版),北京,电子工业出版社,200213. 彭启琮,李玉柏,管庆,DSP技术的发展与应用,北京,高等教育出版社,200214. 彭启琮,TMS320C54X实用教程,成都,电子科技大学出版社,200015. 彭启琮,李玉柏,DSP技术,成都,电子科技大学出版社,199716. 彭启琮,李玉柏,管庆,DSP技术,成都,电子科技大学出版社,199517. (美)维纳.K.恩格尔,约翰.G.普罗克斯,数字信号处理-使用MATLAB,刘树棠译,西安,西安交通大学出版社。
第一讲(2学时)绪论要点:一:数字信号处理的学科概貌二:数字信号与系统的特征三:数字信号处理系统的基本组成四:数字信号处理的应用五:数字信号处理的发展方向第二讲(2学时)第一章时域离散时间信号与时域离散系统内容:一序列的运算1.乘法和加法2. 移位、翻转及尺度变换卷积二几种常用序列:单位采样序列δ(n)矩形序列RN(n)实指数序列单位阶跃序列u(n)正弦序列三序列的周期性四用单位抽样序列来表示任意序列要求:6.熟悉6种常用序列及序列运算规则;7.掌握序列周期性的定义及判断序列周期性的方法;作业:P28 1, 4第三讲(2学时)内容:一线性系统二移不变系统三单位抽样相应与卷积和四线性移不变系统的性质五因果系统六稳定系统要点:1.满足叠加原理的系统称为线性系统。
设x1(n)和x2(n)分别作为系统的输入序列,其输出分别用y1(n)和y2(n)表示,即y1(n)=T[x1(n)],y2(n)=T[x2(n)]那么线性系统一定满足下面两个公式:T[x1(n)+x2(n)]= y1(n)+y2(n)T[a x1(n)]=ay y1(n)2.如果系统对输入信号的运算关系T[·]在整个运算过程中不随时间变化,或者说系统对于输入信号的响应与信号加于系统的时间无关,则这种系统称为时不变系统,用公式表示如下:y(n)=T[x(n)]y(n-n0)=T[x(n-n0)]3.设系统的输入x(n)=δ(n),系统输出y(n)的初始状态为零,定义这种条件下系统输出称为系统的单位取样响应,用h(n)表示。