第10章 智能化网络-人工智能概论(通识课版)-廉师友-清华大学出版社
- 格式:ppt
- 大小:2.98 MB
- 文档页数:30
从表现形式的角度机器智能,能够在各类环境中,自主地或者交互地执行各种拟人任务(anthropomorphic tasks)的机器从科学发展的角度人工智能,是计算机科学中涉及研究、设计和应用智能机器的一个分支,其近期主要目标是用机器来模仿和执行人脑的某些智能功能,并开发相关理论和技术。
从实用主义的角度智能计算,研究智能信息处理技术,以使机器具有与人类智能相类似的行为,如:判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动。
人工智能的发展进程人工智能的发展是以硬件与软件为基础。
它的发展经历了漫长的发展历程。
早在亚里士多德(公元前384-322年)在着手解释和编注他称之为三段论的演绎推理时就迈出了向人工智能发展的早期步伐,可以看作为原始的知识表达规范。
1、孕育时期20世纪30年代和40年代,两件最重要的事:数学逻辑(维纳,罗素等)和关于计算的新思想(图灵等)20世纪40年代,贝尔实验室M系列继电器计算机1946年2月15日,世界上第一台电子计算机“埃尼亚克”(ENIAC)研制成功2、形成期(1956-1970)1956年夏,美国达特矛斯大学第一次人工智能研讨会(1stInt. Symp. on AI @Univ. of Dartmouth.),标志着人工智能学科的诞生。
3、发展期进一步研究AI基本原理、方法和技术进行实用化研究专家系统与知识工程智能机器人智能控制人工神经网络 DNA计算人工免疫系统从“一枝独秀”到“百花齐放”生物智能与人工智能人,是一种智能信息处理系统。
信息处理系统又可以看成是一种符号操作系统(Symbol Operation System),或物理符号系统(Physical Symbol System)符号,就是模式(Pattern)。
物理符号系统的六种基本功能(Functions):输入符号——Input;输出符号——Output;存储符号——Storage;复制符号——Copy;认知行为的不同层次认知生理学研究认知行为的生理过程;主要研究人的神经系统(神经元、中枢神经系统和大脑)的活动;认知科学研究的底层。
SJQU-QR-JW-033(A0)!【人工智能概论】【Introduction to Artificial Intelligence】!"#$%&课程代码:【2050628】课程学分:【2】面向专业:【计算机科学与技术】课程性质:【院级选修课】开课院系:信息技术学院计算机科学与技术系使用教材:主教材:【人工智能概论,周苏 著, 机械工业出版社, 2020年3月】参考教材:1.《人工智能简史》, 尼克著,人民邮电出版社,2017-12-012.《人工智能:一种现代的方法(第三版)》,Stuart J.Russell, Peter Norvig著,清华大学出版社,2013年11月3.《AI 3.0》, 梅拉妮·米歇尔著,四川科学技术出版社,2021年2月课程网站网址:https://mooc1-/mycourse/teachercourse?moocId=218896162&clazzid=42924828&edit=true&v=0&cpi=54843172&pageHeader=0先修课程:【数据结构】【程序设计】'"()*+人工智能 (AI) 是计算机科学的一个分支,与“智能”行为的自动化有关。
人工智能已经成为一个非常广泛的领域,包括搜索、游戏、推理、规划、计算机视觉、自然语言处理、人类表现建模(认知科学)、机器学习和机器人技术。
人工智能是计算机科学理论基础研究的重要组成部分,是信息技术学院计算机科学与技术专业的专业限选课,面向计算机大类专业的学生开设。
通过本课程的学习使学生了解人工智能的提出、几种人工智能流派、重要研究领域,掌握人工智能求解方法的特点,掌握人工智能的基本概念、基本方法,会用知识表示方法、推理方法和机器学习等方法求解简单问题。
了解人工智能研究与应用的最新进展和发展方向;开阔学生知识视野、提高解决问题的能力,为将来使用人工智能的相关方法和理论解决实际问题奠定初步基础。
1、以科学工程案例综合评价模型为指导,进行人工智能基础能力的测评。
能力模型如下:(1)工程思维a、用思维导图表达的能力b、设计草图及利用现有材料进行实现的能力c、对实现结果进行分析和评价的能力d、结构、物理、电子、控制等基础知识掌握程度e、利用现有知识进行工程问题实现的能力(2)计算思维a、数据分析及建立模型的能力b、计算思维应用到不同学科中的能力c、信息筛选及判断的能力d、信息技术及编程能力的掌握程度(3)创造性思维a、辨别信息真伪、偏差及其是否全面b、建立跨学科的知识和视野c、利用知识和创造力去解决复杂的真实问题(4)批判思维和表达能力a、利用现有数据及模型进行推理的能力b、将复杂问题及解决方案用简易图表或语言讲解的能力。
(二)知识点详述1、人工智能知识(1)人工智能及机器人的定义和概念;(2)人工智能及机器人的发展史;(3)人工智能及机器人的应用场景及未来发展趋势;(4)人工智能与机器人的关系;(5)了解百度等人工智能开放平台简单功能;2、图灵测试(1)图灵测试的定义;(2)图灵测试的争议和批评;(3)强人工智能与弱人工智能;(4)启发法;(5)长方体的对角线:解决一个相对简单但相关的问题(6)识别适用人工智能来求解的问题(7)搜索算法和拼图(8)二人博弈(9)自动推理(10)产生式规则和专家系统(11)细胞自动机(12)神经计算(13)遗传算法(14)知识表示(15)不确定性推理(16)博弈(17)专家系统(18)神经计算(19)进化计算(20)自然语言处理(21)生物信息学3.盲目搜索(1)智能系统中的搜索状态空间图生成与测试范式回溯贪婪算法旅行销售员问题盲目搜索算法深度优先搜索广度优先搜索盲目搜索算法的实现和比较实现深度优先搜索实现广度优先搜索问题求解性能的测量指标DFS和BFS的比较4.知情搜索启发法知情搜索(第一部分)——找到任何解爬山法最陡爬坡法最佳优先搜索集束搜索搜索算法的其他指标分支定界法使用低估值的分支定界法采用动态规划的分支定界法知情搜索(第三部分)—高级搜索算法约束满足搜索与或树双向搜索博弈中的搜索博弈树和极小化极大评估启发式评估博弈树的极小化极大评估具有α-剪枝的极小化极大算法极小化极大算法的变体和改进负极大值算法渐进深化法启发式续篇和地平线效应概率游戏和预期极小化极大值算法博弈理论迭代的囚徒困境5.人工智能中的逻辑逻辑和表示命题逻辑命题逻辑—基础命题逻辑中的论证证明命题逻辑论证有效的第二种方法谓词逻辑——简要介绍谓词逻辑中的合一谓词逻辑中的反演将谓词表达式转换为子句形式其他一些逻辑二阶逻辑非单调逻辑模糊逻辑模态逻辑6、知识表示图形草图和人类视窗图和哥尼斯堡桥问题搜索树表示方法的选择产生式系统面向对象框架法脚本和概念依赖系统语义网络关联新近的方法概念地图概念图Baecker的工作智能体:智能或其他智能体的一些历史当代智能体语义网7、产生式系统CARBUYER系统产生式系统和推导方法冲突消解正向链接反向链接产生式系统和细胞自动机随机过程与马尔可夫链8.人工智能中的不确定性模糊集模糊逻辑模糊推理概率理论和不确定性9.专家系统专家系统的特点知识工程知识获取经典的专家系统DENDRALMYCINEMYCINPROSPECTOR模糊知识和贝叶斯规则提高效率的方法守护规则Rete算法基于案例的推理改善就业匹配系统振动故障诊断的专家系统自动牙科识别更多采用案例推理的专家系统10.机器学习机器学习:简要概述机器学习系统中反馈的作用归纳学习利用决策树进行学习适用于决策树的问题熵使用ID3构建决策树11.神经网络麦卡洛克-皮茨网络感知器学习规则增量规则反向传播实现关注点模式分析训练方法离散型霍普菲尔德网络应用领域12.受到自然启发的搜索引言模拟退火遗传算法遗传规划禁忌搜索蚂蚁聚居地优化13.现在和未来机器人技术服务人类、仿效人类、增强人类和替代人类早期机械机器人电影与文学中的机器人机器人的组件运动点机器人的路径规划移动机器人运动学应用:21世纪的机器人14.高级计算机博弈跳棋:从塞缪尔到舍弗尔在跳棋博弈中用于机器学习的启发式方法填鸭式学习与概括签名表评估和棋谱学习含有奇诺克程序的世界跳棋锦标赛彻底解决跳棋游戏国际象棋:人工智能的“果蝇”计算机国际象棋的历史背景编程方法超越地平线效应Deep Thought和Deep Blue与特级大师的比赛(1988—1995年计算机国际象棋对人工智能的贡献在机器中的搜索在搜索方面,人与机器的对比启发式、知识和问题求解15.人工智能应用知识智能助理新闻推荐和新闻撰稿机器视觉AI艺术新一代搜索引擎机器翻译自动驾驶机器人深度学习大数据云计算弱人工智能、强人工智能和超人工智能跨领域推理抽象能力人工智能工作将发生转变场景自动驾驶智慧金融金融行业AI应用案例智慧生活智慧医疗艺术创作人类将如何变革用开放的心态迎接新世界AI将成为国家科技战略的核心。
第一章人工智能:主要研究如何用人工的方法和技术,使用各种自动化机器或智能机器(主要指计算机)模仿、延伸和扩展人的智能,实现某些机器思维或脑力劳动自动化。
为什么要研究人工智能:1)普通计算机智能低下,不能满足社会需求。
2)研究人工智能也是当前信息化社会的迫切需求。
3)智能化是自动化发展的必然趋势。
4)研究人工智能,对人类自身智能的奥秘也提供有益帮助。
远期目标是要制造智能机器。
具体讲就是使计算机具有看、听、说、写等感知和交互能力,具有联想、学习、推理、理解、学习等高级思维能力,还要有分析问题解决问题和发明创造的能力。
近期目标:是实现机器智能。
即先部分地或某种程度地实现机器智能,从而使现有的计算机更灵活好用和更聪明有用。
人工智能的研究内容1)搜索与求解2)学习与发现3)知识与推理4)发明与创造5)感知与交流6)记忆与联想7)系统与建造8)应用与工程研究途径与方法:1)心理模拟,符号推演法就是以人脑的心理模型为依据,将问题或知识表示成某种逻辑网络,采用符号推演的方法,实现搜索、推理、学习等功能,从宏观上来模拟人脑的思维,实现人工智能.2)生理模拟,神经计算就是用人工神经元组成的人工神经网络来作为信息和知识的载体,用称为神经计算的方法实现学习、记忆、联想、识别和推理等功能,从而来模拟人脑的智能行为,使计算机表现出某种智能。
3)行为模拟,控制进化是一种基于感知-行为模型的研究途径和方法,它是在模拟人在控制过程中的智能活动和行为特性,如自适应,自寻优、自学习、自组织等,来研究和实现人工智能。
4)群体模拟,仿生计算模拟生物群落的群体智能行为,从而实现人工智能.5)博采广鉴,自然计算就是模仿或借鉴自然界的某种机理而设计计算模型,这类计算模型通常是一类具有自适应、自组织、自学习、自寻优能力的算法.6)原理分析,数学建模就是通过对智能本质和原理的分析,直接采用某种数学方法来建立智能行为模型.人工智能的基本技术1)表示a符号智能的表示是知识表示b计算智能的表示一般是对象表示2)运算a符号智能的运算是基于知识表示的推理或符号操作b计算智能的运算是基于对象表示的操作或计算3)搜索a符号智能在问题空间内搜索进行问题求解b计算智能在解空间搜索进行求解第三章1广度优先搜索的特点广度优先中OPEN表是一个队列,CLOSED表是一个顺序表,表中各节点按顺序编号,正被考察的节点在表中编号最大,广度优先策略是完备的广度优先搜索策略与问题无关,具有通用性.缺点搜索效率低。