•如用实际晶体的E,a。,γ值代入式(56)计算,例如铁,E=2×105 MPa,a0=2.5×10-10 m,γ=2 J/m2, 则σm= 4×104 MPa≈E/5。 •高强度钢,其强度只相当于E/100,相差 20倍。 •在实际晶体中必有某种缺陷,使其断裂强 度降低。
5.3.2 格雷菲斯裂纹理论(Griffith)
• 当裂纹增长到2ac后,若再增长,则系统的总 能量下降。从能量观点来看,裂纹长度的继 续增长将是自发过程。临界状态为: (Ue+W)/ a =4γ-2πσ2a/E =0 (5-10) • 于是,裂纹失稳扩展的临界应力为: σc=(2Eγ/πa)1/2 (5-11) • 临界裂纹半长为 ac=2Eγ/πσ2 (5-12) • 式(5-11)便是著名的Griffith公式。 • σc 是含裂纹板材的实际断裂强度,它与裂 纹半长的平方根成反比;
摘要发表于 Int. J. of Fracture, Vol23, No.3, 1983 译文见 力学进展, Vol15,No2,1985
对策
普及断裂的基本知识,可减少损失29%(345亿/年)。
设计、制造人员了解断裂,主动采取改进措施, 如设计;材料断裂韧性;冷、热加工质量等。
利用现有研究成果,可再减少损失24%(285亿/年)。 包括提高对缺陷影响、材料韧性、工作应力的预测 能力;改进检查、使用、维护;建立力学性能数据 库;改善设计方法更新标准规范等。
• Griffith认为,裂纹尖端局部区域的材料强度可
达其理论强度值。 • 倘若由于应力集中的作用而使裂纹尖端的应 力超过材料的理论强度值,则裂纹扩展,引 起断裂。 • 根据弹性应力集中系数的计算,可以得到相似 公式 • Griffith公式适用于陶瓷、玻璃这类脆性材料。