数据结构 堆排序
- 格式:doc
- 大小:1.29 MB
- 文档页数:12
数据结构课程设计报告几种排序算法的演示1、需求分析:运行环境:Microsoft Visual Studio 20052、程序实现功能:3、通过用户键入的数据, 经过程序进行排序, 最后给予数据由小到大的输出。
排序的方式包含教材中所介绍的几种常用的排序方式:直接插入排序、折半插入排序、冒泡排序、快速排序、选择排序、堆排序、归并排序。
每种排序过程中均显示每一趟排序的细节。
程序的输入:输入所需排序方式的序号。
输入排序的数据的个数。
输入具体的数据元素。
程序的输出:输出排序每一趟的结果, 及最后排序结果1、设计说明:算法设计思想:a交换排序(冒泡排序、快速排序)交换排序的基本思想是: 对排序表中的数据元素按关键字进行两两比较, 如果发生逆序(即排列顺序与排序后的次序正好相反), 则两者交换位置, 直到所有数据元素都排好序为止。
b插入排序(直接插入排序、折半插入排序)插入排序的基本思想是: 每一次设法把一个数据元素插入到已经排序的部分序列的合适位置, 使得插入后的序列仍然是有序的。
开始时建立一个初始的有序序列, 它只包含一个数据元素。
然后, 从这个初始序列出发不断插入数据元素, 直到最后一个数据元素插到有序序列后, 整个排序工作就完成了。
c选择排序(简单选择排序、堆排序)选择排序的基本思想是: 第一趟在有n个数据元素的排序表中选出关键字最小的数据元素, 然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素, 依次重复, 每一趟(例如第i趟, i=1, …, n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素, 作为有序数据元素序列的第i个数据元素。
等到第n-1趟选择结束, 待排序数据元素仅剩下一个时就不用再选了, 按选出的先后次序所得到的数据元素序列即为有序序列, 排序即告完成。
d归并排序(两路归并排序)1、两路归并排序的基本思想是: 假设初始排序表有n个数据元素, 首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项), 先做两两归并, 得n/2上取整个长度为2的归并项(如果n为奇数, 则最后一个归并项的长度为1);再做两两归并, ……, 如此重复, 最后得到一个长度为n的有序序列。
数据结构第9章排序数据结构第9章排序第9章排名本章主要内容:1、插入类排序算法2、交换类排序算法3、选择类排序算法4、归并类排序算法5、基数类排序算法本章重点难点1、希尔排序2、快速排序3、堆排序4.合并排序9.1基本概念1.关键字可以标识数据元素的数据项。
如果一个数据项可以唯一地标识一个数据元素,那么它被称为主关键字;否则,它被称为次要关键字。
2.排序是把一组无序地数据元素按照关键字值递增(或递减)地重新排列。
如果排序依据的是主关键字,排序的结果将是唯一的。
3.排序算法的稳定性如果要排序的记录序列中多个数据元素的关键字值相同,且排序后这些数据元素的相对顺序保持不变,则称排序算法稳定,否则称为不稳定。
4.内部排序与外部排序根据在排序过程中待排序的所有数据元素是否全部被放置在内存中,可将排序方法分为内部排序和外部排序两大类。
内部排序是指在排序的整个过程中,待排序的所有数据元素全部被放置在内存中;外部排序是指由于待排序的数据元素个数太多,不能同时放置在内存,而需要将一部分数据元素放在内存中,另一部分放在外围设备上。
整个排序过程需要在内存和外存之间进行多次数据交换才能得到排序结果。
本章仅讨论常用的内部排序方法。
5.排序的基本方法内部排序主要有5种方法:插入、交换、选择、归并和基数。
6.排序算法的效率评估排序算法的效率主要有两点:第一,在一定数据量的情况下,算法执行所消耗的平均时间。
对于排序操作,时间主要用于关键字之间的比较和数据元素的移动。
因此,我们可以认为一个有效的排序算法应该是尽可能少的比较和数据元素移动;第二个是执行算法所需的辅助存储空间。
辅助存储空间是指在一定数据量的情况下,除了要排序的数据元素所占用的存储空间外,执行算法所需的存储空间。
理想的空间效率是,算法执行期间所需的辅助空间与要排序的数据量无关。
7.待排序记录序列的存储结构待排序记录序列可以用顺序存储结构和和链式存储结构表示。
在本章的讨论中(除基数排序外),我们将待排序的记录序列用顺序存储结构表示,即用一维数组实现。
xxx堆排序比较次数详解在计算机科学领域,堆排序是一种基于堆数据结构的排序算法,它是一种非常高效的排序方法,尤其在大数据集上表现突出。
堆排序的关键在于利用堆的性质来实现排序过程,而其中一个重要的指标就是比较次数。
在本文中,我将对xxx堆排序的比较次数进行详细的解析,希望能够帮助大家更好地理解这一排序算法。
我们需要了解什么是堆排序。
堆排序是一种选择性排序,它利用了堆这种数据结构的特性来实现。
堆可以被看作一棵树,它满足两个性质:结构性和堆序性。
结构性是指堆是一个完全二叉树,而堆序性是指堆中任意节点的值都不大于(或不小于)其孩子节点的值。
根据堆的性质,我们可以利用堆来进行排序,这就是堆排序算法的基本思想。
在xxx堆排序中,比较次数是一个非常重要的指标。
比较次数可以用来衡量算法的效率和性能,它表示在排序过程中进行了多少次元素之间的比较操作。
对于堆排序来说,比较次数取决于待排序数据的特点以及具体的实现方式。
在最坏情况下,比较次数是一个与n相关的量级,其中n表示待排序数据的大小。
一般情况下,堆排序的比较次数大约为nlogn,这使得堆排序成为一种非常高效的排序算法。
在xxx堆排序的实现过程中,比较次数是如何计算的呢?在建立堆的过程中,需要进行n/2次比较,这是因为堆是一棵完全二叉树,而叶子节点不需要进行比较。
在堆排序的过程中,需要进行n-1次比较,这是因为每次将最大(或最小)的元素移出堆后,需要对剩余的元素进行调整,直到完成排序。
堆排序的比较次数可以用一个简单的公式表示:n/2 + (n-1) = 3n/2 - 2。
除了比较次数外,xxx堆排序还涉及到交换次数和空间复杂度等指标。
交换次数表示在排序过程中进行了多少次元素之间的交换操作,而空间复杂度表示算法在执行过程中所需的额外空间。
这些指标的综合考量可以帮助我们更全面地评估堆排序算法的性能和适用范围。
xxx堆排序的比较次数是一个非常重要的指标,它可以帮助我们评估算法的效率和性能。
各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。
效率分析:该排序算法简洁,易于实现。
从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。
当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。
插入排序算法对于大数组,这种算法非常慢。
但是对于小数组,它比其他算法快。
其他算法因为待的数组元素很少,反而使得效率降低。
插入排序还有一个优点就是排序稳定。
(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。
效率分析:由上可知该排序所需存储空间和直接插入排序相同。
从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。
而记录的移动次数不变。
因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。
排序稳定。
(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。
Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。
常见排序算法的时间复杂度比较和应用场景排序算法是计算机科学中最基本的算法之一。
在数据结构和算法中,排序算法的研究一直是热门话题。
这篇文章将会介绍一些最基本的排序算法,探讨它们的时间复杂度和一些应用场景。
1. 冒泡排序冒泡排序是最基本的排序算法之一。
其主要思想是循环遍历待排序的序列多次,每次比较相邻的两个元素的大小,如果前面的元素大于后面的元素,则交换这两个元素。
一个简单的例子如下:```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```冒泡排序的时间复杂度为 $O(n^2)$,其中 $n$ 是待排序序列的长度。
由于其时间复杂度较高,冒泡排序只适用于小规模的排序任务。
2. 快速排序快速排序是一种高效的排序算法。
其主要思想是选取序列中的一个元素作为基准值,将序列中小于基准值的元素放在基准值左边,大于基准值的元素放在右边,然后递归地对左右两部分进行排序。
一个简单的例子如下:```pythondef quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr)//2]left = [x for x in arr if x < pivot]right = [x for x in arr if x > pivot]middle = [x for x in arr if x == pivot]return quick_sort(left) + middle + quick_sort(right)```快速排序的时间复杂度为 $O(n\log n)$,其中 $n$ 是待排序序列的长度。
数据结构排序算法稳定性总结——写给⾃⼰看⼀、排序分类(1)插⼊类:直接插⼊排序、折半插⼊排序、希尔排序(2)交换类:冒泡排序、快速排序(3)选择类:简单选择排序、堆排序(属于树形选择排序)(4)归并类:2-路归并排序(5)分配类:基数排序⼆、排序稳定性及其原因(1)稳定排序:直接插⼊排序、折半插⼊排序、冒泡排序、2-路归并排序、基数排序直接插⼊排序:每次将⼀个待排序的记录,按其关键字的⼤⼩插⼊到已经排好序的⼀组记录的适当位置上。
在数组内部前半部为排好序的记录,后半部是未排好序的。
⽐较时从前半部的后向前⽐较,所以不会改变相等记录的相对位置。
折半插⼊排序:将直接插⼊排序关键字⽐较时的查找利⽤“折半查找”来实现,本质并没有改变还是⼀种稳定排序。
冒泡排序:通过两两⽐较相邻记录的关键字,如果发⽣逆序,则进⾏交换。
也不会改变相等记录的相对位置。
2-路归并排序:将两个有序表合并成⼀个有序表。
每次划分的两个⼦序列前后相邻。
合并时每次⽐较两个有序⼦序列当前较⼩的⼀个关键字,将其放⼊排好序的序列尾部。
因为两⼦序列相邻,合并时也没有改变相等记录的相对位置,所以也是稳定的。
基数排序:对待排序序列进⾏若⼲趟“分配”和“收集”来实现排序。
分配时相等记录被分配在⼀块,没有改变相对位置,是⼀种稳定排序。
(2)不稳定排序:希尔排序、快速排序、堆排序希尔排序:采⽤分组插⼊的⽅法,将待排序列分割成⼏组,从⽽减少直接插⼊排序的数据量,对每组分别进⾏直接插⼊排序,然后增加数据量,重新分组。
经过⼏次分组排序之后,对全体记录进⾏⼀次直接插⼊排序。
但是希尔对记录的分组,不是简单的“逐段分割”,⽽是将相隔每个“增量”的记录分成⼀组(假如:有1~10⼗个数,以2为增量则分为13579、246810两组)。
这种跳跃式的移动导致该排序⽅法是不稳定的。
快速排序:改进的冒泡排序。
冒泡只⽐较相邻的两个记录,每次交换只能消除⼀个逆序。
快排就是通过交换两个不相邻的记录,达到⼀次消除多个逆序。
佛山科学技术学院
实验报告
课程名称数据结构
实验项目实现典型的排序算法
专业班级 09计算机(1)班姓名梁志恒学号________2009314138________
指导教师黄营成绩____________ 日期________ _______
题目:请编程实现堆排序算法。
#include<stdio.h>
#define maxsize 100
typedef struct
{
int key[maxsize];
int length;
}SqList;
//堆排序大根堆
void HeapAdjust(SqList *L,int s,int m)
{
int j;
L->key[0]=L->key[s];
for(j=2*s;j<=m;j=2*j)
{
if(j<m && L->key[j]>L->key[j+1])
j++;
if(!(L->key[0]>L->key[j]))
break;
L->key[s]=L->key[j];
s=j;
}
L->key[s]=L->key[0];
}
void HeapSort(SqList *L)
{
//对顺序表key进行堆排序
int i;
for(i=L->length/2;i>0;i--)
HeapAdjust(L,i,L->length);
for(i=L->length;i>1;i--)
{
L->key[0]=L->key[1];
L->key[1]=L->key[i];
L->key[i]=L->key[0];
HeapAdjust(L,1,i-1);
}
}
void main()
{
SqList L;
int i,s=1;
printf("元素的个数length=");
scanf("%d",&(L.length));
for(i=1;i<=L.length;i++)
{
scanf("%d",&(L.key[i]));
}
HeapSort(&L,s,L.length);
printf("排序后:\n");
for(i=1;i<=L.length;i++)
printf("%d ",L.key[i]);
printf("\n");
}
1.请为所建立的堆选择适合的数据结构。
链式存储结构
typedef struct BiTNode
{
int data;
struct BiTNode *lchild,* rchild;
}BiTNode , *BiTree;
顺序存储结构
#define maxsize 100
typedef struct
{
int key[maxsize];
int length;
}SqList;
2.给出如下12个数字,请画出建立小根堆的过程。
36,47,58,12,17,22,97,10,21,28,72,80
36,47,58,12,17,22,97,10,21,28,72,80
3.请画出从小根堆输出升序序列的过程。
输出 10
58
7297 80
58
7297
80
58
7297
80
58
7297
80
输出10 12 17 21 22 28 36 47 58
80
7297
80
7297
72
8097
72
8097输出10 12 17 21 22 28 36 47 58 72
97 80
80
97
80
97
输出10 12 17 21 22 28 36 47 58 72 80
97
输出10 12 17 21 22 28 36 47 58 72 80 97。