《圆》章节知识点总结
- 格式:doc
- 大小:423.94 KB
- 文档页数:8
圆章节知识点总结圆是数学中的一个重要概念,它在几何学、代数学、物理学等领域都有广泛的应用。
下面是关于圆的一些主要知识点的总结:一、基本定义1.圆是一个平面上一点固定到另一点距离恒定的图形,这个恒定距离被称为圆的半径。
2.圆上的所有点到圆心的距离都相等。
二、圆的性质1.圆心角:圆内的任意两条弧所对应的圆心角相等。
2.弧长:弧与半径相交的弧所对应的圆心角的度数即为弧长的度数。
3.弧度:弧长与半径的比值即为弧度。
4.周长:圆的周长等于半径的长度乘以2π。
5.面积:圆的面积等于半径的平方乘以π。
三、与圆相关的角度和弧度1.圆心角的度数等于弧长的度数。
2.180度等于π弧度。
3.角的弧度=角的度数×π/180。
四、圆心角和弧度的换算1.假设圆的半径为r,则圆心角θ的弧度数为:θ=弧长/r。
2.弧长为l的弧所对应的圆心角θ的度数为:θ=(l/r)×(180/π)。
3.圆心角θ的弧度数为r的弧长为:l=r×θ。
五、与圆相关的直线和线段1.弦:圆内两点之间的线段被称为弦。
2.直径:通过圆心的弦被称为直径。
3.弦长:弦的长度。
4.弦长は直径的两倍,即:l=2r。
5.垂直弦:通过圆心的弦被称为垂直弦,其垂直于该弦的直径被称为垂直直径。
六、与圆相关的角度1.切线:与圆形只有一个交点的直线被称为切线。
2.切点:切线与圆的交点被称为切点。
3.切线与半径的关系:切线和半径的夹角等于切点处的弧所对应的圆心角的一半。
七、与圆相关的角度关系1.同弧度弧所对应的圆心角相等。
2.夹脚定理:夹脚所对应的弧所对应的圆心角相等。
3.顶角定理:顶角所对应的弧所对应的圆心角相等。
八、与圆相关的定理和公式1.弧度制:角度制和弧度制的换算公式为:度数×π/180=弧度。
2.半径、弦和切线之间的关系:根据幂定理,切线与切点的弦的乘积等于切点到圆心的距离的平方。
3.弧长角的关系:根据圆心角、圆周角和弧长之间的关系,可以用以下公式计算弧长:弧长=角度/360×2πr。
九年级_圆_全章知识点总结1、圆的定义:在同一平面内,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。
2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。
3、弧:圆上任意 叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。
小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。
4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆。
5、点与圆的三种位置关系:若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则:点P 在⊙O 外;点P 在⊙O 上;点P 在⊙O 内。
6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上 7、过一点可作 个圆。
过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。
8、过 的三点确定一个圆。
9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。
三角形的外心是三角形三条边的 例1、有下列七个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧;⑤三角形的三个顶点在同一个圆上;⑥ 三角形的外心在三角形的内部;⑦过圆心的线段叫做圆的直径。
其中正确的有 (填序号)。
例2、⊙O 的半径为5,圆心O 在坐标原点上,点P 的坐标为(4,2),则点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 上 C .点P 在⊙O 外 例3、已知矩形ABCD 的边AB=3cm ,AD=4cm ,若以A 点为圆心作⊙A ,使B 、C 、D 三点中至少有一个点在圆内且至少有一个点在圆外,则⊙A 的半径r 的取值范围是 . 例4、如果⊙O 所在平面内一点P 到⊙O 上的点的最大距离为7,最小距离为1,那么此圆的半径为 1、圆是轴对称图形, 都是它的对称轴2、垂径定理:垂直于弦的直径 ,并且平分3、垂径定理的推论:平分弦( )的直径垂直于弦,并且平分 例5、如图1,直径CE 垂直于弦AB ,CD=1,且AB+CD=CE ,求圆的半径。
认识圆及圆周长1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
如下图中,中心的一点O 。
一般用字母O 表示。
它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r 表示。
如下图红色线。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d 表示。
如下图蓝色线。
直径是一个圆内最长的线段。
85、圆心确定圆的位置,半径确定圆的大小。
如果已知的是直径,我们要把直径除以2换成半径,确定圆心,然后才开始画圆。
(画圆给出半径标半径r=?,给出直径标直径d=?)要比较两圆的大小,就是比较两个圆的直径或半径。
6、在同圆或等圆内,有无数条半径,有无数条直径。
同圆中所有的半径、直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。
用字母表示为:d = 2r 或r = 2d 或r=d ÷2 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、常见图形的对称轴:只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。
11、正方形里最大的圆。
两者联系:边长=直径;圆的面积=78.5%正方形的面积??画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
12、长方形里最大的圆。
两者联系:宽=直径??画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。
圆的章节知识点总结第一章:圆的定义和性质1.1 圆的定义圆是平面上到定点的距离等于定长的点的集合。
1.2 圆的要素圆包括圆心、半径和圆周。
1.3 圆的性质(1)圆的半径相等(2)圆的直径是两倍半径(3)直径垂直于半径(4)同一圆周上的弧所对的圆心角相等(5)圆周角相等的弧相等(6)圆内切角等于所对的弧的一半(7)弧长与圆心角的关系1.4 圆的常见定理(1)切线与半径垂直(2)切线的长度相等(3)弦长与半径的关系(4)在同一圆中,小弦所对的圆心角小于大弦所对的圆心角第二章:圆的相关公式2.1 圆的周长和面积圆的周长=2πr圆的面积=πr²2.2 弧长和扇形面积弧长=S=rθ扇形面积=0.5r²θ2.3 圆内接四边形面积圆内接四边形面积=1/2×d×R其中,d为对角线,R为半径第三章:圆的相关问题3.1 圆的位置关系(1)内切圆与外接圆(2)相切圆与内切圆(3)相切圆与外切圆3.2 圆和直线的交点问题(1)相离(2)相切(3)相交3.3 圆和三角形的关系(1)圆内接三角形(2)圆外接三角形(3)圆似圆三角形3.4 圆锥雏形问题通过顶点与圆周点的关系判断棱柱、棱锥和圆锥第四章:圆的应用4.1 圆的建模在建模中,圆的应用非常广泛。
例如,轮子、钟表、饼干等都是圆形的。
4.2 圆的测量圆的周长和面积在日常生活中用得非常多,测量圆的周长和面积可以帮助我们计算物体的大小、量取圆形面积等。
4.3 圆的运动圆的运动在机械学、物理学等学科中有着重要的应用,例如圆周运动、匀速圆周运动等。
4.4 圆的工程应用在工程中,圆也有很多应用,例如圆形水箱、圆形路口等。
总结圆是数学中的一个基本概念,它在日常生活和学科中都有着重要的应用。
通过学习圆的定义、性质、公式和相关问题,我们可以更好地理解和运用圆的知识,为我们的生活和学习带来便利。
希望通过本章知识点的总结,能够帮助大家更好地理解和掌握圆的相关知识,为未来的学习和工作打下坚实的基础。
六年级《圆》知识点总结一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:(d=2r)8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;二、圆的周长1.圆的周长:围成圆的曲线的长度,叫做圆的周长,一般用字母C表示。
2.圆周率:圆的周长与它的直径的比值叫做圆周率,一般用字母π表示。
π是一个无限不循环小数,π≈3.14. ①π=3.1415926…②π=3.14(×)π=3.14159>6(×)应该是≈②π是一个定值.永远不改变3.圆的周长的计算公式: C=πd 或C=2πr d=c÷π r=C÷2π4.周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
半径扩大a倍→直径扩大a倍→周长扩大a倍→面积扩大a²倍半径增加a厘米→周长增加2πa厘米直径增加b厘米→周长增加πb厘米C半圆=1/2πd+d5.半圆的周长:半圆的周长=圆周长的一半加上一条直径的长度或两条半径的长度,即或C半圆=πr+2r三、圆的特征(1)一个圆里有无数条半径和无数条直径。
人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
《圆》章节知识点总结一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、垂径定理(重点)垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称知2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
几何表示法: 推论1:(1)在⊙O 中,∵AB 是直径 AB CD ⊥∴CE DE = 弧BC =弧BD 弧AC =弧AD(2):在⊙O 中,∵AB CD ⊥ CE DE = ∴AB 是直径 弧BC =弧BD 弧AC =弧AD(3):在⊙O 中,∵AB 是直径 弧BC =弧BD (或弧AC =弧AD )∴AB CD ⊥ CE DE = 弧AC =弧AD (或弧BC =弧BD )三、圆心角、弧、弦、弦心距之间的关系圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称知1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD 几何表示法:在⊙O 中,∵AOB DOE ∠=∠∴AB DE = OC OF = 弧BA =弧BDB(重点)圆心角定理和推论可概括为:同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦心距中有一组量相等,它们所对的其余各组量也相等。
《圆》重难点整理圆这一章是常考章节,其中包括以下知识点:圆的认识,圆的周长推导及计算,圆的面积推导及计算,已知圆的直径或半径求周长或面积。
圆的认识:圆是平面上封闭的曲线图形,它有无数条对称轴,直径所在的直线就是它的对称轴。
圆无数条直径和半径。
在同一个圆中,直径都相等,半径也都相等,且直径是半径的两倍。
画圆时,(圆心)决定圆的位置,(半径)决定圆的大小。
圆的半径扩大3倍,直径扩大()倍,周长扩大()倍;面积扩大()倍。
1、圆的周长推导:滚圈法和绕线法。
通过实验发现,圆的周长除以直径的值都是3倍多一些。
我们将这个固定的值(不会随圆的大小而改变)叫圆周率,用字母∏表示。
由此,我们可以说圆的周长是直径的∏倍,或3倍多一些,或大约是3.14倍。
2、已知直径或半径求周长:C=∏d或C=2∏r。
①、一辆自行车轮胎外直径50厘米,如果自行车每分钟转120周,这辆自行车每小时能行多少千米?(得数保留整千米)②、杂技演员表演独轮车走钢丝,车轮直径50厘米。
要骑过94.2米长的钢丝,车轮要滚动多少周?③、一只挂钟的分针长1.5米,经过45分钟后,分针针尖走过的路程是多少?(3/4圈)④、一段长628米长的绳子刚好绕树干十圈,求树干的横截面的周长?3、圆的面积推导:将圆平均分成8份,然后拼成一个近似的长方形或平行四边形(分的份数越多,越接近于长方形和平行四边形)。
长方形的长(平行四边形的底)相当于圆周长的一半,长方形的宽(平行四边形的高)相当于圆的半径。
长方形的面积=长* 宽,即=圆周长的一半* 圆的半径,S=∏r*r=∏r2。
4、已知直径或半径求面积:S=∏r2。
①、用圆规画一个周长50.24厘米的圆,圆规两脚之间的距离是()厘米,所画的圆的面积是()平方厘米。
②、学校圆形大钟的分针长90厘米,它的针尖一昼夜扫过的面积是多少平方米?(转24圈)③、学校圆形大钟的时针长80厘米,它的针尖一昼夜扫过的面积是多少平方米?(转2圈)④、一根长3米的绳子系着一只羊,栓在草地中央的树桩上,羊吃草的面积最多是多少平方米?⑤、一种压路机的前轮直径1.5米,宽2米。
人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
第四单元圆一、基本概念1、圆心一个圆最中心的那一点,用大写字母O 表示(1) 圆心决定圆的位置。
(2) 圆心到圆上任意一点的距离都相等。
(3) 一张圆形纸片至少对折两次,就能找到圆心。
2、半径圆心到圆上任意一点的线段,用小写字母r 表示(1) 半径决定圆的大小。
(2) 在同一个圆里面,半径都相等。
(3) 在同一个圆里面,半径有无数条。
(4) 半径是直径的一半,即d 21r =3、直径通过圆心并且两端都在圆上的线段,用小写字母d 表示(1) 在同一个圆里面,直径都相等。
(2) 在同一个圆里面,直径有无数条。
(3) 直径是半径的两倍,即r 2d =(4) 在一个正方形内画最大的圆,圆的直径等于正方形的边长(5) 在一个长方形内画最大的圆,圆的直径等于长方形的宽二、使用圆规的步骤1、先确定圆心的位置和半径。
(1) 轴对称图形中,两条对称轴的交点就是中心点(2) 如果知道直径,那么直径的一半就是半径2、用直尺量出两脚之间的距离为半径。
(1) 量好后不能再改变两脚之间的距离3、把针尖放在圆心位置,保持针尖不动,旋转另一只脚一周,即可画出指定的圆。
(1)如果旋转圆规一周不顺手,可以保持圆规不动,旋转纸一周。
(2)如果旋转一周画出来的线条不清晰,可以多旋转几周加深线条。
三、轴对称图形1、轴对称图形沿对称轴对折之后,两边可以完全重合。
2、常见的轴对称图形以及它们的对称轴条数:(1)只有一条对称轴的图形:角、等腰三角形、等腰梯形、扇形、半圆(2)有2条对称轴的图形:长方形(3)有3条对称轴的图形:等边三角形(4)有4条对称轴的图形:正方形(5)有无数条对称轴的图形:圆、圆环【圆的对称轴就是直径】四、周长与面积1、圆周率ππ是一个无限不循环小数,一般取 3.14π≈。
我国数学家祖冲之是第一个把圆周率算出来的人。
2、圆的周长(1)圆的周长用大写字母C 表示,计算公式是πd πr 2C ==即圆的周长等于两倍的π乘以半径,也等于π乘以直径(2) 半圆的周长半圆的周长等于半个圆的周长加上直径,即r 2πr +3、圆的面积圆的面积用大写字母S 表示,计算公式是2πr S =4、周长与面积的关系(1) 在同一个圆中,半径扩大或缩小几倍,直径和周长就扩大或缩小几倍,而面积扩大或者缩小这个倍数的平方倍,例如:在同一个圆内,如果半径扩大3倍,那么直径和周长就扩大3倍,面积扩大9倍。
《圆》章节知识点一、圆的概念1.平面内到定点的距离等于定长的所有点组成的图形叫做圆。
其中,定点称为圆心,定长称为半径,以点O为圆心的圆记作“O”,读作“圆O”。
2.确定圆的基本条件:(1)、圆心:定位置,具有唯一性,(2)、半径:定大小。
3.半径相等的两个圆叫做等圆,两个等圆能够完全重合。
4.①连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,②圆上任意两点间的部分叫做圆弧,简称弧,弧用符号“⋂”表示,圆的任意一条直径的两个端点分圆成为两条等弧,每一条弧都叫做半圆,大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
③在同圆或等圆中,能过重合的两条弧叫做等弧。
理解:弧在圆上,弦在圆及圆上:弧为曲线形,弦为直线形。
5.不在同一直线上的三个点确定一个圆且唯一一个。
6.①三角形的三个顶点确定一个圆,经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形。
②与三角形三边都相切的圆叫做这个三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
三角形的内切圆是三角形内面积最大的圆,圆心是三个角的角平分线的交点,他到三条边的距离相等:内心到三顶点的连线平分这三个角。
(补充)圆的集合概念1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定 长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离 都相等的一条直线。
二、点与圆的位置关系点与圆的位置关系是由这个点到圆心的距离d 与半径r 的大小关系决定的。
1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;解题注意点和圆的位置不确定性。
圆的对称性圆是轴对称图形,他有无数条对称轴,每一条过圆心的直线都是他的对称轴。
圆是以圆心为对称中心的中心对称图形,圆绕圆心旋转任意一个角度,都能够与原来的图形重合,这种性质叫做圆的旋转不变性。
圆既是轴对称图形,又是中心对称图形。
三、直线与圆的位置关系:相交,相切,相离如果圆O 的半径为r ,圆心O 到直线l 的距离为d ,那么: 1、直线与圆相离 ⇒ d r > ⇒ 无交点; 2、直线与圆相切 ⇒ d r = ⇒ 有一个交点; 3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;A四、圆与圆的位置关系设两圆半径分别为R和r,圆心距为d,那么:外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理(非常重要)垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧图4图5以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD解题技巧:在圆中,解有关弦的问题时,常常需要做“垂直于弦的直径”作为辅助线。
六、圆心角定理顶点在圆心的角叫做圆心角。
圆心角的度数与他所对的弧的度数相等。
圆心角定理:在同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD 七、圆周角定理顶点在圆上,并且两边都和圆相交的角叫做圆周角。
1、圆周角定理:同弧所对的圆周角等于它所对的圆心角(或弧的度数)的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠ 2、圆周角定理的推论:BD推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
注:忽略一条弦所对的弧有两条,所对的圆周角边有两种不同的角。
八、圆内接四边形一般的,如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆的内接多边形,这个圆叫做多边形的外接圆。
圆的内接四边形定理:圆的内接四边形的对角互补。
推论:圆内接四边形任何一个外角都等于他的内对角。
BABAO即:在⊙O 中,∵四边形ABCD 是内接四边形∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠九、切线的性质与判定定理直线和圆有唯一公共点(即直线和圆相切)时,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
(1)切线的判定定理:过半径外端且垂直于半径的直线是圆的切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线(2)性质定理:圆的切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
连接圆心与切点间的线段是解圆的切线问题时常用的辅助线,通常叙述为:“见切点连半径得垂直”。
解决与圆的切线有关的问题时,常需要补充的线是作过切点的半径。
九、切线长定理在经过圆外一点的圆的切线上,这点到切点之间的线段的长叫做这点到圆的切线长。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和圆外这一点的连线平分两条切线的夹角。
即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅PDBA十二、两圆公共弦定理两圆相切时,连心线必过切点,这一性质是由圆的对称性决定,两个圆组成的图形是轴对称图形,对称轴是经过两圆圆心的直线。
圆公共弦定理:相交两圆的连心线垂直平分两圆的公共弦。
如图:12O O 垂直平分AB 。
即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB注:两圆相交时,依照两圆圆心和公共弦的位置,可分为两种情况:①两圆圆心在公共弦同侧,②两圆圆心在公共弦异侧。
十三、圆的公切线 两圆公切线长的计算公式:(1)公切线长:12Rt O O C ∆中,221AB CO =(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。
十四、圆内正多边形的计算各边相等,各角也相等的多边形叫做正多边形。
把一个圆分成相等的弧,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做正多边形的外接圆。
经过各分点做圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切多边形,这个圆叫做多边形的内切圆。
正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心。
正多边形外接圆的半径叫做正多边形的半径。
正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正多边形内切圆半径叫做正多边形的边心距。