113角平分线的性质(第1课时)MicrosoftWord文档
- 格式:doc
- 大小:26.50 KB
- 文档页数:1
11.3角平分线的性质(一)受这个题的启示,我们能不能这样做:在已知/ AOB的两边上分别截取OM=O N再分别过M N 作MC L OA NCL OB MC?与NC交于C 点,连接OC那么OC就是/ AOB的平分线了.思考:这个方案可行吗?议一议:下图是一个平分角的仪器,其中AB=ADBC=DC将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE, AE就是角平分线.你能说明它的道理吗?分析:要说明AC是/ DAC 的平分线,其实就是证明/CAD M CAB/ CAD和/ CAB分别在△CAD^D^ CAB中,那么证明这两个三角形全等就能够了. 看看条件够不够.AB ADBC DCAC AC所以△ ABC^A ADC(SSS .所以/ CAD M CAB即射线AC就是/ DAB的平分线.、感悟深化行)学生将实物图抽象出数学图形•独立使用三角形全等的方法来证明• 本次活动中,教师应重点注重:(1)学生能否从简易的平分角的仪器中抽象出三角形,(2)学生能否使用三角形全等的条件证明两个三角形全等,从而说明AC是/ DAC的平分线•从上面的探究中,能够得出已知角的平分线的方法, 已知什么?求作什么?作已知角的平分线的方法:已知:/ AOB求作:/ AOB的平分线. 总结:1 .去掉“大于1-MN的长”这2个条件,所作的两弧可能没有交点,所以培养学生使用直尺和圆规作已知角平分线的水平•作法: 就找不到角的(1 )以0为圆心,适当长为半径作弧,分别交OA 0B于M N.1(2)分别以M N为圆心,大于—MN的长为半径作2弧.两弧在/ AOB内部交于点C.(3)作射线0C射线0C即为所求.议一议:11 .在上面作法的第二步中,去掉“大于—MN的长”2这个条件行吗?2. 第二步中所作的两弧交点一定在/ AOB的内部吗?3. 归纳角平分线的作法•角平分线的性质:角平分线上的点到角的两边的距离相等.用三角形全等证明性质平分线.2. 若分别以M N 为圆心,大于1一MN的长为2半径画两弧,两弧的交点可能在/ AOB?勺内部,也可能在/ AOB 的外部,而我们要找的是/ AOB 内部的交点,?否则两弧交点与顶点连线得到的射线就不是/ AOB的平分线了.3. 角的平分线是一条射线•它不是线段,也不是直线,?所以第二步中的两个限制缺一不可.4. 这种作法的可行性能够通过全等三角形来证明.1证明几何命题的步骤:教材P21四、巩固提升2、使用:如图,△ ABC的/ B的外角平分线BD与 /C的外角的平分组CE相交于P,求证点P到三边AB, BCCA所在直线的距离 A B相等。
实验:1.让学生在已经画好的角平分线上任取一点P.2.分别过P点向OA、OB边作垂线PD⊥OA,PE⊥OB,垂足分别为D、E。
3.测量PD和PE的长,观察PD与PE的数量关系。
4.再换一个新的位置比较一下,并试着说明理由。
归纳角的平分线的性质:角的平分线上的点到角的两边的距离相等。
应用:如图,已知ABC中,D为BC中点,且AD恰好平分∠BAC。
求证:AB=AC三、课堂训练1.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,教师引导学生归纳出角的平分线的性质。
教师引导,学生思考并解题,写出证明过程。
学生充分讨论,综合运用所学知识解决问题。
使学生明确角的平分线的性质是证明线段相等的又一种方法。
巩固本节课所学知识及提升综合应用所学知识解决问题的能力。
从总体上把握学知识。
BE、CD相交于点O,若∠1=∠2,求证OB=OC.2.如图,四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180°,求证:AD=CD四、小结归纳1.用尺规作图法作出已知角的角平分线的方法;2.角的平分线的性质;3.角的平分线的性质是证明线段相等的又一种方法。
五、作业设计1.教材习题11.3第2、4小题;2.补充作业:①如图,AB∥CD,∠BAC与∠ACD的平分线交于点O,OE⊥AC于E,且OE=2,求AB、CD间的距离.学生小结本节所学的知识点及知识点的应用。
板 书 设 计②如图,在△ABC 中∠C=90°,AC=BC,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB=6㎝,则△DEB 的周长为_________㎝。
EDBCA②思考题:已知:如图,任意ABC 中,AD 为∠BAC 的平分线。
求证:BD ∶DC =AB ∶AC(提示:可参照例题[点拨],利用面积证明)课题 11.3 角的平分线的性质一、角的平分线的作法: 作已知角的角平分线 例题分。
12.3 角的平分线的性质第1课时角的平分线的作法及性质【知识与技能】1.掌握角的平分线的作法.2.会利用角平分线的性质.【过程与方法】经历折纸、画图、文字与符号的翻译活动,培养学生的联想、探索、概括归纳的能力.【情感态度】通过实际操作与探究交流,激发学生学习数学的兴趣.【教学重点】角平分线的性质及其应用.【教学难点】灵活应用两个性质解决问题.一、情境导入,初步认识活动 1 学生预习教材,掌握角平分线的作法,小组间交流并动手实际画一画,总结出画角平分线的步骤.活动 2 让学生用准备好的白纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,看到了什么?【教学说明】发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.请同学们折出如图所示的折痕PD、PE,并研究这个图形中隐含了哪些等量关系,互相交流,形成结论.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知由上述活动及交流情况,教师总结以下新知识:1.角平分线上的点到角两边的距离相等.2.到角两边距离相等的点在角的平分线上.【教学说明】1.这两个性质的条件和结论正好相反,分别可以作为证线段相等和证角相等的依据.2.在用几何语言表述性质时,注意强调“点到直线的距离”中的垂直条件.例1 如图所示,要在S 区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m ,这个市场应建于何处(在图上标出它的位置,比例尺为1∶20000)?【教学说明】教师提出下列问题,引导学生理清思路:(1)集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?(2)比例尺为1∶20000是什么意思?(3)图形上,表示500m 的是个什么距离?例2 如图所示,BD 为∠ABC 的平分线,AB=BC,点P 、D 分别在BF 上,PM ⊥AD 于M,PN ⊥CD 于N ,求证:PM=PN.△ABD ≌△CBD 即可得证.【证明】∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD.在△ABD 和△CBD 中,,,,AB CB ABD CBD BD BD =⎧∠=∠=⎪⎨⎪⎩∴△ABD ≌△CBD(SAS).∴∠ADB=∠CDB.即射线DP 为∠ADC 的平分线.又∵PM ⊥AD,PN ⊥CD,∴PM=PN.例3如图,点P 是∠AOB 的平分线OM 上一点,作PD ⊥OB,PC ⊥OA,垂足分别是点D 、C ,点E 、F 分别在线段OD,OC 上,且∠PED=∠PFC,求证:OP平分∠EPF.【分析】欲证OP平分∠EPF,可设法证∠OPE=∠OPF,而要证∠OPE=∠OPF,需证∠OPD=∠OPC和∠DPE=∠CPF.【证明】∵OP平分∠AOB,PD⊥OB,PC⊥OA,垂足分别是点D,C,∴PD=PC,∠ODP=∠OCP=90°.在Rt△ODP与Rt△OCP中,,, PD PC OP OP==⎧⎨⎩∴Rt△ODP≌Rt△OCP(HL).∴OD=OC,∠OPD=∠OPC.在Rt△EDP与Rt△FCP中,∠PED=∠PFC,∠ODP=∠OCP=90°,∴90°-∠PED=90°-∠PFC,即∠DPE=∠CPF.∴∠OPD-∠DPE=∠OPC-∠CPF,∴∠OPE=∠OPF,即OP平分∠EPF.三、运用新知,深化理解______相等.2.如图,在△ABC中,∠A=80°,∠B与∠C的平分线相交于点I,则∠BIC=___.第2题图第3题图△ABC中,∠B=30°,∠C=90°,AD平分∠CAB,交CB于D,且DE⊥AB于E,则∠BDE=_______=_______=_______.【教学说明】指导学生解答上述习题时,应适当启发学生对角平分线性质的灵活运用.°3.∠EDA∠CDA∠CAB四、师生互动,课堂小结1.角平分线的两个性质应牢记并应用于解题中.2.与角平分线有关的求证线段相等,角相等问题,我们可以直接用角平分线性质,不必再利用证三角形全等得到线段相等或角相等.1.布置作业:从教材“”中选取部分题.2.完成练习册中本课时的练习.本课时教学思路按操作、猜想、验证的学习过程,遵循学生的认知规律,充分体现了数学学习的必然性,教学时要始终围绕问题展开,先从出示问题开始,鼓励学生思考、探索问题中所包含的数学知识,再要求学生开展活动——折纸,体验三角形角平分线交于一点的事实,并得出进一步的猜想和开展新活动——尺规作图,从中猜想结论并思考证明的方法,整堂课以学生操作、探究、合作贯穿始终,并充分给学生思考留下足够的空间与时间,形成动手、合作、概括与解决问题的意识与能力.。
§13.3 角的平分线的性质§13.3.1 角的平分线的性质(一)教学目标(一)教学知识点角平分线的画法.(二)能力训练要求1.应用三角形全等的知识,说明角平分线的原理.2.会用尺规作一个已知角的平分线.(三)情感与价值观要求在利用尺规作图的进程中,培育学生动手操作能力与探讨精神.教学重点利用尺规作已知角的平分线.教学难点角的平分线的作图方式的提炼.教学方式讲练结合法.教具预备多媒体课件(或投影).教学进程Ⅰ.提出问题,创设情境问题1:三角形中有哪些重要线段.问题2:你能作出这些线段吗?[生甲]三角形中有三条重要线段,它们别离是:三角形的高,三角形的中线,三角形的角的平分线.过三角形的极点作那个极点的对边的垂线,交对边于一点,极点与垂足的连线确实是那个三角形的高.取三角形一边的中点,其中点与那个边对应极点的连线确实是这条边的中线.用量角器量出三角形的角的大小,量角器零度线与那个角的一边重合,那个角一半所对应的线确实是那个角的角平分线.[生乙]我不同意你对角平分线的描述,三角形的角平分线是一条线段,而一个已知角的平分线是一条射线,这两个概念是有区别的.[师]你补充得专门好.数学是一门周密性很强的学科,你的这种精神值得咱们学习.若是老师手里只有直尺和圆规,你能帮我设计一个作角的平分线的操作方案吗?Ⅱ.导入新课[生]我记得在学直角三角形全等的条件时做过如此一个题:在∠AOB的两边OA和OB上别离取OM=ON,MC⊥OA,NC⊥OB.MC与NC 交于C点.求证:∠MOC=∠NOC.通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,因此射线OC确实是∠AOB的平分线.受那个题的启发,咱们能不能如此做:在已知∠AOB的两边上别离截取OM=ON,再别离过M、N作MC⊥OA,NC⊥OB,MC•与NC交于C点,连接OC,那么OC确实是∠AOB的平分线了.[师]他那个方案可行吗?(学生试探、讨论后,统一思想,以为可行)[师]这位同窗不仅给了操作方式,而且还讲明了操作原理.这种学以致用,•联想迁移的学习方式值得大伙儿借鉴.议一议:下图是一个平分角的仪器,其中AB=AD ,BC=DC .将点A 放在角的极点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 确实是角平分线.你能说明它的道理吗?教师活动:播放多媒体课件,演示角平分仪器的操作进程,使学生直观了解取得射线AC 的方式.学生活动:观看多媒体课件,讨论操作原理.[生1]要说明AC 是∠DAC 的平分线,其实确实是证明∠CAD=∠CAB .[生2]∠CAD 和∠CAB 别离在△CAD 和△CAB 中,那么证明这两个三角形全等就能够够了.[生3]咱们看看条件够不够.AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩因此△ABC ≌△ADC (SSS ).因此∠CAD=∠CAB .即射线AC 确实是∠DAB 的平分线.[生4]原先用三角形全等,就能够够解决角相等.线段相等的一些问题.看来温故是能够知新的.老师再提出问题:通过上述探讨,可否总结出尺规作已知角的平分线的一样方式.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发觉问题,给予启发和指导,使讲评更具有针对性)讨论结果展现:作已知角的平分线的方式:已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径作弧,别离交OA 、OB 于M 、N .(2)别离以M 、N为圆心,大于12MN 的长为半径作弧.两弧在∠AOB 内部交于点C . (3)作射线OC ,射线OC 即为所求.(教师依照学生的叙述,作多媒体课件演示,使学生能更直观地明白得画法,提高学习数学的爱好).议一议:1.在上面作法的第二步中,去掉“大于12MN 的长”那个条件行吗? 2.第二步中所作的两弧交点必然在∠AOB 的内部吗?(设计这两个问题的目的在于加深对角的平分线的作法的明白得,培育数学周密性的良勤学习适应)学生讨论结果总结:1.去掉“大于12MN的长”那个条件,所作的两弧可能没有交点,因此就找不到角的平分线.2.若别离以M、N为圆心,大于12MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而咱们要找的是∠AOB内部的交点,•不然两弧交点与极点连线取得的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•因此第二步中的两个限制缺一不可. 4.这种作法的可行性能够通过全等三角形来证明.练一练:任意画一角∠AOB,作它的平分线.Ⅲ.随堂练习讲义P106练习.练后总结:平角∠AOB的平分线OC与直线AB垂直.将OC反向延长取得直线CD,直线CD与AB•也垂直.Ⅳ.课时小结本节课中咱们利用已学过的三角形全等的知识,•探讨取得了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,进一步体会温故而知新是一种专门好的学习方式.Ⅴ.课后作业1.讲义P108习题13.2─一、2.2.预习讲义P106~107内容.。
承留一中师生共用教学案班级_____姓名___ 时间_ _
八年级数学导学案
内容:11.3角平分线的性质(第1课时)课型:新授执笔:王红霞审核:数学组学习目标:1.掌握画已知角的平分线的方法。
2。
掌握角平分线的性质。
学习重点:角的平分线的性质的证明及运用。
学习难点:角平分线的性质的探究。
一.课前预习,细心认真。
1.思考并证明课本19页“探究”的内容。
把过程写在下面。
2.任意画一个∠AOB。
按课本19页作法画∠AOB的平分线OC。
3.按下列要求画图:画∠AOB及它的角平分线OC,在OC上任取一点P,再分别画出点P到角的两边OA、OB的距离PD、PE。
并比较PD与PE的大小。
4.由第4题的操作我们可以得到角平分线的性质:_____________________________.
在此性质中,题设是_________________________,结论是______________。
5.你能用三角形全等来证明这个性质吗?试一试。
已知:如上面第4题图,∠AOC=∠BOC,点P在OC上,P D⊥OA,PE⊥OB,垂足分别是D、E。
求证:PD=PE。
6.我们要证明一个几何命题的步骤有哪些?
二.小试身手,我是最棒的!
已知:BE、CF是△ABC的高,BE、CF相交于点O,且AO平分∠BAC。
求证:OB=OC。
三.学(教)后感:
我荒废的今日,正是昨日殒身之人祈求的明日。