复合材料论文
- 格式:doc
- 大小:166.50 KB
- 文档页数:11
复合材料论文2篇复合材料是一种由两种或两种以上不同材料按一定方式组合而成的新材料。
它具有优异的性能和广泛的应用领域,如航空航天、汽车制造、建筑材料等。
本文将介绍两篇与复合材料相关的论文,并从不同角度对其进行分析和评价。
第一篇论文的题目是《复合材料的制备方法及性能研究》。
这篇论文主要探讨了复合材料的制备方法以及复合材料的性能研究。
在制备方法研究方面,研究者采用了多种方法,如层叠法、注塑法和压力法等。
通过对比不同方法的制备工艺和性能表现,研究者发现,不同制备方法对复合材料的性能影响较大,而且不同材料组合也会对复合材料的性能产生重要影响。
在性能研究方面,研究者主要关注了复合材料的力学性能、热学性能、电学性能和化学性能等方面。
力学性能的研究表明,复合材料具有高强度、高模量和低密度的特点,适用于高强度和轻量化的领域。
热学性能的研究发现,复合材料具有良好的导热性能和热膨胀系数,适用于高温和隔热材料。
电学性能的研究显示,复合材料具有优异的导电性能和绝缘性能,适用于电子器件领域。
化学性能的研究表明,复合材料具有优异的耐腐蚀性能和耐化学试剂性能,可以应用于化学工业和制药工业等领域。
综上所述,《复合材料的制备方法及性能研究》这篇论文通过对复合材料的制备方法和性能研究进行全面深入的探讨,拓宽了复合材料研究的视野,为复合材料的应用和发展提供了重要的理论依据和技术支持。
第二篇论文的题目是《复合材料在航空航天领域的应用研究》。
这篇论文着重研究了复合材料在航空航天领域的应用。
航空航天领域对材料的要求非常高,需要具备较高的强度、刚度和耐热性。
传统的金属材料在这些方面存在一定的局限性,而复合材料正是满足这些要求的理想选择。
研究者在论文中详细阐述了复合材料在航空航天领域的两个关键应用:飞机结构和航天器热控制。
在飞机结构方面,研究者通过对比传统金属结构和复合材料结构的性能,发现复合材料具有更高的强度和刚度,并且重量更轻,能够显著降低飞机燃油消耗。
碳纤维复合材料论文复合材料论文:我国碳纤维增强复合材料的市场状况【摘要】碳纤维复合材料(CFRP)作为一种先进的复合材料,具有重量轻、模量高、比强度大、热膨胀系数低、耐高温、耐热冲击、耐腐蚀、吸振性好等一系列优点,在航空航天、汽车等领域已有广泛的应用。
文章通过对碳纤维在行业中的广泛应用及现状分析,对国内碳纤维复合材料市场的问题与前景进行了探讨。
【关键词】碳纤维复合材料;体育休闲用品;结构加固工程一、我国CFRP体育休闲用品的发展情况我国在八十年代初开始研制CFRP体育运动器材。
1983哈尔滨玻璃钢研究所研制的CFRP羽毛球拍,1987年研制成功碳纤维/玻璃纤维混杂增强环氧树脂的蜂窝夹层结构四人皮艇。
八十年代中期,由于中国的改革开放政策和劳动力低廉等原因,台湾逐步把劳动力密集,污染严重的CFRP体育器材制造业转往大陆沿海地区。
例如,台湾80%的高尔夫球杆、40.50%的网球拍、羽毛球拍,60%以上的自行车架制造业转移到深圳、东莞、福州和厦门等地;一些发达国家也把该种体育器材制造业转来中国。
例如,韩国把其大部分CFRP钓鱼杆制造业转来中国天津、威海和宁波等地。
据统计,2002年国产CFRP钓鱼杆、高尔夫球杆、网球拍、自行车等已分别占到世界同类产品产量的60%、60%、75%、65%。
这些CFRP体育休闲用品所消耗的CF量,约占当年世界CF消耗总量的16%。
然而,由于国际CFRP体育休闲用品已处于饱和状态,今后这方面产品将基本上处于稳定状态,年增长速度大体在1%左右。
二、结构加固工程已成为CFRP产业新的增长点中国从1997年开始从国外引入CFRP加固混凝土结构技术,并开始进行相关研究,由于其巨大的技术优势,在短短的时间内很快形成研究和工程应用的热点。
目前国内已有国家工业建筑诊断与改造工程技术研究中心、清华大学、东南大学、天津大学、北京航空航天大学、北京化工大学、中国建筑科学研究院等数十个高校和科研院所先后开展了CF加固建筑结构的研究,已完成多项研究课颗,发表研究论文100多篇。
纤维复合材料在航天工业中的应用及特点摘要:本文对纤维复合材料在航空航天领域的发展现状和应用情况进行了综合论述。
简要概述了纤维复合材料的特性,着重介绍了聚合物基复合材料、金属基复合材料、陶瓷基复合材料以及碳/碳复合材料等的性能特点及其在航空航天领域中的应用。
关键词:纤维复合材料航空航天应用性能特点1.引言随着航空航天科学技术的不断进步,促进了新材料的飞速发展,其中尤以先进复合材料的发展最为突出。
目前主要指有较高强度和模量的硼纤维、碳纤维、芳纶等增强的复合材料,耐高温的纤维增强陶瓷基复合材料,隐身复合材料,梯度功能复合材料等。
【1】飞机和卫星制造材料要求质量轻、强度高、耐高温、耐腐蚀,这些苛刻的条件,只有借助新材料技术才能解决。
复合材料具有质量轻,较高的比强度、比模量,较好的延展性,抗腐蚀、导热、隔热、隔音、减振、耐高(低)温,独特的耐烧蚀性、透电磁波,吸波隐蔽性、材料性能的可设计性、制备的灵活性和易加工性等特点,是制造飞机、火箭、航天飞行器等军事武器的理想材料。
【2】2.纤维复合材料的特性近年来,纤维复合材料在航空航天领域应用日益广泛,这是由于它具有比强比模量高、抗疲劳性能好、减震性能优良、高温性能好、断裂安全性高、耐腐蚀性能优越等显著优点。
与传统金属等材料相比,显示出较大的优越性,主要体现在以下方面:(1)可设计性和各向异性。
复合材料的力学、机械及热、声、光、电、防腐、抗老化等性能都可按照构件的使用或服役环境条件要求,通过组分材料的选择和匹配以及界面控制等材料设计手段,最大限度地达到预期的目的,以满足工程结构设计的使用性能,同时由于复合材料具有各向异性和非均匀性,可以通过合理的设计消除材料冗余,最大程度发挥材料及结构的潜力和效率。
【3】(2)材料与结构一体化。
复合材料构件与材料是同时形成的,一般不再由“复合材料,’加工成复合材料构件,使之结构的整体性好,大幅度减少零部件和连接件数量,从而缩短加工周期,降低成本,提高可靠性。
复合材料论文复合材料是由两种或两种以上的材料组合而成的新材料,具有优良的综合性能,被广泛应用于航空航天、汽车制造、建筑领域等。
本文将从复合材料的定义、分类、制备工艺以及应用领域等方面进行探讨。
首先,复合材料的定义是指由两种或两种以上的材料组合而成的新材料,具有优良的综合性能。
复合材料的组合可以是有机与无机材料的组合,也可以是不同种类的有机材料的组合,如树脂与纤维的组合。
由于复合材料具有优异的性能,如高强度、高刚度、耐腐蚀等特点,因此在航空航天、汽车制造、建筑领域有着广泛的应用。
其次,复合材料可以根据其组成材料的性质和相互作用的方式进行分类。
按照组成材料的性质,可以将复合材料分为纤维增强复合材料、颗粒增强复合材料和层合复合材料。
而根据相互作用的方式,又可以将复合材料分为增强相和基体相。
不同种类的复合材料具有不同的特点和应用领域,因此在实际应用中需要根据具体情况进行选择。
复合材料的制备工艺主要包括预浸料法、手工层叠法、自动层叠法等。
预浸料法是将纤维材料浸渍在树脂基体中,然后在模具中进行成型。
手工层叠法是将预先浸渍好的纤维层手工层叠在一起,再进行固化成型。
自动层叠法则是利用机械设备进行自动层叠和成型。
不同的制备工艺适用于不同的复合材料,选择合适的制备工艺可以提高复合材料的生产效率和质量。
最后,复合材料在航空航天、汽车制造、建筑领域有着广泛的应用。
在航空航天领域,复合材料可以用于制造飞机机身、发动机部件等,能够减轻飞机的重量,提高飞行性能。
在汽车制造领域,复合材料可以用于制造车身、悬挂系统等部件,能够提高汽车的安全性和燃油经济性。
在建筑领域,复合材料可以用于制造建筑结构材料、装饰材料等,能够提高建筑的耐久性和美观性。
综上所述,复合材料具有优良的综合性能,广泛应用于航空航天、汽车制造、建筑领域。
通过对复合材料的定义、分类、制备工艺以及应用领域的探讨,可以更好地了解复合材料的特点和应用前景。
希望本文能够为复合材料的研究和应用提供一定的参考价值。
碳纤维复合材料论文导言碳纤维复合材料(CFRP)是一种由碳纤维和树脂基体组成的高性能材料。
随着科技的进步,CFRP在航空航天、汽车工业、体育用品等领域中得到了广泛的应用。
本论文将就CFRP的制备方法、性能特点以及应用前景进行详细探讨。
1. CFRP的制备方法CFRP的制备方法通常包括纺丝、预浸料、固化和成型四个步骤。
1.1 碳纤维纺丝碳纤维是由多个碳纤维丝束组成的。
纺丝过程中,先将碳纤维丝束在高温下拉伸,然后进行表面处理,以增加纤维与树脂的粘合性能。
1.2 预浸料制备预浸料是将纺丝得到的碳纤维与树脂基体进行浸渍得到的材料。
树脂基体一般采用环氧树脂。
预浸料制备过程中需要控制纤维的含量、纤维间的排列方式以及树脂的渗透性。
1.3 固化固化是指通过加热或加压将树脂基体中的单体或低分子量聚合物转变为高分子量聚合物的过程。
固化可以提高CFRP的强度和刚度。
1.4 成型成型是将固化后的预浸料经过特定形状的模具加热或加压成型,得到最终的CFRP产品。
2. CFRP的性能特点CFRP具有许多优良的性能特点,使其成为许多领域的首选材料。
2.1 高强度和高刚度相比于传统的金属材料,CFRP具有更高的强度和刚度。
其拉伸强度可以达到2000 MPa,弹性模量可以达到150 GPa以上。
2.2 轻质CFRP的密度大约为1.6 g/cm³,相比于钢材(7.8 g/cm³)和铝材(2.7g/cm³),CFRP具有更轻的重量优势。
2.3 抗腐蚀性由于CFRP的主要组成部分是碳纤维和树脂基体,它具有优良的抗腐蚀性能,不易受潮湿环境、化学物质和气候变化的影响。
2.4 热稳定性CFRP具有较高的热稳定性,可以在高温环境下长期使用而不发生形变或脆化。
2.5 高耐疲劳性由于CFRP的高强度和高刚度,它具有出色的耐疲劳性能,适用于长期受到重复加载的应用场景。
3. CFRP的应用前景随着CFRP技术的不断发展,其在各个领域的应用前景十分广阔。
复合材料发展应用研究论文随着经济和科技的快速发展,复合材料作为一种极具前景、高性能的新型材料,已广泛应用于航空、航天、汽车、轨道交通、医疗、电子、军工等领域,无论在军事、民用领域都有巨大的应用潜力。
因此,复合材料的研究和应用一直是人们关注和追求的方向之一。
复合材料是由两种或两种以上不同材料按照一定比例或方式组合而成的新材料。
如玻璃纤维增强树脂基复合材料、碳纤维增强树脂基复合材料、陶瓷基复合材料等。
与单一材料相比,复合材料具有许多优异性能,如高强度、高模量、高耐腐蚀性、高温性、低密度等,而且还能具有特殊的电、磁、光、导、声等性能,因此使用领域非常广泛。
复合材料的发展史与人类文明的演进过程密不可分。
最早可以追溯到人类文明起源时期,人类就采用了一些简单的复合材料来增强自己的工具、武器等。
到了现代,深海和空间探索、医学和生物学的发展提出了更高的要求,使得复合材料发展的速度大大加快。
以航空航天领域为例,在20世纪末21世纪初的一段时间里,以碳纤维为代表的大型复合材料结构件已广泛应用于各种高性能飞机和航天器中。
值得一提的是,近年来,通过结合计算机辅助设计及先进复合加工技术(包括纤维张力成形技术、复合材料智能成型、树脂传递成型等),国内外相关研究机构和工程技术人员已逐步发展出一批高效、高能、低成本的复合材料工艺技术,使复合材料的制造成本大幅降低,生产技术更加成熟。
同时,为改善复合材料的适用性,层压、层间固化等加工工艺得到了大量研究和优化。
同时,一些优化材料在耐腐蚀性催化剂、新型电池电解质、传感器智能材料和光学成像材料等领域也得到了广泛应用。
然而,尽管复合材料具有如此优越性能,但是在实际应用中,还需要解决一些问题和挑战。
其中,复合材料的制造和应用技术需要得到进一步提高和优化。
特别是针对复合材料量产这个计划还面临着高可靠性、高质量、高成本、高效率和重要度的严峻考验。
同时,生产许可证、技术信誉度和解决版权等法律逐渐成为复合材料制造的重要挑战。
复合材料聚合物基体(3篇)以下是网友分享的关于复合材料聚合物基体的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。
复合材料聚合物基体篇一聚合物基复合材料摘要首先大概介绍了聚合物基复合材料,然后介绍了该复合材料的基体有热固性树脂基体、热塑性树脂基体和橡胶基体,最后介绍了聚合物基复合材料的制备工艺特点。
正文凡事以聚合物为基体的复合材料统称为聚合物基复合材料,因此聚合物基复合材料是一个很大的材料体系。
聚合物基复合材料体系的分类具有多种不同的划分标准,如按增强纤维的种类可分为玻璃纤维增强聚合物基复合材料、碳纤维增强聚合物基复合材料、硼纤维增强聚合物基复合材料、芳纶纤维增强聚合物基复合材料及其他纤维增强聚合物基复合材料。
如按基体材料的性能课分为通用型聚合物基复合材料、耐化学介质腐蚀性聚合物基复合材料、耐高温型聚合物基复合材料、耐阻燃型聚合物基复合材料。
但最能反映聚合物基复合材料本质的则是按聚合物基体的结构形式来分类,聚合物基复合材料可分为热固性树脂基复合材料、热塑性树脂基复合材料及橡胶基复合材料。
聚合物基复合材料是最重要的高分子结构材料之一,它比强度大、比模量大。
例如高模量碳纤维/环氧树脂的比强度是钢的5倍,喂铝合金的4倍,其比模量喂铝、铜的4倍。
耐疲劳性能好。
金属材料的疲劳破坏常常是没有明显预兆的突发性破坏。
而聚合物基复合材料中,纤维与集体的界面能有效阻止裂纹的扩散,破坏是逐渐发展的破坏前有明显的预兆大多数金属材料的疲劳极限其拉伸强度的30%~50%,而聚合物基复合材料的疲劳极限可达到拉升强度的70%~80%。
减振性好。
复合材料中集体界面有吸震能力,因而振动阻尼高。
耐烧蚀性能好。
因聚合物基复合材料是比热容大,熔化热喝汽化热也大,高温下能吸收大量热能,是良好的耐烧蚀材料。
工艺性好。
制造工艺简单,过载时安全性好。
用于复合材料的聚合物基体课分为热固性树脂基体、热塑性树脂基体和橡胶基体。
热固性聚合物(环氧、酚醛、不饱和聚酯、聚酰亚胺树脂等)通常为分子量脚小的液态或固态预聚体,经加热或加固化剂发生交联化学反应并经过凝胶化和固化阶段后,形成不溶不熔的三维网状高分子。
复合材料毕业论文复合材料毕业论文随着科技的不断进步和工业的快速发展,复合材料作为一种新型材料,逐渐引起了人们的关注和重视。
复合材料由两种或两种以上的材料组成,通过复合工艺制成,具有优异的性能和广泛的应用领域。
本篇文章将从复合材料的定义、分类、制备方法以及应用前景等方面进行探讨。
首先,复合材料是由两种或两种以上的材料组成的材料。
这些材料可以是金属、陶瓷、塑料等,通过复合工艺将它们结合在一起,形成新的材料。
复合材料的组成可以是纤维增强材料和基体材料的组合,也可以是不同种类的纤维增强材料的组合。
复合材料的制备过程需要经过层压、注塑、浸渍等工艺,以保证材料的均匀性和稳定性。
其次,复合材料可以根据其组成和结构进行分类。
最常见的分类方式是根据增强材料的类型进行划分,包括纤维增强复合材料和片层增强复合材料。
纤维增强复合材料是指将纤维材料(如玻璃纤维、碳纤维等)与基体材料(如树脂、金属等)结合在一起制成的材料。
片层增强复合材料则是指将两种或两种以上的材料通过层压工艺结合在一起,形成多层结构的材料。
然后,复合材料的制备方法有多种。
其中,最常用的方法是层压法和注塑法。
层压法是将预先制备好的纤维增强材料和基体材料按照一定的比例叠加在一起,然后通过热压或冷压的方式加固,使其形成坚固的复合材料。
注塑法则是将纤维增强材料和基体材料混合后,通过注塑机将混合物注入模具中,经过加热和冷却后形成所需的复合材料。
最后,复合材料在各个领域都有广泛的应用前景。
在航空航天领域,复合材料可以用于制造飞机的机身、翼面等部件,具有重量轻、强度高的特点,可以提高飞机的性能和燃油效率。
在汽车工业中,复合材料可以用于制造车身和零部件,可以减轻汽车的重量,提高车辆的燃油经济性和安全性。
此外,复合材料还可以应用于建筑、电子、医疗等领域,为各行各业带来更多的发展机遇。
综上所述,复合材料作为一种新型材料,具有广泛的应用前景和发展空间。
通过深入研究和不断创新,我们可以进一步发掘复合材料的潜力,为各个领域的发展做出更大的贡献。
碳纤维复合材料论文第一篇:碳纤维复合材料论文碳纤维复合材料摘要一、碳纤维复合材料的概况二、碳纤维复合材料的结构三、碳纤维复合材料的用途四、碳纤维复合材料的优势五、碳纤维的产业六、结论1、概况在复合材料大家族中,纤维增强材料一直是人们关注的焦点。
自玻璃纤维与有机树脂复合的玻璃钢问世以来,碳纤维、陶瓷纤维以及硼纤维增强的复合材料相继研制成功,性能不断得到改进,使其复合材料领域呈现出一派勃勃生机。
下面让我们来了解一下别具特色的碳纤维复合材料。
2、结构碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。
碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。
碳纤维比重小,因此有很高的比强度。
碳纤维是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。
碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。
因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。
3、用途碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,制成结构材料。
碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。
在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。
碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。
随着尖端技术对新材料技术性能的要求日益苛刻,促使科技工作者不断努力提高。
复合材料论文
复合材料在现代工程领域中扮演着重要的角色,因为它
们具有优异的力学性能和耐腐蚀性。
本论文将详细讨论复合材料的制备、性能和应用领域。
首先,复合材料的制备方法有多种。
其中最常见的方法
是层叠法和浸渍法。
层叠法是将不同的材料片层叠放置,并使用粘合剂将其固定在一起。
浸渍法则是将纤维浸渍在树脂中,然后固化形成复合材料。
不同的制备方法会对复合材料的性能产生影响。
其次,复合材料具有许多优异的性能。
首先,复合材料
具有高强度和刚度,这使得它们在工程结构中能够承受高载荷。
其次,复合材料具有优异的耐热性和耐腐蚀性,使其在高温和腐蚀环境下能够保持良好的性能。
此外,复合材料还具有较低的密度,使得它们在航空航天和汽车工业中特别受到青睐。
最后,复合材料在各个领域都有广泛的应用。
在航空航
天领域,复合材料被广泛应用于飞机的机翼和机身结构中,以减轻重量并提高飞行性能。
在汽车工业中,复合材料被用于制造车身和零部件,以提高燃油效率和碰撞安全性。
此外,复合材料还在建筑和体育器材等领域中得到广泛应用。
综上所述,复合材料是一种具有优异性能并在多个领域
中得到广泛应用的材料。
本论文详细讨论了复合材料的制备方法、性能和应用领域,希望能对读者对复合材料有更深入的了解。
如果读者想要进一步学习复合材料的相关知识,可以参考相关的学术文献和专业书籍。
汽车活塞复合材料选择与加工(单位湖北汽车工业学院机械工程学院)摘要:活塞有着汽车发动机“心脏”之称,由此可见其对发动机以及整车的重要性,作为发动机上的极重要的一个零件工作环境却是十分恶劣,承受着高温高压的热负荷和机械负荷。
其材料有着很高的要求:密度小、质量轻、热传导性好、热膨胀系数小;并具有足够的高温强度、耐磨和耐蚀性能、尺寸稳定性好。
另外还应具有容易制造、成本低廉的特点。
本论文通过分析零件的工作环境及失效原因了解其性能要求以选出最适合材料,即用新型铝基复合材料代替传统材料作为发动机活塞材料,该材料具有较高的耐磨性、高温强度、疲劳强度和抗咬合性能,同时具有热膨胀系数更小,导热性更好等特点,故在汽车引擎的应用渐增。
颗粒增强铝基复合材料作为先进的材料,具有优异的性能,同时原材料资源丰富,相对成本较低,故虽仍存在部分技术问题,但仍在各专业领域有着广泛的应用。
关键词:发动机活塞;铝基;复合材料;SiCp/Al;碳纳米管。
Abstract Automotive engine piston with "heart," ,we can see it and the importance of the engine of the vehicle, as a very important part of the engine on the working environment is very bad, suffer thermal and mechanical loads high temperature and pressure. Its materials with high demands: density, light weight, good thermal conductivity, thermal expansion coefficient; and has sufficient high temperature strength, wear and corrosion resistance, good dimensional stability. It should also be easily manufactured with low cost. In this paper, by analyzing the components of the work environment and failure to understand the reasons of their performance in order to select the most suitable material, which uses novel aluminum matrix composite materials instead of traditional materials as an engine piston material which has a high abrasion resistance, high temperature strength, fatigue and anti-seizure properties, also has a smaller thermal expansion coefficient, thermalconductivity, better features, so increasing application in automobile engines. Particle reinforced aluminum matrix composites as advanced materials, with excellent performance, while abundant raw material resources, relatively low cost, it is part of the technical problem, though still present, but any one of the various professional fields have a wide range of applications.前言:汽车的心脏是发动机,而发动机的心脏是活塞,相对汽车而言,小小活塞虽小,却是汽车上最重要零件。
活塞在发动机内承受交变的机械负荷和热负荷,是发动机中工作条件最恶劣的关键零部件之一,所以对于处于十分恶劣的工作环境的活塞选材实及其关键重要的第一步。
下面让我来详细论述其选材与加工。
1.汽车活塞复合材料选择与加工1.1汽车活塞的工作条件、失效方式及性能要求1.1.1汽车活塞的工作条件活塞在高温、高压、高速、润滑不良的条件下工作。
活塞直接与高温气体接触,瞬时温度可达2500K以上,因此,受热严重,而散热条件又很差,所以活塞工作时温度很高,顶部高达600~700K,且温度分布很不均匀;活塞顶部承受气体压力很大,特别是作功行程压力最大,汽油机高达3~5MPa,柴油机高达6~9MPa,这就使得活塞产生冲击,并承受侧压力的作用;活塞在气缸内以很高的速度(8~12m/s)往复运动,且速度在不断地变化,这就产生了很大的惯性力,使活塞受到很大的附加载荷。
活塞在这种恶劣的条件下工作,会产生变形并加速磨损,还会产生附加载荷和热应力,同时受到燃气的化学腐蚀作用。
1.1.2汽车活塞的失效方式汽车活塞的失效方式主要有以下四点:1、活塞的磨损量超过允许值,会使功率、速度降低,油耗增加以致敲缸。
2、销孔中心与裙部椭圆中心的垂直度超差,使用中产生扭力矩使活塞变形,产生拉缸。
3、热稳定性差,由于长期在高温下工作,等于在继续时效和稳定化处理,活塞膨胀,原有0.05mm的配缸间隙消失,导致咬缸。
4、头道环槽磨损,使活塞环失去弹性,无封闭作用。
总结以上所说,在活塞的设计方面,活塞型面和活塞销座的改变、活塞顶部的增厚、活塞高度的缩短等,正逐渐向“矮胖”方向发展为了提高刚性,发动机的整个高度在缩短变“矮”主要措施是缩短活塞裙部和减少环槽数,后者可使压缩高度减小发动机本身在不断强化,所以活塞的性能必须相应增强变“胖”主要是指各部分的壁厚都在不断增加,过渡圆角处的R也在增大由于发动机的高转速化,活塞必须减轻重量,以减小惯性力尽管壁厚在增大,活塞的整个重量却在不断减轻,这是由于整个活塞高度缩短所引起的重量降大于因壁厚增加引起的增重之故。
由于活塞结构变“矮胖”,使活塞的表面积对于整个体积来说比例缩小了,所以不利于活塞的散热。
为保证活塞不被烧熔和正常润滑,除了在设计方面必须采取一些措施外,以减轻其热负荷;活塞在制造方面也必须有所改变和提高,如活塞的材料、铸造和机加工,以满足其对热负荷的要求。
另外,还通过对活塞进行一些表面处理来提高储油性,改善润滑条件。
1.1.3汽车活塞的性能要求发动机工作时,由于活塞顶部直接与高温燃气接触,燃气的最高温度可达2500K 以上。
因此活塞的温度也很高,因高温时材料的力学性能降低,甚至发生高温蠕变。
当顶部温度超过640K~700K时还会产生热裂现象。
第一环槽超过80K~500K 时 就会造成活塞环粘结。
活塞温度高且往复变速运动,润滑困难,所以极易磨损。
在进气时活塞又接触到冷的可燃气体,造成温度不均匀,产生的热应力容易使活塞变形和活塞顶表面开裂。
因此要求活塞具有如下几点要求:1、要有足够的强度、刚度、质量小、重量轻,以保证最小惯性力。
2、导热性好、耐高温、高压、腐蚀,有充分的散热能力,受热面积小。
3、活塞与活塞壁间应有较小的摩擦系数。
4、温度变化时,尺寸、形状变化要小,和汽缸壁间要保持最小的间隙。
5、热膨胀系数小,比重小,具有较好的减磨性和热强度。
6、工艺性好,价格低廉,易于加工,适合大批量生产。
1.2汽车活塞材的初步选择根据其运行环境及需要满足的性能要求,可把用于活塞的复合材料锁定在金属基复合材料上。
众多基体中,目前以铝、镁、钛基发展较为成熟,而钛太贵重,初步选择镁基复合材料(TiCp/AZ91)和铝基复合材料(SiCp/Al)。
1.2.1候选材料的具体分析1.镁基(TiCp/AZ91)复合材料类型为热固性材料,增强相是颗粒TiCp,增强机制为颗粒增强机制。
是添加高强高硬的陶瓷颗粒,利用FSP(搅拌摩擦加工)过程中搅拌区内产生强烈的塑性变形和塑性金属流动,使添加颗粒在基体材料中获得分散,制备出超细或纳米晶金属基复合层,形成第二相粒子强化,从而获得高硬度、耐磨损的表面复合层。
近年来国内外研究者采用FSP在不同基体上添加不同颗粒制备出颗粒增强的表面强化复合层。
制备的复合材料表面制备的复合层硬度为集体材料的2倍,1倍,1.6倍。
基体相石镁合金包括镁铝锌合金、镁锌系合金、镁稀土系合金。
颗粒增强镁基复合材料制备工艺简单、成本低廉以及各向同性的性能,成为研究最热点,从而备受关注。
然而,镁合金较低的强度和耐磨性限制了其在工程上的应用。
2.铝基(SiCp/Al)复合材料铝碳化硅是一种颗粒增强金属基复合材料,采用Al合金作基体,按设计要求,以一定形式、比例和分布状态,用SiC颗粒作增强体,构成有明显界面的多组相复合材料,兼具单一金属不具备的综合优越性能。
AlSiC研发较早,理论描述较为完善,有品种率先实现电子封装材料的规模产业化,满足半导体芯片集成度沿摩尔定律提高导致芯片发热量急剧升高、使用寿命下降以及电子封装的"轻薄微小"的发展需求。
尤其在航空航天、微波集成电路、功率模块、军用射频系统芯片等封装分析作用极为凸现,成为封装材料应用开发的重要趋势。
封装金属基复合材料的增强体有数种,SiC是其中应用最为广泛的一种,这是因为它具有优良的热性能,用作颗粒磨料技术成熟,价格相对较低;另一方面,颗粒增强体材料具有各向同性,最有利于实现净成形[2]。
AlSiC特性主要取决于SiC的体积分数(含量)及分布和粒度大小,以及Al合金成份。
依据两相比例或复合材料的热处理状态,可对材料热物理与力学性能进行设计,从而满足芯片封装多方面的性能要求。
碳化硅颗粒增强铸铝活塞,含量为5%-7%的SiC陶瓷颗粒,经特殊处理后用流变铸造法加入到ZL109中然后挤压铸造成型,可用于活塞的整体或局部增强。
该材料的热导率及热膨胀系数各为0.32w/(m×℃)和18×10-6/℃。
国内研制的碳化硅颗粒局部增强铝合金活塞经过上海50型拖拉机田间试验证明,第一道环槽导热得到了较大改善,燃烧喉口得到加强,耐磨性和活塞质量得到提高[1]。
1.2.2候选材料的成型或加工方法目前纤维增强铝基复合材料的制备方法主要有扩散连接法、粉末冶金法、融熔侵润法、和气体铸造法等。