1.3_流体流动的基本概念
- 格式:ppt
- 大小:1.84 MB
- 文档页数:111
化工原理流体流动化工原理是化学工程领域的基础,其中包括了化工原理流体流动。
通过深入理解和掌握流体流动的原理,我们可以更好地设计、优化和控制化工流程的运行。
本文将介绍流体流动的基本概念、流体的运动方式、流场的描述和流体运动的控制等内容。
一、流体流动的基本概念流体是指能够流动的物质,包括了气体和液体。
流体流动是指流体在空间或管道中的运动过程。
在流体流动中,流体分子与周围分子不断碰撞,产生微小的能量转移和动量转移,从而引起流体的整体运动。
流体流动可分为定常流、非定常流和稳定流等几种类型。
其中,定常流指的是流动过程中各种物理量(如质量、能量、动量等)随时间不变的情况;非定常流则与定常流相反,各种物理量会随时间或空间变化;稳定流是指虽然物理量会随时间变化,但整个流动过程仍然是稳定的,即不出现突然的萎缩或涌流等现象。
流体流动过程中会出现速度、压力、密度等物理量的变化,这些变化可用流体力学方程式来描述和计算。
其中,质量守恒定律、动量守恒定律和能量守恒定律是描述流体流动的基本方程式。
二、流体的运动方式流体的运动方式包括了分子运动、分子间相互作用和运动量转移等几种。
在分子运动方面,气体分子之间距离较大,运动自由度高;而液体分子之间距离较近,分子运动更加有限。
流体的运动始终与分子相互作用有关。
在空气中,分子间间隔很大,因此分子之间的相互作用不太重要。
但在液体中,分子之间的相互作用较为紧密,从而导致液体的可压缩性低于气体。
在运动量转移方面,流体运动时会发生质量、能量和动量的转移。
其中,质量转移是指流体中的物质在空间中的传递过程,能量转移则是指流体在不同地点和不同形态之间转移热能,而动量转移则是指流体分子的运动量在不同地点之间的转移。
三、流场的描述流场是指流体的物理状态和运动状态。
在流动过程中,流体分子会产生不同的物理量变化,因此需要对流场进行描述。
在描述流场时,可使用不同的数学工具和方法。
其中,流线、等势线、流函数、速度势和压力势是比较常用的方法。
第三章流体流动的基本概念和方程引言:流体流动的特点1、流体的变形运动2、描述流体运动的主要物理量流体运动学研究流体的运动规律,如速度、加速度等运动参数的变化规律,而流体动力学则研究流体在外力作用下的运动规律,即流体的运动参数与所受力之间的关系l 3.1研究流体运动的两种方法连续介质模型:我们可以把流体看作为由无数个流体质点所组成的连续介质,并且无间隙地充满它所占据的空间。
描述流体运动的各物理量(如速度、加速度等)均应是空间点的坐标和时间的连续函数流场(flow field ):流体质点运动的全部空间。
流体力学中研究流体的运动有两种不同的方法,一种是拉格朗日(Lagrange )方法,另一种是欧拉(Euler )方法。
一、拉格朗日方法1、分析方法:又称随体法,是从分析流场中个别流体质点着手来研究整个流体运动的。
2、位置表示:这种研究方法,最基本的参数是流体质点的位移,在某一时刻t ,任一流体质点的位置可表为:(velocity )和加速度(acceleration )为:4、密度表示:流体的密度(density )、压强(pressure )和温度(temperature ) 写成a 、b 、t 的函数,即ρ= ρ( a , b , c , t ) , p = p ( a , b , c , t ) , t = t ( a , b , c , t)二、欧拉法1、分析方法:又称局部法,是从分析流场中每一个空间点上的流体质点的运动着手,来研究整个流体的运动的,即研究流体质点在通过某一空间点时流动参数随时间的变化规律。
2、表示:流体质点的流动是空间点坐标(x , y , z )和时间t 的函数,流体质点的三个速度分量表示为:流体质点密度表示:(3——6)式( 3 一 6 )是流体质点的运动轨迹方程,将上式对时间t 求导就可得流体质点沿运动轨的三个速度分量根据矢量分析的点积公式间的变化而产生的,即式( 3 一 8 )中等式右端的第一项tw t v t u ∂∂∂∂∂∂、、 ○2第二部分,迁移加速度( acceleration of transport ):是某一瞬时由于流体质点速度随空间点的变化而引起的,即式( 3 一 8 )中等式右端的后三项z u w y u v x u u ∂∂∂∂∂∂、、等 当地加速度和迁移加速度之和称为总加速度( total acceleration )5、流体质点的加速度的物理意义如图 3 一 1 所示,不可压缩流体流过一个中间有收缩形的变截面管道,截面 2 比截面 1 小,则截面 2 的速度就要比截面 1 的速度大。
流体⼒学流体流动的⼏个基本概念
(⼀)稳定流动和⾮稳定流动
1、稳定流动:液体流动时在不同时间内流体各质点流经此空间点时,其运动要素不变的流动。
2、⾮稳定流动:液体质点流经某空间点时,其运动要素随时间⽽变化的流动。
(⼆)迹线、流线
1、迹线:某⼀流体质点在某段时间内的运动轨迹。
2、流线:流线是流场中某⼀瞬间的⼀条空间曲线,在该曲线上各点的流体质点所具有的速度⽅向与该点的曲线的切线⽅向重合。
(三)流管、流束及总流
1、流管:在流场中取⼀段很⼩的闭合曲线,通过这条封闭曲线上所有点作流线族,这些流线族所围成的管。
2、流束:充满在流管内部的全部流体。
3、总流:在流体周界内的全部流体。
(四)过流断⾯、湿周及⽔⼒半径
1、过流断⾯:垂直于总流的横断⾯。
2、湿周:在总流的过流断⾯上,液体与固体相接触的线。
3、⽔⼒半径:在总流的过流断⾯与湿周的⽐。
(五)缓变流与急变流
1、缓变流:流体的流线接近与直线的流动。
2、急变流:流体的流线之间夹⾓很⼤或曲率很⼩的流动。
(六)流量和平均流速
1、流量:单位时间内通过过流断⾯的体积。
2、平均流速:假设流体以某⼀速度v通过过流断⾯S,则通过的流量为Q=VS。
化工原理流体流动引言流体流动是化工工程中常见的一种现象,涉及到液体和气体在管道、设备以及反应器等中的运动和传递。
了解流体流动的原理对于化工工程的设计、操作和优化具有重要意义。
本文将介绍流体流动的基本概念、流体力学方程以及常见的流动行为。
流体流动的基本概念流体是指能够流动的物质,包括液体和气体。
流体流动是指流体在一定条件下的运动和传递过程,可以分为定常流动和非定常流动两种形式。
1.定常流动:在空间和时间上都保持不变的流动状态,如流体在平稳的管道中的流动。
2.非定常流动:在空间和时间上都发生变化的流动状态,如流体在加速或减速的管道中的流动。
流体流动还可以根据流动性质的不同进行分类,包括层流和湍流。
1.层流:指流体以层层平行的方式流动,流线清晰可见,流速分布均匀。
2.湍流:指流体以错综复杂的方式流动,流线扭曲,流速分布不均匀。
流体流动的力学方程流体流动的力学方程描述了流体在运动过程中所受到的各种力以及力与速度、压力等之间的关系。
常见的流体力学方程包括质量守恒方程、动量守恒方程和能量守恒方程。
1.质量守恒方程:描述了流体密度和流速之间的关系,可以表示为:$$\\frac{{\\partial \\rho}}{{\\partial t}} + \ abla \\cdot (\\rho \\mathbf{v}) = 0$$其中,$\\rho$表示流体密度,$\\mathbf{v}$表示流速。
2.动量守恒方程:描述了流体在外力作用下的运动规律,可以表示为:$$\\frac{{\\partial (\\rho\\mathbf{v})}}{{\\partial t}} + \ abla \\cdot (\\rho \\mathbf{v} \\otimes \\mathbf{v}) = -\ abla p + \ abla \\cdot \\mathbf{T} +\\mathbf{f}$$其中,p表示压力,$\\mathbf{T}$表示应力张量,$\\mathbf{f}$表示体积力。
《工程流体力学(水力学)》第二版(禹华谦)课后答案《工程流体力学(水力学)》第二版(禹华谦)内容介绍目录绪言1 流体及其主要物理性质1.1 流体的概念1.2 流体的密度和重度1.3 流体的压缩性和膨胀性1.4 流体的粘性1.5 液体的表面性质1.6 汽化压强1.7 思考题1.8 习题2 流体静力学2.1 作用在流体上的力2.2 流体静压强及其特性2.3 流体平衡微分方程2.4 流体静力学基本方程2.5 流体静压强的度量与测量2.6 流体静压强的传递和分布2.7 流体的相对平衡2.8 静止流体作用在平面上的总压力2.9 静止流体作用在曲面上的总压力2.10 思考题2.11 习题3 流体动力学基础3.1 描述流体流动的方法3.2 流体流动的基本概念3.3 连续性方程3.4 理想流体的运动微分方程(欧拉运动微分方程) 3.5 伯努利方程3.6 伯努利方程的应用3.7 动量方程3.8 动量矩方程3.9 思考题3.10 习题4 相似原理与量纲分析4.1 流动相似的基本概念4.2 相似准则4.3 近似相似4.4 量纲分析的基本概念4.5 量纲分析法4.6 思考题4.7 习题5 流动阻力与水头损失5.1 流动阻力产生的.原因及分类5.2 粘性流体的两种流动状态5.3 均匀流沿程水头损失与切应力的关系 5.4 粘性流体的层流流动5.5 粘性流体的紊流流动5.6 紊流沿程阻力系数的计算5.7 局部水头损失5.8 思考题5.9 习题6 管路水力计算6.1 概述6.2 简单管路6.3 管路水力计算的三类问题6.4 自流管路6.5 串联管路6.6 并联管路6.7 分支管路6.8 沿程均匀泄流及装卸油鹤管6.9 有压管路中的水击6.10 思考题6.11 习题附录附录I 常见流体的密度和粘度附录Ⅱ Dg80~Dg300的管路内水力坡度i值表附录Ⅲ国际单位与工程单位对照表附录Ⅳ压强单位的换算参考文献《工程流体力学(水力学)》第二版(禹华谦)作品目录内容提要本书在论述工程流体力学基本理论的基础上,针对油料管理工作的实际需要,详细介绍了管路水力计算的常用方法并编写了相应的计算机语言程序。
化工原理–流体流动概述引言流体流动是化工领域中常见的一个研究领域,它在很多工艺过程中起着至关重要的作用。
流体流动的研究可以帮助我们了解流体在管道、设备和反应器中的行为,从而优化工艺过程,提高生产效率。
本文将从基本理论、流体流动模型和流动参数分析等方面对流体流动进行概述。
基本理论流体流动的基本理论是流体力学的一部分。
它研究流体在管道、设备和反应器中的运动规律。
在流体流动中,有两个重要的参数:流速和压力。
流速描述了流体在单位时间内通过某一截面的体积,通常以米/秒来表示。
压力则是单位面积上的力,通常以帕斯卡(Pa)来表示。
根据流速和压力的变化,可以描绘出流体的流动状态,理解流体在设备中的传输行为。
流体流动模型在化工过程中,流体流动的行为非常复杂,通常使用一些流体流动模型来描述。
常见的流体流动模型有层流流动和湍流流动。
层流流动层流流动是指流体在管道或设备中呈稳定的层流状态,流体在截面中的各个部分以均匀的速度运动。
在层流流动中,不同层之间的流速差很小,流体分子之间的相对位置一直保持不变。
层流流动通常发生在流速较低的条件下,管道的直径较小,并且流体的黏性较高。
层流流动可以用泊肃叶定律进行描述。
湍流流动湍流流动是指流体在管道或设备中呈不稳定的湍流状态,流体在截面中的各个部分以复杂而无规律的方式运动。
在湍流流动中,不同层之间的流速差很大,流体分子之间的相对位置不断变化。
湍流流动通常发生在流速较高的条件下,管道的直径较大,并且流体的黏性较低。
湍流流动的模型较为复杂,常用的描述方法有雷诺平均法和雷诺应力传递方程。
流动参数分析在对流体流动进行研究时,需要对一些流动参数进行分析。
这些参数可以帮助我们了解流体的流动特性和传输行为。
流量流量指的是单位时间内通过管道或设备截面的流体体积。
通常以单位时间内液体或气体通过单位面积的体积来表示,单位为立方米/秒。
流量是一个非常重要的参数,可以用来确定设备的尺寸和流程的设计。
压降压降指的是流体在通过管道或设备时由于阻力而导致的压力降低。
流体流动类型的概念及判断流体流动类型是指流体在流动过程中所表现出的不同特点和规律。
流体流动类型的判断是通过观察流体流动的特征和运动规律来进行的。
下面将从流体流动的基本概念、流动类型的分类以及判断流动类型的方法等方面进行详细阐述。
一、流体流动的基本概念流体是指可以自由流动的物质,包括液体和气体。
流体流动是指流体在力的作用下发生的位置和形状的变化。
流体流动具有连续性、不可压缩性和黏性等基本特征。
连续性是指流体在流动过程中不会出现断裂或中断,而是呈现出连续的状态;不可压缩性是指在常温常压下,流体的体积几乎不受外力的作用而发生变化;黏性是指流体在流动过程中会产生内部的滑动阻力。
二、流动类型的分类1. 按流动速度分类:(1) 亚音速流动:流体的流动速度小于声速,流体在流动过程中的速度变化非常缓慢,并且速度场和压力场变化的幅度也很小,通常认为是稳定的。
(2) 超音速流动:流体的流动速度大于声速,流体在流动过程中会形成激波区,速度场和压力场变化突然,流动状态不稳定。
(3) 高超音速流动:流体的流动速度远大于声速,流体在流动过程中形成的压力、温度和密度等参数变化很大,流动状态非常复杂。
2. 按流动的性质分类:(1) 层流:流体在管道或其他限定空间内流动时,流体颗粒的流动轨迹呈现出平行的特点,速度场和压力场的分布均匀,流动稳定。
(2) 湍流:流体在管道或其他限定空间内流动时,流体颗粒的流动轨迹呈现出混乱和随机的特点,速度场和压力场的分布均不均匀,流动不稳定。
3. 按流动的状态分类:(1) 定常流动:流体在流动过程中的速度场、压力场和温度场等物理量都不随时间的变化而变化,流动状态保持稳定。
(2) 非定常流动:流体在流动过程中的速度场、压力场和温度场等物理量随时间的变化而变化,流动状态不稳定。
三、判断流动类型的方法1. 观察速度场和压力场的分布情况:通过实验或数值模拟等方法,观察流体在流动过程中的速度场和压力场的分布情况。
第三章流体流动的基本概念与方程质量守恒定律、牛顿第二定律、能量守恒定律等是物质运动的普遍原理,流体作为一类物质也应该遵循这些原理。
这些原理刚体运动的方程式在物理学和理论力学中大家已经学习过,适用于流体运动的方程式将在本章讨论。
本章首先介绍描述流体流动的一些基本概念,然后推导出流体流动的基本方程,即连续方程、动量方程、能量方程等。
这些基本概念与方程在流体运动学中的研究中是十分重要的。
3.1 描述流体流动的方法在流体力学的研究中,描述流体的运动一般有两种方法,即拉格朗日法与欧拉法。
3.1.1 拉格朗日法拉格朗日法着眼于单个流体质点是怎样运动的,以及流体质点的特性是如何随时间变化的。
为了区别流体质点,使用某特定质点在某瞬时的坐标(a, b, c)是比较方便的,坐标(a, b, c)描述的只是某一特定的质点。
在任何瞬时质点的位置可表示为(3.1)对于一给点的坐标(a, b, c),上述方程组代表的是一特定流体质点的轨迹。
此时,质点是速度可以通过将质点是位置矢量对时间求导数得到。
在笛卡尔坐标系中,质点的速度可表示为(3.2)加速度为(3.3)3.1.2欧拉法流体是由无数流体质点组成的连续介质,充满流动流体的空间称为流场。
表示流体速度的一种方法就是着眼于空间的某一点,观察流经该点的流体质点随时间的运动。
这种研究流体质点运动的方法称为欧拉法。
在更一般的意义上,欧拉法可以通过以下方面描述整个流场:(1)在空间某一点流动参数,如速度、压强等,随时间的变化;(2)这些参数相对于空间邻近点的变化。
此时,流动参数是空间点的坐标与时间的函数:(3.4)或(3.4a)(3.5)流体质点随时间将从一点运动到另一点,这意味着流体质点的位置也是时间的函数。
利用多元函数的微分连锁律,可将流体质点在x方向的加速度表示为:(3.6a)同样(3.6b)(3.6c)或写成矢量的形式(3.7)式中称为梯度,或∇运算符。
方程(3.6)右端包含两种不同类型的两项:速度关于位置的变化与速度关于时间的变化。