高中数学函数的零点
- 格式:pptx
- 大小:264.88 KB
- 文档页数:33
分析高中数学中的函数的零点与极限的重要性质函数是高中数学中的重要概念之一,它包含了数学研究中的许多重要性质。
函数的零点和极限是函数研究的两个关键概念,它们在数学理论和实际问题求解中都具有重要意义。
首先,我们来讨论函数的零点。
函数的零点是指使函数取值为零的输入值。
零点的概念在数学中是非常重要的,因为零点可以帮助我们解决方程和不等式等问题。
通过求得函数的零点,我们可以找到方程的根或者不等式的解,这在解决实际问题时具有重要作用。
零点的概念也与函数图像的特征密切相关。
函数的零点可以揭示函数图像与x轴的交点,通过分析零点的性质,我们可以得到函数图像的有关信息。
例如,函数在零点处取得极值,或者函数图像在零点处存在断点等情况。
其次,我们来讨论函数的极限。
极限是用来描述函数在某一点“无限接近于某个值”的概念。
函数的极限与函数的连续性和稳定性相关。
通过研究函数的极限,我们可以了解函数在某一点附近的行为,判断函数的连续性和研究函数的性质。
函数的极限还可以帮助我们解决一些求解问题的困难。
例如,在求导数的过程中,我们经常会使用极限的性质来进行推导。
通过对函数极限的理解,我们可以更好地理解导数的概念,从而更加深入地研究函数的性质。
此外,函数的极限还与数学分析中的许多重要概念密切相关。
例如,利用函数的极限可以定义函数的导数、积分和级数等。
这些概念在数学分析中起着重要的作用,并且在实际问题求解中也有广泛的应用。
函数的零点和极限在高中数学中的学习和理解中是不可或缺的。
通过研究函数的零点和极限,我们可以深入了解函数的性质,从而在实际问题求解中更加准确地把握函数的特点。
同时,对于将来进一步学习数学的同学来说,函数的零点和极限也是他们深入研究数学分析所必备的基础。
总结起来,函数的零点和极限是高中数学中的重要概念。
它们不仅是数学理论中的关键概念,而且在实际问题求解中具有重要意义。
函数的零点和极限能够帮助我们解决方程和不等式等问题,同时也能揭示函数图像和函数性质的重要信息。
高一函数零点题型归纳函数零点是高中数学中的一个重要概念,它涉及到函数的值、图像、单调性等多个方面。
以下是高一函数零点的一些常见题型及其解题方法:一、判断零点个数例题:函数f(x) = x^{2} - 2xf(x)=x2−2x在区间( - 3,3)(−3,3)内的零点个数为( )A.0 B.11 C.22 D.33解析:首先确定函数的对称轴为x = 1x=1,然后判断函数的开口方向为向上。
接下来,根据对称轴和区间端点的距离,可以确定函数在区间内的零点个数。
二、求函数的零点例题:函数f(x) = \log_{2}(x - 3)f(x)=log2(x−3)的零点是( )A.22 B.33 C.44 D.55解析:对数函数的零点即为使对数内部表达式等于1的x值。
因此,令x - 3 = 1x−3=1,解得x = 4x=4。
三、判断零点所在区间例题:函数f(x) = x^{3} - x^{2} - xf(x)=x3−x2−x在区间( - 1,2)(−1,2)内的一个零点所在的区间是( )A.(0,1)(0,1) B.(1,2)(1,2) C.( - 1,0)(−1,0) D.(0,2)(0,2)解析:先确定函数在给定区间端点的函数值,然后判断其正负性。
如果端点函数值异号,则该区间内必存在零点。
四、应用题中的零点问题例题:某商品的成本价为每件30元,售价不超过50元时,售价y(元)与售价的整数部分x 满足关系式:y = x + 20y=x+20,当成本价与售价相等时,每月最多可售出该商品____件。
解析:根据题意,当成本价与售价相等时,即30 = x + 2030=x+20,解得x = 10x=10。
由于售价的整数部分为10,则售价为30元。
再根据一次函数的性质,当斜率大于0时,函数单调递增,因此每月最多可售出该商品33件。
五、判断函数是否为同一函数(根据零点个数)例题:下列四个函数中与函数f(x) = \frac{1}{x}f(x)=x1表示同一函数的是( )A.y = \frac{x^{2}}{x}y=xx2B.y = \frac{1}{\sqrt{x}}y=x1C.y = \frac{1}{\log_{a}x}y=logax1D.y = \frac{e^{x}}{x}y=xex解析:根据函数的三要素(定义域、值域、对应关系),分别判断各选项是否与给定函数定义域相同、值域相同以及对应关系相同。
数学高中必修知识点必备人教版数学必修一知识点1、函数零点的定义(1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。
(2)方程0)(xf有实根Û函数()yfx的图像与x轴有交点Û函数()yfx有零点。
因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。
函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。
②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。
③若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()(2、函数零点的判定(1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。
(2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法①代数法:函数)(xfy的零点Û0)(xf的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。
(3)零点个数确定0)(xfy有2个零点Û0)(xf有两个不等实根;0)(xfy有1个零点Û0)(xf有两个相等实根;0)(xfy无零点Û0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.3、二分法(1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;(2)用二分法求方程的近似解的步骤:①确定区间[,]ab,验证()()0fafb,给定精确度e;②求区间(,)ab的中点c;③计算()fc;(ⅰ)若()0fc,则c就是函数的零点;(ⅱ)若()()0fafc,则令bc(此时零点0(,)xac);(ⅲ)若()()0fcfb,则令ac(此时零点0(,)xcb);④判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复②至④步.高一数学下册必修知识点整理一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。
分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。
函数零点一、函数的零点1.零点的定义:对于函数()y f x ,使()0f x 的实数x 叫做函数()yf x 的零点.2.函数零点的等价关系函数()y f x =的零点就是方程()0f x =实数根,亦即函数()y f x =的图象与x 轴交点的横坐标.即方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.3.零点存在性判定定理定理:如果函数()y f x =在区间[]a b ,上的图象是连续不断的一条曲线,且()()0f a f b ⋅<,则函()y f x =在区间()a b ,内有零点,即存在()c a b ∈,,使得()0f c =,这个c 就是方程()0f x =的根.4.对函数零点存在的判断中,必须强调:1)()f x 在[]a b ,上连续; 2)()()0f a f b <; 3)在()a b ,内存在零点. 这是零点存在的一个充分条件,但不是必要条件. 注意:函数()yf x 的零点就是方程()0f x 的实数根,也就是函数()yf x 的图象与x 轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.5. 二次函数零点的判定0)的图像2ax bx c 0a )的根2a2ax bxc0)的零点2ba2ax bxc0)的解集2ax bxc0)的解集1x 或2xx }2a6.一元二次方程20axbx c根的分布(下面对0a 进行讨论)20bk a △20bk a △1212()x x k k ,,1122k x k x )k ,内有且只有一根yyyky y1220b k a△23()0()0f k f k △且(2b k a一.选择题(共12小题)1.(2018•重庆模拟)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为()A.0B.1C.2D.32.(2018•商洛模拟)函数f(x)=ln(x+1)﹣2x的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)3.(2017秋•镇原县校级期末)函数f(x)=2x+7的零点为()A.7B.7 2C.﹣7D.−7 24.(2017秋•平罗县校级期末)方程2x=2﹣x的根所在区间是()A.(﹣1,0)B.(2,3)C.(1,2)D.(0,1)5.(2018春•番禺区校级月考)方程x3﹣3x﹣m=0在[0,1]上有实数根,则m的最大值是()A.0B.﹣2C.﹣118D.16.(2017•奉贤区二模)若f(x)为奇函数,且x0是y=f(x)﹣e x的一个零点,则﹣x0一定是下列哪个函数的零点()A.y=f(x)e x+1B.y=f(﹣x)e﹣x﹣1C.y=f(x)e x﹣1D.y=f(﹣x)e x+17.(2016秋•仙桃期末)函数f(x)=2x2﹣3x+1的零点个数是()A.0B.1C.2D.38.(2016秋•库尔勒市校级期末)下列函数中,既是奇函数又存在零点的函数是()A.y=sinx B.y=cosxC.y=lnx D.y=x3+19.(2016秋•黄山期末)函数f(x)=log2(x﹣1)的零点是()A.(1,0)B.(2,0)C.1D.210.(2016秋•东莞市校级期末)函数f(x)=x2﹣4x+4的零点是()A.(0,2)B.(2,0)C.2D.411.(2017秋•青冈县校级期中)函数f(x)=2x2﹣3x+1的零点是()A.﹣12,﹣1B.﹣12,1C.12,﹣1D.12,112.(2017春•江津区期中)设f(x)=ax+4,若f(1)=2,则a的值()A.2B.﹣2C.3D.﹣3二.填空题(共5小题)13.(2014秋•新沂市校级月考)已知集合A={x|ax2﹣3x+2=0,x∈R,a∈R}只有一个元素,则a=.14.(2014秋•涟水县校级期中)方程4x2﹣12x+k﹣3=0没有实根,则k的取值范围是.15.(2012秋•浦东新区校级月考)2﹣x+x2=5的实根个数为.16.(2012秋•金山区校级月考)函数y=x3﹣2x的零点是.17.已知x 38=234,则x=.三.解答题(共1小题)18.解方程:x3+x2=1.。
零点存在的判定与证明一、基础知识:1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ×<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b $Î,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ×<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ×>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ×的符号是“不确定”的,受函数性质与图像影响。
如果()f x 单调,则()()f a f b ×一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b Î,则()0,x a x Î时,()0f x <;()0,x x b Î时,()0f x >6、判断函数单调性的方法:(1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ×为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”)(3)利用导数进行判断——求出单调区间从而也可作出图像7、证明零点存在的步骤:(1)将所证等式中的所有项移至等号一侧,以便于构造函数(2)判断是否要对表达式进行合理变形,然后将表达式设为函数()f x (3)分析函数()f x 的性质,并考虑在已知范围内寻找端点函数值异号的区间(4)利用零点存在性定理证明零点存在例1:函数()23x f x e x =+-的零点所在的一个区间是( )A.1,02æö-ç÷èø B.10,2æöç÷èø C.1,12æöç÷èø D.31,2æöç÷èø思路:函数()f x 为增函数,所以只需代入每个选项区间的端点,判断函数值是否异号即可解:1211234022f e -æöæö-=+×--=-<ç÷ç÷èøèø,()020f =-<11232022f æö=+×-=-<ç÷èø()12310f e e =+-=->()1102f f æö\×<ç÷èø01,12x æö\Îç÷èø,使得()00f x =答案:C例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )A.31,2æöç÷èø B.3,22æöç÷èøC.()2,eD.(),e +¥思路:先能判断出()f x 为增函数,然后利用零点存在性判定定理,只需验证选项中区间端点函数值的符号即可。
函数的零点零点这一块内容知识点比较少,但我相信本文引用的例题对于高一新生来说有较大的参考价值。
【零点】设有一函数f(x),我们把能够使f(x)=0的实数x_0称为函数f(x)的一个“零点”。
显然,函数的零点和它的图像与x轴交点横坐标对应(零点并非几何意义上的点,而是数字,但在不关心数值,只关心零点个数的时候,我们不必强调“横坐标”这件事,因为这并不影响“对应”一词的正确性)。
零点可以通过解方程f(x)=0得到,但零点个数不一定与对应方程的实根个数相同。
例如f(x)=(x-1)^2(x-2)(x^2+1),我们说对应方程有三个实根:x_1=x_2=1,x_3=2,但说函数的零点只有1,2两个。
不难理解,对于函数F(x)=f(x)-g(x),它的零点对应函数f(x)与g(x)图像的交点。
特别地,如果g(x)=c,从而是一个常数函数,那么F(x)的零点就对应函数f(x)的图像与直线y=c的交点。
【例】【2020-2021学年嘉兴市高一上期末统考】(多选)若定义在\bold{R} 上的函数 f(x) 满足 f(-x)+f(x)=0 ,当 x<0 时,f(x)=x^2+2ax+\dfrac 32a ( a \in \bold{R} ),则下列说法正确的是:A. 若方程 f(x)=ax+\dfrac a2 有两个不同的实数根,则 a<0 或4<a<8 ;B. 若方程 f(x)=ax+\dfrac a2 有两个不同的实数根,则 4<a<8 ;C. 若方程 f(x)=ax+\dfrac a2 有4个不同的实数根,则 a>8 ;D. 若方程 f(x)=ax+\dfrac a2 有4个不同的实数根,则 a>4 。
解:首先,由题意, f(x) 是奇函数,这样就可以根据已知的 x<0时的解析式写出函数在 \bold{R} 上的解析式:f(x)=\begin{cases} -x^2+2ax-\dfrac 32a& (x>0)\\ 0& (x=0)\\x^2+2ax+\dfrac 32a& (x<0) \end{cases}根据选项,设 g(x)=ax+\dfrac a2 。
函数与方程【知识梳理】1、函数零点的定义(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。
函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。
②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。
【③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、函数零点的判定(1)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有()()0f a f b ⋅<,那么,函数)(x f y =在区间(),a b 内有零点,即存在),(0b a x ∈,使得0)(0=x f ,这个0x 也就是方程0)(=x f 的根。
(2)函数)(x f y =零点个数(或方程0)(=x f 实数根的个数)确定方法① 代数法:函数)(x f y =的零点⇔0)(=x f 的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点。
(3)零点个数确定0∆>⇔)(x f y =有2个零点⇔0)(=x f 有两个不等实根; {0∆=⇔)(x f y =有1个零点⇔0)(=x f 有两个相等实根;0∆<⇔)(x f y =无零点⇔0)(=x f 无实根;对于二次函数在区间[],a b 上的零点个数,要结合图像进行确定.1、 二分法(1)二分法的定义:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤:① 确定区间[,]a b ,验证()()0f a f b ⋅<,给定精确度ε;②求区间(,)a b 的中点c ; ③计算()f c ;…(ⅰ)若()0f c =,则c 就是函数的零点;(ⅱ) 若()()0f a f c ⋅<,则令b c =(此时零点0(,)x a c ∈); (ⅲ) 若()()0f c f b ⋅<,则令a c =(此时零点0(,)x c b ∈);④判断是否达到精确度ε,即a b ε-<,则得到零点近似值为a (或b );否则重复②至④步.【经典例题】1.函数3()=2+2x f x x -在区间(0,1)内的零点个数是 ( )A 、0B 、1C 、2D 、3】2.函数 f (x )=2x +3x 的零点所在的一个区间是 ( )A 、(-2,-1)B 、(-1,0)C 、(0,1)D 、(1,2)3.若函数=)(x f x a x a -- (0a >且1a ≠)有两个零点,则实数a 的取值范围是 .4.设函数f (x )()x R ∈满足f (x -)=f (x ),f (x )=f (2-x ),且当[0,1]x ∈时,f (x )=x 3.又函数g (x )= |x cos ()x π|,则函数h (x )=g (x )-f (x )在13[,]22-上的零点个数为 ( ) A 、5 B 、6 C 、7 D 、8 5.函数2()cos f x x x =在区间[0,4]上的零点个数为 ( )A 、4B 、5C 、6D 、76.函数()cos f x x x =-在[0,)+∞内 ( ))A 、没有零点B 、有且仅有一个零点C 、有且仅有两个零点D 、有无穷多个零点7.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是 ( )A 、(-∞,-2]∪⎝⎛⎭⎫-1,32B 、(-∞,-2]∪⎝⎛⎭⎫-1,-34C 、⎝⎛⎭⎫-1,14∪⎝⎛⎭⎫14,+∞D 、⎝⎛⎭⎫-1,-34∪⎣⎡⎭⎫14,+∞ 8.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .9.求下列函数的零点:(1)32()22f x x x x =--+; (2)4()f x x x=-.>10.判断函数y =x 3-x -1在区间[1,]内有无零点,如果有,求出一个近似零点(精确度./【课堂练习】1、在下列区间中,函数()43xf x e x =+-的零点所在的区间为 ( )A 、1(,0)4-B 、1(0,)4C 、11(,)42D 、13(,)242、若0x 是方程lg 2x x +=的解,则0x 属于区间 ( ) A 、(0,1) B 、(1,1.25) C 、(1.25,1.75) D 、(1.75,2)3、下列函数中能用二分法求零点的是 ( )?4、函数f ()x =2x+3x 的零点所在的一个区间是 ( )A .(-2,-1)B 、(-1,0)C 、(0,1)D 、(1,2)5、设函数f ()x =4sin (2x+1)-x ,则在下列区间中函数f ()x 不存在零点的是 ( ) A 、[-4,-2] B 、[-2,0] C 、[0,2] D 、[2,4]6、函数()x f =x -cos x 在[0,∞+﹚内 ( )A 、没有零点B 、有且仅有一个零点C 、有且仅有两个零点D 、有无穷多个零点 7、若函数()f x 的零点与()422xg x x =+-的零点之差的绝对值不超过,则()f x 可以是( )A 、()41f x x =-B 、2()(1)f x x =-C 、()1xf x e =- D 、1()ln()2f x x =- #8、下列函数零点不宜用二分法的是 ( )A 、3()8f x x =-B 、()ln 3f x x =+C 、2()2f x x =++D 、2()41f x x x =-++9、函数f(x)=log 2x+2x-1的零点必落在区间 ( )A 、⎪⎭⎫ ⎝⎛41,81B 、⎪⎭⎫⎝⎛21,41C 、⎪⎭⎫⎝⎛1,21D 、(1,2)10、01lg =-xx 有解的区域是 ( ) A 、(0,1] B 、(1,10]C 、(10,100]D 、(100,)+∞11、在下列区间中,函数()e 43x f x x =+-的零点所在的区间为 ( )A 、1(,0)4-B 、 1(0,)4C 、11(,)42D 、13(,)24!12、函数2()log f x x x π=+的零点所在区间为( )A 、1[0,]8B 、11[,]84C 、11[,]42D 、1[,1]213、设()833-+=x x f x,用二分法求方程()2,10833∈=-+x x x在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间( )A 、(1,1.25)B 、(1.25,1.5)C 、(1.5,2)D 、不能确定 14、设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是( ) A 、[]4,2-- B 、 []2,0- C 、[]0,2 D 、[]2,415、函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩, 零点个数为( )A 、3 B 、2 C 、1 D 、016、若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程32220x x x +--=的一个近似根(精确到)为 ( )A 、B 、1.3C 、D 、 ^17、方程223xx -+=的实数解的个数为 .18、已知函数22()(1)2f x x a x a =+-+-的一个零点比1大,一个零点比1小,求实数a 的取值范围。
函数的零点与二分法1、 掌握函数的零点和二分法的定义.2、 会用二分法求函数零点的近似值。
一、函数的零点:定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。
对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。
特别提醒:函数零点个数的确定方法:1、判断二次函数的零点个数一般由判别式的情况完成;2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)∙f (b )<0,还必须结合函数的图像和性质才能确定。
函数有多少个零点就是其对应的方程有多少个实数解。
二、二分法:定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。
特别提醒:用二分法求函数零点的近似值第一步:确定区间[],a b ,验证:f(a)∙f (b )<0,给定精确度; 第二步:求区间[],a b 得中点1x ;第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)∙f (x 1)<0,则令1b x =;若f(x 1)∙f (b )<0,则令1a x =第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则重复第二、 三、四步。
类型一求函数的零点例1:求函数y =x -1的零点: 解析:令y =x -1=0,得x =1, ∴函数y =x -1的零点是1. 答案:1练习1:求函数y =x 3-x 2-4x +4的零点. 答案:-2,1,2.练习2:函数f (x )=2x +7的零点为( ) A .7 B .72 C .-72 D .-7答案:C类型二 零点个数的判断例2:判断函数f (x )=x 2-7x +12的零点个数解析:由f (x )=0,即x 2-7x +12=0得Δ=49-4×12=1>0,∴方程x 2-7x +12=0有两个不相等的实数根3,4, ∴函数f (x )有两个零点,分别是3,4. 答案:2个练习1:二次函数y =ax 2+bx +c 中,a ·c <0,则函数的零点个数是( ) A .1个 B .2个 C .0个 D .无法确定答案:B练习2:已知二次函数f (x )=ax 2+6x -1有两个不同的零点,则实数a 的取值范围是( )A .a >-9且a ≠0B .a >-9C .a <-9D .a >0或a <0答案:A类型三 函数零点的应用例3:若关于x 的方程x 2+(k -2)x +2k -1=0的两实数根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围.解析:设函数f(x)=x 2+(k -2)x +2k -1,先画出函数的简图,如图所示,函数f(x)=x 2+(k -2)x +2k -1的图象开口向上,零点x 1∈(0,1),x 2∈(1,2),由⎩⎪⎨⎪⎧f 0>0f 1<0f 2>0,即⎩⎪⎨⎪⎧2k -1>01+k -2+2k -1<04+2k -2+2k -1>0,解得,12<k <23,∴实数k 的取值范围是⎝ ⎛⎭⎪⎫12,23. 答案:⎝ ⎛⎭⎪⎫12,23. 练习1:已知方程x 2+2px +1=0有一个根大于1,有一个根小于1,则p 的取值范围为__________.答案:(-∞,-1)练习2:函数f (x )=2(m +1)x 2+4mx +2m -1的一个零点在原点,则m 的值为________. 答案:12类型四 二分法的概念例4:函数图象与x 轴均有公共点,但不能用二分法求公共点横坐标的是( ).解析:选项B 中的函数零点是不变号零点,不能用二分法求解. 答案:B练习1:函数y =f (x )在区间[a ,b ]上的图象不间断,并且f (a )·f (b )<0,则这个函数在这个区间上( )A .只有一个变号零点B .有一个不变号零点C .至少有一个变号零点D .不一定有零点 答案:C练习2:用二分法求函数f (x )=x 3-2的零点时,初始区间可选为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)答案:B类型五用二分法求函数零点的近似值例5: 求函数f(x)=x3+2x2-3x-6的一个为正数的零点(精确到0.1).解析:由于f(1)=-6<0,f(2)=4>0,可取区间[1,2]作为计算的初始区间.用二分法逐次计算,列表如下:就是所求函数精确到0.1的实数解.答案:1.7练习1:试用计算器求出函数f(x)=x2,g(x)=2x+2的图象交点的横坐标(精确到0.1).答案:-0.7.练习2:(2014~2015学年度四川省中学高一月考)用二分法求方程x3+3x-7=0在(1,2)内近似解的过程中,设函数f(x)=x3+3x-7,算得f(1)<0,f(1.25)<0,f(1.5)>0,f(1.75)>0,则该方程的根落在区间( )A.(1,1.25) B.(1.25,1.5)C.(1.5,1.75) D.(1.75,2)答案:B1、(2014·湖北文)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}答案: D2、已知x =-1是函数f (x )=ax+b (a ≠0)的一个零点,则函数g (x )=ax 2-bx 的零点是( )A .-1或1B .0或-1C .1或0D .2或1答案: C3、三次方程x 3+x 2-2x -1=0的根不可能所在的区间为( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案: C4、(2014~2015学年度黑龙江省哈尔滨市第三十二中学高一期中测试)若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:0.1)为( ) A .1.2 B .1.3 C .1.4 D .1.5答案:C5、已知函数y =f (x )的图象是连续不断的,有如下的对应值表:A .2个B .3个C .4个D .5个答案:B__________________________________________________________________________________________________________________________________________________________________基础巩固1.若函数f (x )在定义域{x |x ≠0}上是偶函数,且在(0,+∞)上是减函数,f (2)=0,则函数f (x )的零点有( )A .一个B .两个C .至少两个D .无法判断答案: B2.若关于x 的方程ax 2+bx +c =0(a ≠0)有两个实根1、2,则实数f (x )=cx 2+bx +a 的零点为( )A .1,2B .-1,-2C .1,12D .-1,-12答案: C3.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 答案: A4.下列命题中正确的是( )A .方程(x -2)(x -5)=1有两个相异实根,且一个大于5,一个小于2B .函数y =f (x )的图象与直线x =1的交点个数是1C .零点存在性定理能用来判断函数零点的存在性,也能用来判断函数零点的个数D .利用二分法所得方程的近似解是惟一的 答案: A5.在用二分法求函数f (x )的一个正实数零点时,经计算, f (0.64)<0, f (0.72)>0,f (0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )A .0.68B .0.72C .0.7D .0.6答案: C能力提升6.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如下表,则使ax 2+bx +c >0成立的x 的取值范围是______.x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46答案:7.已知函数f (x )=x 2+ax +b (a 、b ∈R )的值域为[0,+∞),若关于x 的方程f (x )=c (c ∈R )有两个实根m 、m +6,则实数c 的值为________.答案:98.给出以下结论,其中正确结论的序号是________. ①函数图象通过零点时,函数值一定变号; ②相邻两个零点之间的所有函数值保持同号;③函数f (x )在区间[a ,b ]上连续,若满足f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上一定有实根;④“二分法”对连续不断的函数的所有零点都有效. 答案: ②③9. 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +cx ≤02 x >0,若f (-4)=2, f (-2)=-2,则关于x 的方程f (x )=x 的解的个数是________. 答案:310. 已知函数f (x )=ax 3-2ax +3a -4在区间(-1,1)上有一个零点. (1)求实数a 的取值范围;(2)若a =3217,用二分法求方程f (x )=0在区间(-1,1)上的根.答案:(1)1<a <2.(2)若a =3217,则f (x )=3217x 3-6417x +2817,∴f (-1)=6017>0, f (0)=2817>0, f (1)=-417<0,∴函数零点在(0,1),又f (12)=0,∴方程f (x )=0在区间(-1,1)上的根为12.。