八年级上册丹东数学期末试卷达标检测卷(Word版 含解析)
- 格式:doc
- 大小:2.76 MB
- 文档页数:56
辽宁省丹东市八年级(上)期末数学试卷一.选择题(本大题10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上)1.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(x2y3)2=x4y5C.(xy)2÷=(xy)3D.2xy﹣3yx=xy3.(3分)若x2+mx﹣15=(x+3)(x+n),则m的值是()A.﹣5 B.5 C.﹣2 D.24.(3分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60° B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°5.(3分)下列图形是全等图形的是()A.B.C.D.6.(3分)如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB :S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:57.(3分)如果=成立,那么下列各式一定成立的是()A. =B. =C. =D. =8.(3分)已知,则的值为()A.B.C.D.9.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C. +4=9 D.10.(3分)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.12二.填空题(本大题6小题,每小题4分,共24分.)11.(4分)三角形的三个内角度数比为1:2:3,则三个外角的度数比为.12.(4分)已知a+b=﹣3,ab=1,求a2+b2= .13.(4分)分解因式:a2﹣9= .14.(4分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为.15.(4分)已知,△ABC中,AB=AC,AB的垂直平分线交AB于E,交AC所在直线于P,若∠APE=54°,则∠B= .16.(4分)把边长为a的正三角形和正方形组合镶嵌,若用2个正方形,则还需个正三角形才可以镶嵌.三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为.18.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣.19.(6分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.四.解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)先化简,再求值:,其中.21.(7分)因式分解:3x﹣12x3和﹣2m+4m2﹣2m3.22.(7分)先化简,再求值:a(a﹣4)﹣(a+6)(a﹣2),其中a=﹣.五、解答题(共3小题,满分27分)23.(9分)+=.24.(9分)如图,CD是△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E 处.(1)求∠A的度数;(2)若AC=,求△AEC的面积.25.(9分)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.2019-2020学年辽宁省丹东市八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上)1.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.【解答】解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,∴使与图中阴影部分构成轴对称图形的概率是:3÷5=.故选:C.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(x2y3)2=x4y5C.(xy)2÷=(xy)3D.2xy﹣3yx=xy【解答】解:A、2x+2y无法计算,故此选项错误;B、(x2y3)2=x4y6,故此选项错误;C、此选项正确;D、2xy﹣3yx=﹣xy,故此选项错误;故选:C.3.(3分)若x2+mx﹣15=(x+3)(x+n),则m的值是()A.﹣5 B.5 C.﹣2 D.2【解答】解:∵x2+mx﹣15=(x+3)(x+n),∴x2+mx﹣15=x2+nx+3x+3n,∴3n=﹣15,m=n+3,解得n=﹣5,m=﹣5+3=﹣2.故选:C.4.(3分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60° B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.5.(3分)下列图形是全等图形的是()A.B.C.D.【解答】解:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选:B.6.(3分)如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB :S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5【解答】解:∵O是△ABC三条角平分线的交点,AB、BC、AC的长分别12,18,24,∴S△OAB :S△OBC:S△OAC=AB:OB:AC=12:18:24=2:3:4.故选:C.7.(3分)如果=成立,那么下列各式一定成立的是()A. =B. =C. =D. =【解答】解:A、错误.应该是=;B、错误.≠;C、错误.≠;D、正确.设==k,则a=bk,c=dk,左边==k+2,右边==k+2,∴左边=右边.故选:D.8.(3分)已知,则的值为()A.B.C.D.【解答】解:,则==,故选:D.9.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C. +4=9 D.【解答】解:顺流时间为:;逆流时间为:.所列方程为: +=9.故选:A.10.(3分)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.12【解答】解:设正多边形的每个外角的度数为x,与它相邻的内角的度数为4x,依题意有x+4x=180°,解得x=36°,这个多边形的边数=360°÷36°=10.故选:C.二.填空题(本大题6小题,每小题4分,共24分.)11.(4分)三角形的三个内角度数比为1:2:3,则三个外角的度数比为5:4:3 .【解答】解:设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,∴三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:3,故答案为:5:4:3.12.(4分)已知a+b=﹣3,ab=1,求a2+b2= 7 .【解答】解:∵a+b=﹣3,∴(a+b)2=9,即a2+2ab+b2=9,又ab=1,∴a2+b2=9﹣2ab=9﹣2=7.故答案为7.13.(4分)分解因式:a2﹣9= (a+3)(a﹣3).【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).14.(4分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为14cm .【解答】解:∵DE∥BC∴∠DOB=∠OBC,又∵BO是∠ABC的角平分线,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴BD=OD,同理:OE=EC,∴△ADE的周长=AD+OD+OE+AE=AD+BD+AE+EC=AB+AC=14cm.故答案是:14cm.15.(4分)已知,△ABC中,AB=AC,AB的垂直平分线交AB于E,交AC所在直线于P,若∠APE=54°,则∠B= 72°或18°.【解答】解:分为两种情况:①如图1,∵PE是AB的垂直平分线,∴AP=BP,∴∠A=∠ABP,∠APE=∠BPE=54°,∴∠A=∠ABP=36°,∵∠A=36°,AB=AC,∴∠C=∠ABC=(180°﹣∠A)=72°;②如图2,∵PE是AB的垂直平分线,∴AP=BP,∴∠PAB=∠ABP,∠APE=∠BPE=54°,∴∠PAB=∠ABP=36°,∴∠BAC=144°,∵AB=AC,∴∠C=∠ABC=(180°﹣∠A)=18°,故答案为:72°或18°.16.(4分)把边长为a的正三角形和正方形组合镶嵌,若用2个正方形,则还需 3 个正三角形才可以镶嵌.【解答】解:∵正三角形的每个内角是60°,正方形的每个内角是90°,又∵3×60°+2×90°=360°,∴用2个正方形,则还需3个正三角形才可以镶嵌.故答案为:3.三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为 4 .【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,CD、CE即为所求;(3)△BCD的面积为×4×4﹣×1×3﹣×1×3﹣1=4,故答案为:418.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣.【解答】解:原式=(4x2+12xy+9y2)﹣(4x2﹣y2),=4x2+12xy+9y2﹣4x2+y2,=12xy+10y2,当x=,y=﹣时,原式=12×()×(﹣)+10×(﹣)2,=﹣2+2.5=.19.(6分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.【解答】解:(1)∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,∵,∴△EAB≌△DAC.∴∠AEB=∠ADC.(2)如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,又∵∠AEB=∠ADC=105°.∴∠BED=45°.四.解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)先化简,再求值:,其中.【解答】解:原式=•=•=,当a=﹣1时,原式=.21.(7分)因式分解:3x﹣12x3和﹣2m+4m2﹣2m3.【解答】解:3x﹣12x3=﹣3x(1﹣4x2)=3x(1+2x)(1﹣2x);﹣2m+4m2﹣2m3=﹣2m(m2﹣2m+1)=﹣2m(m﹣1)2.22.(7分)先化简,再求值:a(a﹣4)﹣(a+6)(a﹣2),其中a=﹣.【解答】解:原式=a2﹣4a﹣a2+2a﹣6a+12=﹣8a+12,当a=﹣时,原式=4+12=16.五、解答题(共3小题,满分27分)23.(9分)+=.【解答】解:去分母得:2(x﹣3)+6=x+3,解得:x=3检验:把x=3代入(x﹣3)(x+3)=0,则x=3是分式方程的增根,∴原方程无解.24.(9分)如图,CD是△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E 处.(1)求∠A的度数;(2)若AC=,求△AEC的面积.【解答】解:(1)∵E是AB中点,∴CE为Rt△ACB斜边AB上的中线.AE=BE=CE=AB,∵CE=CB,∴△CEB为等边三角形,∴∠CEB=60°,∵CE=AE,∴∠A=∠ACE=30°.故∠A的度数为30°;(2)∵Rt△ACB中,∠A=30°,∴tanA==,∴AC=,BC=1,∴△CEB是等边三角形,CD⊥BE,∴CD=,∵AB=2BC=2,∴AE=AB=1,==,∴S△ACE即△AEC面积为.25.(9分)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【解答】解:(1)设每个乙种零件进价为x元,则每个甲种零件进价为(x﹣2)元.由题意得:.解得:x=10.检验:当x=10时,x(x﹣2)≠0∴x=10是原分式方程的解.每个甲种零件进价为:x﹣2=10﹣2=8答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y个,则购进甲种零件(3y﹣5)个.由题意得:解得:23<y≤25∵y为整数∴y=24或25.∴共有2种方案.方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.。
2022-2023学年辽宁省丹东市八年级(上)期末数学试卷1. 下列各数是无理数的是( )A. B. C. D.2. 下列语句是真命题的是( )A. 内错角相等B. 若,则C. 点到x轴的距离为5D. 三角形的内角和等于3. 下表记录了甲、乙、丙、丁四名同学最近五次数学考试成绩的平均分与方差:甲乙丙丁平均分93969693方差要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )A. 甲B. 乙C. 丙D. 丁4. 已知点,关于y轴对称,则的值为( )A. 5B.C. 1D.5. 如图,中,,,,将折叠,使点A与BC的中点D重合,折痕为MN,那么NB的长为( )A. 3B.C. 4D.6.已知正比例函数中,y随x的增大而增大,则一次函数的图象所经过的象限是( )A. 一、二、三B. 一、二、四C. 一、三、四D. 二、三、四7. 如图,直线与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴于点C,则点C坐标为( )A.B.C.D.8. 若将一副三角板按如图所示的方式放置,则下列结论正确的是( )A. B. 如果,则有C. 如果,则有D. 如果,则有9. 的平方根为______.10. 的三边长分别为1,,2,那么______填“是”或“不是”直角三角形.11.已知点,点在直线上,则m ______填“>”“<”或“=”12. 一株美丽的勾股树如图所示,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为2,5,1,2,则最大的正方形E的面积是______.13. 已知方程组的解为,则直线与直线的交点在平面直角坐标系中位于第______象限.14. 已知点,,且直线轴,则m的值是______.15. 2022年第22届世界杯足球赛在卡塔尔举行.球迷小李在网上预定了小组赛和决赛两个阶段的门票共5张,总价为21200元,其中小组赛门票每张2800元,决赛门票每张6400元,若设小李预定了小组赛门票x张,决赛门票y张,根据题意可列方程组为______. 16. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点,第二次运动到点,第三次运动到,…,按这样的运动规律,第2022次运动后,动点的坐标是______.17. 解方程组:18. 计算:19. 如图在平面直角坐标系中,已知的顶点坐标分别是,,画出关于y轴对称的,其中点A的对应点是点C,点B的对应点是点D,并请直接写出点C的坐标为______,点D的坐标为______;请直接写出的面积是______;已知点E到两坐标轴距离相等,若,则请直接写出点E的坐标为______.20.如图,已知,求证:;若DA平分,于点A,,求的度数.21. 为迎接党的二十大胜利召开,某校开展了以“不忘初心跟党走”为主题的读书活动,学校对本校学生9月份“读书量”进行了随机抽样调查,对所有随机抽取的数据进行了统计,并绘制成如下两幅不完整的统计图.求出此次抽样调查的学生总数;请补全条形统计图;本次所抽取学生9月份“读书量”的众数为______本,中位数为______本;根据抽样调查的结果,请你估计该校1000名学生中,9月份“读书量”不少于4本的学生人数.22. 如图,已知直线:与x轴交于点B,与y轴交于点C,与直线:交于点,直线与x轴交于点直接写出点P的坐标;求直线的解析式;求四边形OAPC的面积.23. 数学老师要求同学们列二元一次方程组解决问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后为扶贫村修建3000米的村路,甲队每天修建150米,乙队每天修建200米,共用18天完成.求甲、乙两个工程队分别修建了多少天?张红同学根据题意,列出了二元一次方程组,那么这个方程组中未知数x表示的是______,未知数y表示的是______;李芳同学设甲工程队修建了p天,乙工程队修建了q天.请你按照她的思路解答老师的问题.24. 现有A、B两种品牌的共享电动车,收费元与骑行时间之间的函数关系如图所示,其中A品牌收费方式对应,B品牌的收费方式对应直接写出A品牌收费方式对应的函数关系式为______;如果小明每天早上需要骑共享电动车去上班,已知两种品牌共享电动车的平均行驶速度均为,小明家到工厂的距离为6km,那么小明选择______填“A品牌”或“B品牌”的共享电动车更省钱;求B品牌在当时间段内,y与x之间的函数关系式;求出两种收费相差元时x的值.25. 阅读材料,解决问题:【概念认识】如图1,在中,若,则BD,BE叫做的“三分线”,其中,BD是“邻BA三分线”,BE是“邻BC三分线”.【问题解决】如图2,在中,,,若的邻BA三分线BD交AC 于点D,则的度数为______;如图3,在中BP,CP分别是邻BC三分线和邻CB三分线,且,求的度数;如图4,在中,的邻BC三分线与的外角的邻CD三分线交于点若,,直接写出的度数.用含m的代数式表示答案和解析1.【答案】D【解析】解:无理数有,有理数有、、故选:根据无理数的三种形式求解.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数.2.【答案】D【解析】解:内错角相等,原命题是假命题,故此选项不合题意;B.若,则,原命题是假命题,故此选项不合题意;C.点到x轴的距离为2,原命题是假命题,故此选项不合题意;D.三角形的内角和等于,是真命题,故此选项符合题意.故选:直接利用三角形内角和定理、平行线的性质、点的坐标特点、非负数的性质分别判断得出答案.此题主要考查了命题与定理,正确掌握相关定义是解题关键.3.【答案】C【解析】解:,丙和丁的最近几次数学考试成绩的方差最小,发挥稳定,,丙同学最近几次数学考试成绩的平均数高,要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4.【答案】D【解析】解:点和点关于y轴对称,,,故选:关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.直接利用关于y轴对称点的性质得出m,n的值,进而得出答案.此题主要考查了关于y轴对称点的性质,正确得出m,n的值是解题关键.5.【答案】B【解析】解:使点A与BC的中点D重合,,,设,则,在中,由勾股定理得,,解得,故选:由折叠知,,设,则,在中,利用勾股定理列方程即可.本题主要考查了翻折变换,勾股定理等知识,熟练掌握翻折的性质是解题的关键.6.【答案】B【解析】解:正比例函数的函数值y随x的增大而增大,,一次函数的图象经过一、二、四象限.故选:先根据正比例函数的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.本题考查了正比例函数的性质和一次函数的图象与系数的关系,即一次函数中,当,时函数的图象在一、二、四象限.7.【答案】A【解析】解:当时,,点B的坐标为,;当时,,解得:,点A的坐标为,,点C的坐标为故选:利用一次函数图象上点的坐标特征可求出点A,B的坐标,利用勾股定理求出AB的长度,再结合点A的坐标即可找出点C的坐标.本题考查了一次函数图象上点的坐标特征以及勾股定理,利用一次函数图象上点的坐标特征求出点A,B的坐标是解题的关键.8.【答案】B【解析】解:,,故A错误.,,,,故B正确,,,,,,,故C错误,,,,不平行AE,故D错误.故选:根据平行线的判定和性质一一判断即可本题考查平行线的性质和判定,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】【解析】【分析】此题考查了算术平方根和平方根的知识,属于基础题,掌握定义是关键.先计算算术平方根,再根据平方根的定义即可得出答案.【解答】解:,因为,所以9的平方根为故答案为:10.【答案】是【解析】解:,是直角三角形.故答案为:是.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.会根据勾股定理的逆定理判断三角形是否为直角三角形是解题的关键.11.【答案】<【解析】解:,随x的增大而增大,又点,点在直线上,且,故答案为:由,利用一次函数的性质可得出y随x的增大而增大,结合,可得出本题考查了一次函数的性质,牢记“,y随x的增大而增大;,y随x的增大而减小”是解题的关键.12.【答案】10【解析】【分析】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.根据正方形的面积公式,结合勾股定理,能够得出正方形A,B,C,D的面积和即为最大正方形的面积.【解答】解:如图,根据勾股定理的几何意义,可得正方形A、正方形B的面积和为,正方形C、正方形D的面积和为,,即所以最大正方形E的面积为10,故答案是13.【答案】四【解析】解:方程组的解为,直线与直线的交点坐标为,,,交点在第四象限.故答案为:四.函数图象交点坐标为两函数解析式组成的方程组的解,据此求解即可.本题考查了一次函数与二元一次方程组的关系,解题的关键是理解两直线的交点坐标与方程组的解之间的关系,本题属于基础题型.14.【答案】【解析】解:点,,直线轴,,解得故答案为:根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.15.【答案】【解析】解:球迷小李在网上预定了小组赛和决赛两个阶段的门票共5张,;预定门票共花费21200元,且小组赛门票每张2800元,决赛门票每张6400元,根据题意可列方程组故答案为:利用总价=单价数量,结合预定了小组赛和决赛两个阶段的门票共5张且共花费21200元,即可得出关于x,y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.16.【答案】【解析】解:由图形可得,P点纵坐标的为:1,0,,0,2,0,1,0,,0,2,0,…,循环周期为6,,的纵坐标是0,在x轴上,点横坐标的为:1,2,3,4,5,6,7,8,9,10,11,12,…,的横坐标为2022,动点的坐标是故答案为:根据P点纵坐标的循环规律计算求值即可.本题考查了平面直角坐标系坐标规律的探索,由图形找出纵坐标的循环周期是解题关键.17.【答案】解:②-①得:,解得:,把代入①得:,解得:,故方程组的解是:【解析】本题主要考查了二元一次方程组的解法,解方程组的基本思想是消元,转化为一元一次方程.两个方程②-①,即可去掉x,求得y的值,进而利用代入法求得x的值.18.【答案】解:原式【解析】直接化简二次根式,再利用二次根式的混合运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.19.【答案】或【解析】解:如图所示:点C的坐标为,点D的坐标为;故答案为:;;的面积,故答案为:6;,,,,点E坐标为或故答案为:或直接利用关于y轴对称点的性质得出对应点的坐标;利用三角形面积公式求解;根据三角形面积公式和坐标特点解答即可.本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,属于中考常考题型.20.【答案】证明:,,,,,;解:于E,,由知,,,,,平分,,【解析】根据同位角相等,两直线平行可判定,得到,等量代换得出,即可根据同旁内角互补,两直线平行得解;由,得出,再根据平行线的性质即可求出,再根据角平分线的定义即可得解.此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的基础.21.【答案】3 3【解析】解:人,答:此次抽样调查的学生总数为50人;“读书量”4本的人数所占的百分比:,“读书量”4本的人数有:人,补全条形统计图如下:根据统计图可知众数为3本,把这些数从小到大排列,处于中间位置的是第25、26个数的平均数,则本次所抽取学生9月份“读书量”的中位数为2本,故答案为:3,3;根据题意得,人,答:估计9月份“读书量”不少于4本的学生有300人.由1本人数及其所占百分比可得总人数,再根据百分比之和为1求出读书4本的人数所占百分比,最后乘以总人数得到其人数即可补全图形;先求出“读书量”4本的人数所占的百分比,再乘以总人数求出其人数即可补全图形;根据众数和中位数的定义即可得出答案;总人数乘以样本中“读书量”不少于4本的学生人数所占百分比即可.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.22.【答案】解:直线:过点,,,把代入得,,直线的函数表达式为:;把代入得,,解得,把代入得,,,,,当时,,,,,四边形OAPC的面积【解析】由直线:求得P的坐标;把代入即可得到结论;由直线的解析式求得B、C的坐标,由直线:求得A的坐标,然后根据三角形的面积公式即可得到结论.本题考查了两条直线相交与平行问题,一次函数图象上点的坐标特征,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.23.【答案】甲工程队共修建的米数乙工程队共修建的米数【解析】解:根据所列方程组,可得出:未知数x表示的是甲工程队共修建的米数,未知数y 表示的是乙工程队共修建的米数.故答案为:甲工程队共修建的米数;乙工程队共修建的米数;根据题意得:,解得:答:甲工程队修建了12天,乙工程队修建了6天.根据张红同学所列的方程组,可得出未知数x,y表示的意义;根据甲、乙两工程队共用18天完成3000米村路的修建任务,可得出关于p,q的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.【答案】品牌【解析】解:设A品牌收费方式对应的函数关系式为,点在该函数图象上,,解得,,故答案为:;小明家到工厂的需要骑行时间为:分钟,由图象可得,当时,,小明选择A品牌的共享电动车更省钱,故答案为:A;品牌在当时间段内,设y与x之间的函数关系式为,点,在该函数图象上,,解得,即B品牌在当时间段内,y与x之间的函数关系式是;当时,,,则,要使两种收费相差元,x应大于,当时,,解得:;当时,,解得:;由上可得,在15分钟或25分钟时,两种收费相差元.根据函数图象,可以设A品牌收费方式对应的函数关系式为,然后根据点在该函数图象上,即可求得A品牌收费方式对应的函数关系式;先计算出小明从家到上班的工厂需要的时间,再根据函数图象,即可得到选择哪种品牌的共享电动车更省钱;根据函数图象中的数据,可以计算出品牌在当时间段内,y与x之间的函数关系式;根据题意可知分两种情况,然后分别计算出x的值即可.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.25.【答案】【解析】解:是的邻BA三分线,是的外角,故答案为:;,,,CP分别是邻BC三分线和邻BC三分线,,,,,在中,,;是的邻BC三分线,CP是的邻CD三分线,,是的外角,是的外角,,,的度数为由BD是的邻BA三分线,可求出的度数,再利用三角形的外角性质,即可求出的度数;利用三角形内角和定理,可求出的度数,结合三分线的性质,可求出的度数,再在中,利用三角形内角和定理,即可求出的度数;利用三分线的性质,可得出,,利用三角形的外角性质,可得出,,进而可得出本题考查了三角形的外角性质以及三角形内角和定理,牢记“三角形的一个外角等于和它不相邻的两个内角的和”及“三角形内角和是”是解题的关键.。
2023-2024学年度上学期期末测试八年级数学试卷(本试卷共23道题满分120分考试时间120分钟)第一部分选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(1,2)表示教室里第1列第2排的位置,则教室里第3列第2排的位置表示为A.(2,3)B.(3,2)C.(2,1)D.(3,3)2.甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩一样,而他们的方差分别是S甲2=1.8,S乙2=0.7,则成绩比较稳定的是( )A.甲稳定B.乙稳定C.一样稳定D.无法比较3.在实数,,﹣,0.0,π,,0.301300130001…(3与1之间依次增加一个0)中,无理数的个数为( )A.3B.4C.5D.64.下列命题是假命题的是()A.是最简二次根式B.若点在直线,则C.三角形的外角一定大于它的内角D.同旁内角互补,两直线平行5.如图,已知平分,是延长线上一点,则的度数是()A.B.C.D.6.已知一次函数,y随着x的增大而减小,则在直角坐标系内它的大致图象是()A.B.C.D.7.如图,中,,平分,,,则的面积为()A.12B.10C.15D.308.“阅读与人文滋养内心”,某校开展阅读经典活动,小明3天里阅读的总页数比小颖5天里阅读的总页数少6页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页,若小明、小颖平均每天分别阅读页、页,则下列方程组正确的是()A.B.C.D.9.勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一.它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.如图,秋千静止时,踏板离地的垂直高度,将它往前推至处时(即水平距离),踏板离地的垂直高度,它的绳索始终拉直,则绳索的长是()A.B..10.因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是,货车行驶时的速度是.两车离甲地的路程与时间的函数图象如图所示.下列结论:①②轿车追上货车时,轿车离甲地④轿车比货车早时间到达乙地.其中正确的是(A.①②③B.①②④.的立方根是两项,并按的比重算出期末成绩.已知小林这两项的考试﹣x的方程组14.如图,在边长为4的等边中,点P为边上任意一点,于点,于点的长.15.如图,在平面直角坐标系中,直线交动点P、Q分别在线段上(点,满足.当为等腰三角形时,点P的坐标是三、解答题(本题8小题,共16.(1)计算:(2)解方程组:.18.如图,平面直角坐标系中,的顶点坐标分别为,,.画出关于轴对称的,并写出顶点的坐标;轴上,使得最小,②的最小值是(1)______,______(2)学生捐款数目的众数是_______元,中位数是_______元,平均数是______元;(3)若该校有学生1500人,估计该校学生共捐款多少元?20.如图,在中,D为上一点,E为中点,连接并延长至点F,使得,连.(1)求证:.(2)若,,,求的度数.21.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需元,1只A型节能灯和3只B型节能灯共需元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元.(2)学校准备购买这两种型号的节能灯共只,要求购买A型号的节能灯a只,记购买两种型号的节能灯的总费用为W元.①求W与a的函数关系式;②当时,求购买两种型号的节能灯的总费用是多少?22.某中学八年级甲乙两班商定举行一次远足研学活动,A、B两地相距10km,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地,乙班比甲班晚出发一小时,设甲班步行时间为x小时,甲、乙两班距离A地的距离分别为、千米,、与x的函数关系图象如图所示,根据图象解答下列问题:(1)N点的横坐标是______;(2)求出、与x的函数关系式;.如图,在平面直角坐标系中,直线分别与,直线与相交于点,与轴相交于点,与(1)求直线的表达式:(2)的面积为;(3)连接,,①当的面积等于面积的一半时,请直接写出点②当时,请直接写出点参考答案与解析1.B解析:解:类比(1,2)表示教室里第1列第2排的位置,可知教室里第3列第2排的位置表示为(3,2).故选B.2.B解析:解:∵S甲2=1.8,S乙2=0.7,∴S甲2>S乙2,∴成绩比较稳定的是乙;故选B.3.A解析:解:=2,,﹣,0.0都是有理数,而π,,0.301300130001…(3与1之间依次增加一个0)都是无限不循环小数,因此是无理数,所以无理数的个数有3个,故选:A.4.C解析:解:是最简二次根式,则选项A正确,故不是假命题;由知,随的增大而减小,,∴,则选项B正确,故不是假命题;任意三角形的外角一定大于和它不相邻的任意一个内角,则选项C不正确,故是假命题;同旁内角互补,两直线平行,则选项D正确,故不是假命题.故选:C.5.D解析:解:∵,,∴,,又∵平分,∴,∴.故选:D.6.A解析:解:由题意可得,∵y随着x的增大而减小,∴必过二四象限,∵,∴函数图像过一、二、四象限,故选A.7.C解析:解:如图所示,过点作交于点,,平分,,,故选:C.8.C解析:解:设小明平均每天阅读页,小颖平均每天阅读页,由题意得:,故选:C.9.B解析:设绳索的长是,则,,,,在中,由勾股定理得:,即,解得:,即绳索的长是,故选:B.10.A解析:解:由题意可得,货车第一段解析式为,当时,,解得,故①正确;设货车第三段解析式为,将,代入得,,解得:,∴货车的解析式为设轿车的为,将,,代入得,,解得:,∴轿车的解析式为:,故③正确;由图像得辆车相遇时在处,故②正确;由图像可知轿车先到则有,轿车到达时间:,解得,货车到达时间:,,故④错误;故选A.11.-2解析:解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2,故答案为﹣2.12.86解析:根据题意得:(分);故答案为:86.13.解析:解:由已知可得,两直线的交点是(-1,2),由y=-2x,y=-x+b可得:2x+y=0,x+2y=2b,所以,直线y=-2x与y=-x+b交点的坐标(-1,2)就是方程组的解.即:,故答案为.14.解析:解:如图所示,连接,作交于点,则,即,为等边三角形,,,,,,,,故答案为:.15.或解析:解:,当时,,当时,,即点的坐标是,点的坐标是,点与点关于轴对称,的坐标是,分为三种情况:①当时,和关于轴对称,,,,,,和关于轴对称,,在和中,,,,,,,,点的坐标是;②当时,则,,,而根据三角形的外角性质得:,此种情况不存在;③当时,则,即,设此时的坐标是,在中,由勾股定理得:,,解得:,即此时的坐标是.当为等腰三角形时,点的坐标是或.故答案为:或.16.(1);(2)解析:解:(1)(2)解:由得:由得:由得,,把代入②得:,,原方程组的解为.17.△BDE各内角的度数分别为:∠EBD=15°,∠EDB=15°,∠BED=150°.解析:∵∠BDC=∠A+∠ABD(△ABD外角=两内角之和),∴∠ABD=∠BDC-∠A=60°-45°=15°,∵DE//CB,∴∠CBD=∠EBD(内错角相等),又∵BD是∠ABC的平分线,∴∠CBD=∠BDE,∴∠EDB=∠EBD=15°,∴∠BED=180°-∠EBD=∠EDB=180°-15°-15°=150°,综上所述,△BDE各内角的度数分别为:∠EBD=15°,∠EDB=15°,∠BED=150°. 18.(1)作图见解析,(2)①见解析;②解析:(1)解:,,,各点关于x轴对称的点的坐标分别为:,,(2)解:①作点关于y轴的对称点,连接,交y轴于点P,点P的位置即为所求;②,的最小值为,,故答案为:.19.(1),;(2)50,50,74(3)111000元解析:(1)捐款50元所占百分比:,∴,.(2)∵在这组数据中,50出现了8次,出现的次数最多,∴学生捐款数目的众数是50元;∵按照从小到大排列,第10、11个数据都是50,∴中位数为50元;这组数据的平均数为:(元).∴学生捐款数目的平均数是74.(3)元答:估计该校学生共捐款111000元.20.(1)见解析(2)解析:(1)证明:为中点.,在和中,,,;(2)由(1)知,,又,,又,,.21.(1)1只A型节能灯5元,1只B型节能灯7元;(2)①;②元.解析:(1)解:设1只A型节能灯x元,1只B型节能灯y元,由题意可得,解得,答:1只A型节能灯5元,1只B型节能灯7元;(2)①解:由题意可得,A型号的节能灯a只,则B型节能灯有只,由题意可得,,∴W与a的函数关系式是;②解:当时,代入①得,,答:当时,购买两种型号的节能灯的总费用是元.22.(1)1(2),(3)乙班出发小时,甲,乙相遇(4)甲班离出发地地米或米时,两班相距4千米解析:(1)解:由题意可得:,∴的横坐标为;(2)设,把代入得:,∴,∴;设,把和代入得:,解得,,(3)当时,,解得,(小时),答:乙班出发小时,甲,乙相遇;(4)当时,解得,,当时,,解得,;答:甲班离出发地地米或米时,两班相距4千米.23.(1);(2)3(3)①或;②或解析:(1)解:将点代入直线得,,点,设直线的解析式是,点,,解得,直线的表达式为;(2)解:直线与轴相交于点,,直线与轴相交于点,,点,,,故答案为:3;(3)解:①设点的坐标为,Ⅰ点在轴正半轴时,如图,,,,,点的坐标为;Ⅱ点在轴负半轴时,,,,,点的坐标为;综上,点的坐标为或,故答案为:或;②设点的坐标为,Ⅰ点在轴正半轴时,过点作轴于,,,,,直线,令,则,,,,,,,,设点的坐标为;Ⅱ点在轴负半轴时,由图得当点与点重合时,,点的坐标为;综上,点的坐标为或.故答案为:或。
2023-2024学年辽宁省丹东市宽甸县八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.16的平方根是( )A. B. C. D.2.下列实数中,是无理数.( )A. B. C. D.3.下列各组数分别是三条线段的长度,其中能围成直角三角形的是( )A. 1,1,2B. 1,2,3C. 1,,D. 2,3,44.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是( )A. 将原图向左平移两个单位B. 关于原点对称C. 将原图向右平移两个单位D. 关于y轴对称5.如图,有一条直的宽纸带,按图折叠,则的度数等于( )A.B.C.D.6.如图,在长方形ABCD中,点E在AB边上,将长方形ABCD沿直线DE折叠,点A恰好落在BC边上的点A处.若,,则CF的长为( )A. 9B. 10C. 12D. 157.如图,直线与x轴交于点,下列说法正确的是( )A. ,B. 直线上两点,,若,则C. 直线经过第四象限D. 关于x的方程的解为8.已知一次函数和一次函数的自变量x与因变量,的部分对应数值如表所示,则关于x,y的二元一次方程组的解为( )x…012……0123……13…A. B. C. D.9.我国古代数学著作《增删算法统宗》记载:绳索量竿问题,“一条竿子一条索,索比竿子长一托,折回索子去量竿,却比竿子短一托”.其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺,如果将绳索对半折后再去量竿,就比竿短5尺.设竿长x尺,绳索长y尺,则符合题意的方程组是( )A. B. C. D.10.如图1,点P从的顶点B出发,沿匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则的面积是( )A. 12B.C. 6D.二、填空题:本题共5小题,每小题3分,共15分。
八年级上册丹东数学压轴题期末复习试卷达标检测卷(Word版含解析)一、压轴题1.在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:--++-=.a b a b222110(1)直接写出A 、B 两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(-3,m),如图(1)所示.若SΔABC=16,求点D 的坐标;(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.求证:∠BCD=3(∠CEP-∠OPE).2.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平-+-=.面直角坐标系,点A(0,a),C(b,0)满足a6b80(1)a= ;b= ;直角三角形AOC的面积为.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠D CO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).3.如图,直线112y x b =-+分别与x 轴、y 轴交于A ,B 两点,与直线26y kx =-交于点()C 4,2.(1)b = ;k = ;点B 坐标为 ;(2)在线段AB 上有一动点E ,过点E 作y 轴的平行线交直线y 2于点F ,设点E 的横坐标为m ,当m 为何值时,以O 、B 、E 、F 为顶点的四边形是平行四边形;(3)若点P 为x 轴上一点,则在平面直角坐标系中是否存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形.若存在,直接写出所有符合条件的Q 点坐标;若不存在,请说明理由.4.直角三角形ABC 中,∠ACB =90°,直线l 过点C .(1)当AC =BC 时,如图①,分别过点A 、B 作AD ⊥l 于点D ,BE ⊥l 于点E .求证:△ACD ≌△CBE .(2)当AC =8,BC =6时,如图②,点B 与点F 关于直线l 对称,连接BF ,CF ,动点M 从点A 出发,以每秒1个单位长度的速度沿AC 边向终点C 运动,同时动点N 从点F 出发,以每秒3个单位的速度沿F →C →B →C →F 向终点F 运动,点M 、N 到达相应的终点时停止运动,过点M 作MD ⊥l 于点D ,过点N 作NE ⊥l 于点E ,设运动时间为t 秒. ①CM = ,当N 在F →C 路径上时,CN = .(用含t 的代数式表示) ②直接写出当△MDC 与△CEN 全等时t 的值.5.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值; ②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.6.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点()0,2D ,点P 为矩形AC 、CB 两边上的一个点.(1)当点P 与C 重合时,求直线DP 的函数解析式;(2)如图②,当P 在BC 边上,将矩形沿着OP 折叠,点B 对应点B '恰落在AC 边上,求此时点P 的坐标.(3)是否存P 在使BDP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.7.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发沿x轴负方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴正方向以每秒1个单位长度的速度匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOA,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).8.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.9.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.10.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )11.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.12.如图,四边形ABCD 是直角梯形,AD ∥BC ,AB ⊥AD ,且AB =AD +BC ,E 是DC 的中点,连结BE 并延长交AD 的延长线于G .(1)求证:DG =BC ;(2)F 是AB 边上的动点,当F 点在什么位置时,FD ∥BG ;说明理由.(3)在(2)的条件下,连结AE 交FD 于H ,FH 与HD 长度关系如何?说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)A (0,3),B (4,0);(2)D (1,-265);(3)见解析 【解析】 【分析】(1)根据非负数的性质求解;(2)如图1中,设直线CD 交y 轴于E .首先求出点E 的坐标,再求出直线CD 的解析式以及点C 坐标,利用平移的性质得到点D 坐标;(3)如图2中,延长AB 交CE 的延长线于M .利用平行线的性质以及三角形的外角的性质求证; 【详解】(1)∵222110a b a b --+-=, ∴222110a b a b --=+-=, ∴2202110a b a b --=⎧⎨+-=⎩,∴34a b =⎧⎨=⎩, ∴A (0,3),B (4,0);(2)如图1中,设直线CD 交y 轴于E .∵CD//AB , ∴S △ACB =S △ABE , ∴12AE×BO=16, ∴12×AE×4=16, ∴AE=8, ∴E (0,-5),设直线AB 的解析式为y=kx+b ,将点A (0,3),(4,0)代入解析式中得:343k b ⎧=-⎪⎨⎪=⎩ , ∴直线AB 的解析式为y=334x -+, ∵AB//CD ,∴直线CD 的解析式为y=34x c -+, 又∵点E (0,-5)在直线CD 上,∴c=5,即直线CD 的解析式为y=354x --, 又∵点C (-3,m )在直线CD 上,∴m=115, ∴C (-3,115), ∵点A (0,3)平移后的对应点为C (-3, 115), ∴直线AB 向下平移了265个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D ,∴点D的坐标为(1,-265);(3)如图2中,延长AB交CE的延长线于点M.∵AM∥CD,∴∠DCM=∠M,∵∠BCE=2∠ECD,∴∠BCD=3∠DCM=3∠M,∵∠M=∠PEC-∠MPE,∠MPE=∠OPE,∴∠BCD=3(∠CEP-∠OPE).【点睛】考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.2.(1)6;8;24;(2)存在 2.4t=时,使得△ODP与△ODQ的面积相等;(3)∠GOD+∠ACE=∠OHC,见解析【解析】【分析】(1)利用非负性即可求出a,b即可得出结论,即可求出△ABC的面积;(2)先表示出OQ,OP,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD,进而判断出OG∥AC,即可判断出∠FHC=∠ACE,同理∠FHO=∠GOD,即可得出结论.【详解】解:(1) 解:(1)∵a6b80--=,∴a-6=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);∴S△ABC=6×8÷2=24,故答案为(0,6),(8,0); 6;8;24(2) ∵114222ODQ DS OQ x t t∆=⋅=⋅⋅=11(82)312322ODP DS OP y t t∆=⋅=⋅-⋅=-由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等 (3) )∴2∠GOA+∠ACE=∠OHC ,理由如下: ∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90° ∴∠OAC+∠ACO=90° 又∵∠DOC=∠DCO ∴∠OAC=∠AOD ∵y 轴平分∠GOD ∴∠GOA=∠AOD ∴∠GOA=∠OAC ∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F , ∴HF ∥AC ∴∠FHC=∠ACE 同理∠FHO=∠GOD , ∵OG ∥FH , ∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC 即∠GOD+∠ACE=∠OHC , ∴2∠GOA+∠ACE=∠OHC . ∴∠GOD+∠ACE=∠OHC .【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键. 3.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【解析】 【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解; (2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解. 【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2), ∴2=4k -6, ∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b , ∴b =4,∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8, ∴点B (0,4),点A (8,0), 故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m , ∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形, ∴EF BO =, ∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形.(3)存在.此时Q 点坐标为()-,()4,()0,4-或()5,4. 理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况: ①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.4.(1)证明见解析;(2)①CM =8t -,CN =63t -;②t =3.5或5或6.5.【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)①由折叠的性质可得出答案;②动点N 沿F→C 路径运动,点N 沿C→B 路径运动,点N 沿B→C 路径运动,点N 沿C→F 路径运动四种情况,根据全等三角形的判定定理列式计算.【详解】(1)∵AD ⊥直线l ,BE ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△CBE (AAS );(2)①由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ;故答案为:8-t ;6-3t ;②由折叠的性质可知,∠BCE=∠FCE ,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD ,∴当CM=CN 时,△MDC 与△CEN 全等,当点N 沿F→C 路径运动时,8-t=6-3t ,解得,t=-1(不合题意),当点N 沿C→B 路径运动时,CN=3t-6,则8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,当点N 沿C→F 路径运动时,由题意得,8-t=3t-18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC 与△CEN 全等.【点睛】本题考查了折叠的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.5.(1)203;(2)①t=83;②a=185;(3)t=6.4或t=103【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴△CMN≌△BMA,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN =BP =163 即at =163, ∵t =103, ∴a =1.6符合题意综上所述,满足条件的t 的值有:t =6.4或t =103【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.6.(1)y=43x+2;(2)(103,10);(3)存在, P 坐标为(6,6)或(6,+2)或(6,).【解析】【分析】(1)设直线DP 解析式为y=kx+b ,将D 与C 坐标代入求出k 与b 的值,即可确定出解析式;(2)当点B 的对应点B′恰好落在AC 边上时,根据勾股定理列方程即可求出此时P 坐标; (3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.【详解】解:(1)∵C (6,10),D (0,2),设此时直线DP 解析式为y=kx+b ,把D (0,2),C (6,10)分别代入,得2610b k b =⎧⎨+=⎩ , 解得432k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43x+2; (2)设P (m ,10),则PB=PB′=m ,如图2,∵OB′=OB=10,OA=6,∴,∴B′C=10-8=2,∵PC=6-m,∴m2=22+(6-m)2,解得m=10 3则此时点P的坐标是(103,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB-OD=10-2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1228627-=∴AP17P1(6,7);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3228627-∴AP3=AE+EP37,即P3(6,7+2),综上,满足题意的P坐标为(6,6)或(6,7+2)或(6,7).【点睛】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.7.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.8.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.9.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴ABFAFCS2S∆∆=.本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.10.(1)∠AFE=60°;(2)见解析;(3)75【解析】【分析】(1)通过证明BCE CAD≌得到对应角相等,等量代换推导出60AFE∠=︒;(2)由(1)得到60AFE∠=︒,CE AD=则在Rt AHF△中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明ABK和ACF全等,利用对应边相等,等量代换得到比值.(通过将ACF顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK 为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.11.(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND=-,证明见解析.【解析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒ BD 是ABC ∠的角平分线,DE AB ⊥CD ED ∴=在BCD ∆和BED ∆中,CD ED BD BD=⎧⎨=⎩ ()BCD BED HL ∴∆≅∆BC BE ∴=EBC ∴∆是等边三角形;(2)如图,延长ED 使得DF MD =,连接MF3,090A ACB ∠=︒∠=︒,BD 是ABC ∠的角平分线,DE AB ⊥60,ADE BDE AD BD ∴∠=∠=︒=60,18060MDF ADE MDB ADE BDE ∴∠=∠=︒∠=︒-∠-∠=︒MDF ∴∆是等边三角形,60MF DM F DMF ∴=∠=∠=︒60BMG ∠=︒DMF DM B M G G D M G ∴∠+∠=+∠∠,即FMG DMB ∠=∠在FMG ∆和DMB ∆中,60F MDB MF MD FMG DMB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()FMG DMB ASA ∴∆≅∆GF BD ∴=,即DF DG BD +=AD DF DG MD DG ∴=+=+即AD DG MD =+;(3)结论:AD DG ND =-,证明过程如下:如图,延长BD 使得DH ND =,连接NH由(2)可知,60,18060,ADE HDN ADE BDE AD BD ∠=︒∠=︒-∠-∠=︒= HDN ∴∆是等边三角形,60NH ND H HND ∴=∠=∠=︒60BNG ∠=︒HND BND BND BNG ∠+∠=+∠∴∠,即N HNB D G ∠=∠在HNB ∆和DNG ∆中,60H NDG NH ND HNB DNG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()HNB DNG ASA ∴∆≅∆HB DG ∴=,即DH BD DG +=ND AD DG ∴+=即AD DG ND =-.【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.12.(1)见解析;(2)当F 运动到AF =AD 时,FD ∥BG ,理由见解析;(3)FH =HD ,理由见解析【解析】【分析】(1)证明△DEG ≌△CEB (AAS )即可解决问题.(2)想办法证明∠AFD =∠ABG =45°可得结论.(3)结论:FH =HD .利用等腰直角三角形的性质即可解决问题.【详解】(1)证明:∵AD ∥BC ,∴∠DGE =∠CBE ,∠GDE =∠BCE ,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC;(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG,故答案为:F运动到AF=AD时,FD∥BG;(3)解:结论:FH=HD.理由:由(1)知GE=BE,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD,故答案为:FH=HD.【点睛】本题考查了全等三角形的判定和性质,平行线的判定,等腰直角三角形的性质,掌握三角形全等的判定和性质是解题的关键.。
八年级上册丹东数学全册全套试卷达标检测卷(Word版含解析)一、八年级数学三角形填空题(难)1.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是_____.【答案】30【解析】【分析】由于BD=2DC,那么结合三角形面积公式可得S△ABD=2S△ACD,而S△ABC=S△ABD+S△ACD,可得出S△ABC=3S△ACD,而E是AC中点,故有S△AGE=S△CGE,于是可求S△ACD,从而易求S△ABC.【详解】解:∵BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD.∵E是AC的中点,∴S△AGE=S△CGE.又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故答案为30.【点睛】本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.2.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.3.若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=__________.【答案】2b-2a【解析】【分析】【详解】根据三角形的三边关系得:a﹣b﹣c<0,c+a﹣b>0,∴原式=﹣(a﹣b﹣c)﹣(a+c﹣b)=﹣a+b+c﹣a﹣c+b=2b﹣2a.故答案为2b﹣2a【点睛】本题考查了绝对值得化简和三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边;一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数,据此解答即可.4.如图,△AEF是直角三角形,∠AEF=900,B为AE上一点,BG⊥AE于点B,GF∥BE,且AD=BD=BF,∠BFG=600,则∠AFG的度数是___________。
八年级上册丹东数学期末试卷达标检测卷(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD≌△CQP,理由见解析;②V7.5Q(厘米/秒);(2)点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD,再根据∠B=∠C证得△BPD≌△CQP;②根据V P≠V Q,使△BPD与△CQP全等,所以CQ=BD=10,再利用点P的时间即可得到点Q的运动速度;(2)根据V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设运动x秒,即可列出方程1562202x x,解方程即可得到结果.【详解】(1)①因为t=1(秒),所以BP=CQ=6(厘米)∵AB=20,D为AB中点,∴BD=10(厘米)又∵PC=BC﹣BP=16﹣6=10(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,BP CQB CPC BD=⎧⎪∠=∠⎨⎪=⎩,∴△BPD≌△CQP(SAS),②因为V P≠V Q,所以BP≠CQ,又因为∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=8,即△BPD≌△CPQ,故CQ=BD=10.所以点P、Q的运动时间84663BPt(秒),此时107.543QCQVt(厘米/秒).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程设经过x秒后P与Q第一次相遇,依题意得1562202x x,解得x=803(秒)此时P运动了8061603(厘米)又因为△ABC的周长为56厘米,160=56×2+48,所以点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.2.如图1所示,已知点D在AC上,ADE∆和ABC∆都是等腰直角三角形,点M为EC的中点.(1)求证:BMD∆为等腰直角三角形;(2)将ADE∆绕点A逆时针旋转45︒,如图2所示,(1)中的“BMD∆为等腰直角三角形”是否仍然成立?请说明理由;(3)将ADE ∆绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ∆为等腰直角三角形”成立吗?请说明理由.【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.【解析】【分析】()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出22290BMD BCM ACM BCA ∠∠∠∠=+==即可.()2延长ED 交AC 于F ,求出12DM FC =,//DM FC ,DEM NCM ∠=,根据ASA 推出EDM ≌CNM ,推出DM BM =即可.()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出MDE ≌MFC ,求出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案.【详解】()1证明:ABC 和ADE 都是等腰直角三角形,45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠===点M 为EC 的中点,12BM EC ∴=,12DM EC =, BM DM ∴=,BM CM =,DM CM =,BCM MBC ∠∠∴=,DCM MDC ∠∠=,2BME BCM MBC BCE ∠∠∠∠∴=+=,同理2DME ACM ∠∠=,22224590BMD BCM ACM BCA ∠∠∠∠∴=+==⨯=BMD ∴是等腰直角三角形.()2解:如图2,BDM 是等腰直角三角形,理由是:延长ED 交AC 于F ,ADE 和ABC △是等腰直角三角形,45BAC EAD ∠∠∴==,AD ED⊥,ED DF∴=,M为EC中点,EM MC∴=,12DM FC∴=,//DM FC,45BDN BND BAC∠∠∠∴===,ED AB⊥,BC AB⊥,//ED BC∴,DEM NCM∠∴=,在EDM和CNM 中DEM NCMEM CMEMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩EDM∴≌()CNM ASA,DM MN∴=,BM DN∴⊥,BMD∴是等腰直角三角形.()3BDM是等腰直角三角形,理由是:过点C作//CF ED,与DM的延长线交于点F,连接BF,可证得MDE≌MFC,DM FM∴=,DE FC=,AD ED FC∴==,作AN EC⊥于点N,由已知90ADE∠=,90ABC∠=,可证得DEN DAN∠∠=,NAB BCM∠∠=,//CF ED,DEN FCM∠∠∴=,BCF BCM FCM NAB DEN NAB DAN BAD ∠∠∠∠∠∠∠∠∴=+=+=+=,BCF∴≌BAD,BF BD∴=,DBA CBF∠∠=,90DBF DBA ABF CBF ABF ABC∠∠∠∠∠∠∴=+=+==,DBF是等腰直角三角形,点M是DF的中点,则BMD是等腰直角三角形,【点睛】本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.3.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明4.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或32(3)9s 【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.【详解】(1)当t=1时,AP=BQ=3,BP=AC=9,又∵∠A=∠B=90°,在△ACP与△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS),∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°,∠CPQ=90°,则线段PC 与线段PQ 垂直.(2)设点Q 的运动速度x,①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,912t t xt =-⎧⎨=⎩, 解得31t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,912xt t t =⎧⎨=-⎩解得632t x =⎧⎪⎨=⎪⎩, 综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. (3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,设经过x 秒后P 与Q 第一次相遇,∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点;∴EB=EA=18cm.当V Q =1时,依题意得3x=x+2×9,解得x=9;当V Q =32时, 依题意得3x=32x+2×9, 解得x=12.故经过9秒或12秒时P 与Q 第一次相遇.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.5.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF与△BDE中BE CFB DCABD CD=⎧⎪∠=∠⎨⎪=⎩∴△CDF≌△BDE(SAS)∴DE=DF(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN≌△BDM(AAS)∴DN=DM当S△ADF=2S△BDE.∴12×AF×DN=2×12×BE×DM∴|4-3x|=2x∴x1=4,x2=45综上所述:x=45或4【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.6.如图,在ABC∆中,903,7C AC BC∠=︒==,,点D是BC边上的动点,连接AD,以AD为斜边在AD的下方作等腰直角三角形ADE.(1)填空:ABC∆的面积等于;(2)连接CE,求证:CE是ACB∠的平分线;(3)点O在BC边上,且1CO=,当D从点O出发运动至点B停止时,求点E相应的运动路程.【答案】(1)212;(2)证明见解析;(3)32【解析】【分析】 (1)根据直角三角形的面积计算公式直接计算可得;(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明;(3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=1()2AC CD +,根据CD 的长度计算出CE 的长度即可.【详解】解:(1)903, 7C AC BC ∠=︒==, ∴112137222ABC S AC BC =⨯=⨯⨯=, 故答案为:212 (2)连接CE ,过点E 作EM ⊥AC 于点M ,作EN ⊥BC 于点N ,∴∠EMA=∠END=90°,又∵∠ACB=90°,∴∠MEN=90°,∴∠MED+∠DEN=90°,∵△ADE 是等腰直角三角形∴∠AED=90°,AE=DE∴∠AEM+∠MED=90°,∴∠AEM=∠DEN∴在△AEM 与△DEN 中,∠EMA=∠END=90°,∠AEM=∠DEN ,AE=DE∴△AEM ≌△DEN (AAS )∴ME=NE∴点E 在∠ACB 的平分线上,即CE 是ACB ∠的平分线(3)由(2)可知,点E 在∠ACB 的平分线上,∴当点D 向点B 运动时,点E 的路径为一条直线,∵△AEM ≌△DEN∴AM=DN ,即AC-CM=CN-CD在Rt △CME 与Rt △CNE 中,CE=CE ,ME=NE ,∴Rt △CME ≌Rt △CNE (HL )∴CM=CN∴CN=1()2AC CD +, 又∵∠MCE=∠NCE=45°,∠CME=90°, ∴CE=22()CN AC CD =+, 当AC=3,CD=CO=1时,CE=2(31)222+= 当AC=3,CD=CB=7时, CE=2(37)522+= ∴点E 的运动路程为:522232-=,【点睛】本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.7.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E 不与点A 重合,请说明BF DC AE =+;()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD【解析】【分析】(1)①根据等边对等角,求到B C ∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF ∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC ∠=∠=︒,推出ABF ACD ∆∆≌,根据全等三角形的性质即可得出结论;②过点A 做AG ∥EF 交BC 于点G ,由△DEF 为等边三角形得到DA =DG ,再推出AE =GF ,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG ,由(1)可知,AE=GF ,DC=BG ,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC =B C ∴∠=∠,60DF DE ADB =∠=︒,且E 与A 重合,ADF ∴∆是等边三角形60ADF AFD ∴∠=∠=︒120AFB ADC ∴∠=∠=︒在ABF ∆和ACD ∆中AFB ADC B CAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD ∴∆∆≌BF DC ∴=②如图2,过点A 做AG ∥EF 交BC 于点G ,∵∠ADB =60° DE =DF∴△DEF 为等边三角形∵AG ∥EF∴∠DAG =∠DEF =60°,∠AGD =∠EFD =60°∴∠DAG =∠AGD∴DA =DG∴DA -DE =DG -DF ,即AE =GF由①易证△AGB ≌△ADC∴BG =CD∴BF =BG +GF =CD +AE(2)如图3,和(1)中②相同,过点A 做AG ∥EF 交BC 于点G ,由(1)可知,AE=GF ,DC=BG ,BF CD BF BG GF AE ∴+=+==故BF AE CD =-.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.8.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN绕点C旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE、AD、BE之间的数量关系是DE=AD-BE.由垂直的性质可得到∠CAD=∠BCE,证得△ACD≌△CBE,得到AD=CE,CD=BE,即有DE=AD-BE;(2)DE、AD、BE之间的关系是DE=BE-AD.证明的方法与(1)一样.【详解】(1)不成立.DE、AD、BE之间的数量关系是DE=AD-BE,理由如下:如图,∵∠ACB=90°,BE⊥CE,AD⊥CE,AC CB=,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,90ADC CEBCAD BCEAC CB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴DE=CE-CD=AD-BE;(2)结论:DE=BE-AD.∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.9.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE ⊥AC ,连结 DF 交射线 AC于点 G(1)当 DF ⊥AB 时,求 t 的值;(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。