热学-第三章-输运现象
- 格式:ppt
- 大小:1.31 MB
- 文档页数:1
第二章分子动理学理论的平衡态理论 基本要求一、麦克斯韦速率分布(1)掌握麦克斯韦速率分布函数,理解它的物理意义和它的分布曲线,并知道它的分布曲线是如何随温度或者分子质量变化。
(2)熟练掌握平均速率、方均根速率、最概然速率3个公式。
二、 麦克斯韦速度分布 (1)掌握麦克斯韦速度分布。
(2)知道如何利用麦克斯韦速度分布导出麦克斯韦速率分布。
三、 气体分子碰壁数及其应用 (1)知道气体气体压强和碰壁数的物理意义。
(2)能利用麦克斯韦速度分布推导气体分子碰壁数公式和理想气体压强公式,并熟记它们。
(3)会利用气体分子碰壁数公式研究一些实际问题。
四、波尔兹曼分布(1)掌握粒子在外场中的分布;(2)掌握波尔兹曼分布;(3)会从波尔兹曼分布出发求粒子在外场中的分布和麦克斯韦速度分布。
五、能量均分定理(1)理解自由度和自由度数,知道单原子分子、双原子分子和多原子分子的自由度; (2)掌握能量积分定理;会求常温下理想气体的内能、定体热容等。
(3)了解固体的热容和杜隆-珀蒂定律第三章 输运现象与分子动理学理论的非平衡态理论 基本要求一、黏性现象知道什么是层流,什么是湍流。
掌握牛顿黏性定律,理解气体黏性微观机理。
二、 扩散现象掌握菲克定律,理解气体扩散微观机理。
三、 热传导定律掌握傅立叶定律,理解气体热传导微观机理。
四、 气体分子平均自由程(1)理解什么是碰撞(散射)截面,掌握刚性分子碰撞截面公式。
(2)掌握气体分子间平均碰撞频率和分子平均自由程公式。
五 气体输运系数知道气体黏性系数、导热系数、扩散系数如何随温度和压强变化。
第二章和第三章复习题一 选择题1 水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)? (A) 66.7%. (B) 50%. (C) 25%. (D) 0. [ ]2 做布朗运动的微粒系统可看作是在浮力ρρ/0mg -和重力场的作用下达到平衡态的巨分子系统.设m 为粒子的质量,ρ 为粒子的密度,ρ 0为粒子在其中漂浮的流体的密度,并令z = 0处势能为0,则在z 为任意值处的粒子数密度n 为 (A) )}1(exp{00ρρ-⋅-kTmgz n .(B) )}1(exp{00ρρ-⋅kTmgz n .(C) }/exp{00kT z mgn ρρ-.(D) }/exp{00kT z mgn ρρ.[ ]3 在二氧化碳激光器中,作为产生激光的介质CO 2分子的两个能级之能量分别为ε1 = 0.172 eV ,ε2 = 0.291eV ,在温度为 400℃时,两能级的分子数之比N 2∶N 1为(玻尔兹曼常量k = 1.38×10-23 J/K ,1 eV = 1.60×10-19 J )(A) 31.5. (B) 7.7. (C) 0.13. (D) 0.03. [ ] 4 温度为T 时,在方均根速率s/m 50)(212±v 的速率区间内,氢、氨两种气体分子数占总分子数的百分率相比较:则有(附:麦克斯韦速率分布定律:v v v ∆⋅⋅⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛π=∆222/32exp 24kT m kT m N N,(A) ()()22N H //N N N N ∆>∆, (B) ()()22N H //N N N N ∆=∆,(C) ()()22N H //N N N N ∆<∆(D) 温度较低时()()22N H //N N N N ∆>∆ ,温度较高时()()22N H //N N N N ∆<∆ [ ]5 下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线? [ ]6 在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ. (B) v =20v ,Z =20Z ,λ=0λ. (C) v =20v ,Z =20Z ,λ=40λ. (D) v =40v ,Z =20Z ,λ=0λ. [ ] 7 一定量理想气体分子的扩散情况与气体温度T 、压强p 的关系是:(A) T 越高、p 越大,则扩散越快. (B) T 越低、p 越大,则扩散越快. (C) T 越高、p 越小,则扩散越快. (D) T 越低、p 越小,则扩散越快. [ ] 二 填空题8 一容器内储有某种气体,若已知气体的压强为 3×105 Pa ,温度为27℃,密 度为0.24 kg/m 3,则可确定此种气体是________气;并可求出此气体分子热运动的最概然速率为_______________________m/s. (普适气体常量R = 8.31 J ·mol -1·K -1)9质量为 6.2×10-14 g 的某种粒子悬浮于27℃的气体中,观察到它们的方均根 速率为 1.4 cm/s ,则该种粒子的平均速率为__________.(设粒子遵守麦克斯韦速率分布律) 10 设气体分子服从麦克斯韦速率分布律,v 代表平均速率,v p 代表最概然速率,那么,速v v O O (B (A (D O(C O率在v p 到v 范围内的分子数占分子总数的百分率随气体的温度升高而__________(增加、降低或保持不变).11用绝热材料制成的一个容器,体积为2V 0,被绝热板隔成A 、B 两部分,A 内储有1 mol 单原子分子理想气体,B 内储有2 mol 刚性双原子分子理想气体,A 、B 两部分压强相等均为p 0,两部分体积均为V 0,则两种气体各自的内能分别为E A =________;E B =________; (2) 抽去绝热板,两种气体混合后处于平衡时的温度为T =______.12一氧气瓶的容积为V ,充入氧气的压强为p 1,用了一段时间后压强降为p 2,则瓶中剩下的氧气的内能与未用前氧气的内能之比为__________.13 设某原子能反应堆中心处单位时间穿过单位面积的中子数为 4×1016 m -2·s -1,且设这些中子是温度为 300 K 的热中子,并服从麦克斯韦速度分布律,试求中子气的分压强. (阿伏伽德罗常量N A = 6.02×1023 mol -1,玻尔兹曼常量k = 1.38×10-23 J ·K -1 中子的摩尔质量为1.01×10-3 kg )14玻尔兹曼分布律是自然界中的一条较为普遍的分布定律.对处于任何力场中的任何微粒系统只要______________________________可以忽略,这定律均适用. 15 一个很长的密闭容器内盛有分子质量为m 的理想气体,该容器以匀加速度a垂直于水平面上升(如图所示).当气体状态达到稳定时温度为T ,容器底部的分子数密度为n 0,则容器内离底部高为h 处的分子数密度n =_____________________. 16 用总分子数N 、气体分子速率v 和速率分布函数f (v ) 表示下列各量:(1) 速率大于v 0的分子数=____________________; (2) 速率大于v 0的那些分子的平均速率=_________________;(3) 多次观察某一分子的速率,发现其速率大于v 0的概率=_____________. 17 图示的曲线分别表示了氢气和氦气在同一温度下的分子速率的分布情况.由图可知,氦气分子的最概然速率为___________,氢气分子的最概然速率为________________.18 一定量的某种理想气体,先经过等体过程使其热力学温度升高为原来的4倍;再经过等温过程使其体积膨胀为原来的2倍,则分子的平均碰撞频率变为原来的__________倍.19 已知氦气和氩气的摩尔质量分别为M mol 1 = 0.004 kg/mol 和M mol 2 =0.04 kg/mol ,它们在标准状态下的粘度分别为η1 =18.8×10-6 N ·s ·m -2和η2 = 21.0×10-6 N ·s ·m -2.则此时氩气与氦气的扩散系数之比D 2/ D 1= __________________. 三 计算题20 由N 个分子组成的气体,其分子速率分布如图所示.(1) 试用N 与0v 表示a 的值. (2) 试求速率在1.50v ~2.00v 之间的分子数目. (3) 试求分子的平均速率.21 将1 kg 氦气和M kg 氢气混合,平衡后混合气体的内能是2.45×106 J ,氦分子平均动能a16v (m /s)f (v )1000020是 6×10-21 J ,求氢气质量M . (玻尔兹曼常量k =1.38×10-23 J ·K -1 ,普适气体常量R =8.31 J ·mol -1·K -1)22 假设地球大气层由同种分子构成,且充满整个空间,并设各处温度T 相等.试根据玻尔兹曼分布律计算大气层中分子的平均重力势能P ε.(已知积分公式⎰∞+-=01/!d e n ax n a n x x )23 在直径为D 的球形容器中,最多可容纳多少个氮气分子,才可以认为分子之间不致相碰?(设氮分子的有效直径为d ).24 一长为L ,半径为R 1 = 2 cm 的蒸汽导管,外面包围一层厚度为2 cm 的保温材料(导热系数为 K = 0.1 W ·m -1·K -1)蒸气的温度为100℃,保温材料的外表面温度为20℃.求:(1) 每秒钟从单位长度传出的热量; (2) 保温材料外表面的温度梯度. 四 理论推导和证明25 试根据麦克斯韦分子速率分布律222/3)2exp()2(π4)(v vv kTm kTm f -=,验证以下不等式成立 1)1(>⋅vv . [积分公式22321d )exp(λλ=-⎰∞x x x ,λλ21d )exp(02=-⎰∞x x x ]五 错误改正题26 已知有N 个粒子,其速率分布函数为: f ( v ) = d N / (N d v ) = c ( 0 ≤v ≤v 0 ) f ( v ) = 0 (v >v 0) 有人如下求得c 与v(1) 根据速率分布函数的归一化条件,求得常数c ,即有1d d )(00===⎰⎰∞v vv v v Nc Nc Nf∴ c = 1 / (N v 0) (2) 此粒子系统的平均速率⎰∞=0d )(v v v v Nf ⎰=0d 1v v v v N N0021d 10v v v vv ==⎰上述关于c 、v 的解答是否正确?如有错误请改正. 六 回答题27 由理想气体的内能公式mol2MiRTM E =可知内能E与气体的摩尔数M / M mol 、自由度i 以及绝对温度T 成正比,试从微观上加以说明.如果储有某种理想气体的容器漏气,使气体的压强、分子数密度都减少为原来的一半,则气体的内能是否会变化?为什么?气体分子的平均动能是否会变化?为什么?28在什么条件下,气体分子热运动的平均自由程λ与温度T 成正比?在什么条件下,λ与T 无关?(设气体分子的有效直径一定)29 什么叫分子的有效直径?它是否随温度变化而变化?为什么?30 什么是气体中的输运过程?。