有理数除法2节
- 格式:doc
- 大小:196.00 KB
- 文档页数:8
1.4.2 有理数的除法(第二课时)授课人:淮南实验中学胡传和教学目标1.知识与技能①掌握有理数加、减、乘、除运算的法则、运算顺序,能够熟练运算.②能解决实际问题.2.难点:过程与方法经历探索有理数运算的过程,获得严谨,认真的思维习惯和解决问题的经验. 3.情感、态度与价值观敢于面对数学活动中的困难,有解决问题的成功经验.教学重点难点重点和难点:如何按有理数的运算顺序,正确而合理地进行计算.教与学互动设计(一)创设情境,导入新课想一想观察式子115×(13-12)×311÷54里有哪种运算,应该按什么运算顺序来计算?(二)合作交流,解读探究引导首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.另外带分数进行乘除运算时,必须化成假分数.学生活动:板演,其他学生做在练习本上.注意有理数混合运算的步骤:先乘除,后加减,有括号先算括号.例2 某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,•7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.•这个公司去年总的盈亏情况如何?【提示】记盈利额为正数,亏损额为负数,这个公司去年全年亏盈额(单位:万元)为:(-1.5)×3+2×3+1.7×4+(-2.3)×2=-4.5+6+6.8-4.6=3.7即:这个公司去年全年盈利3.7万元.例3 某商店先从每件10元的价格,购进某商品15件,又从每件12•元的价格购进35件,然后从相同的价格出售,如果商品销售时,至少要获利10%,•那么这种商品每件售价不应低于多少元.【提示】 先求出在不获得利润的情况下这种商品的售价,然后再计算提高利润后的售价.由题意得:151235⨯+⨯1050×(1+10%)=12.54(元) 【答案】 这种商品每件售价不应低于12.54元.例4 观察下列解题过程,看有没有错误.如果有,请说明错误的原因,并给予纠正;如果没有错误,请指明用了什么运算律.1.计算:-9÷3223⨯=-9÷1=-9.[分析] :解法有错误,错误的原因是在只含乘除的同级运算里,没有按从左到右的顺序进行,而错误地先算3223⨯,正确的解答是: -9÷3223⨯=-9×3232⨯=-4. 2.小明在计算(-6)÷(12+13)时,想到了一个简便方法,计算如下: (-6)÷(12+13) =(-6)÷12+(-6)÷13=-12-18=-30请问他这样算对吗?试说明理由.【分析】 不对,因为除法没有分配律,应该是:-6÷56=-6×65=-365(三)总结反思,拓展延伸引导学生一起小结:①有理数的运算顺序:先乘除,后加减,有括号的先算括号;②要注意认真审题,根据题目,正确选择途径,仔细运算,注意检查,使结果无误.“二十四点”游戏中的加减乘除四则运算.有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13•之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24,如对1、2、3、4,可作运算:(1+2+3)×4=24.(注意上述运算与4×(2+3+1)•应视作相同方法的运算)现有四个有理数3,4,6,10,运用上述规则可以写出多种不同方法的运算式,使其结果等于24.(1)3×(4+10-6) (2)(10-4)+3×6 (3)4+6÷3×10… 活动设计:初一(6)班有72名同学,将其分成12组,每组准确一副写有1至13数字的13张纸牌.活动开始,同一组内每一位同学任意抽取1张纸牌,•然后另四人手中纸牌的示数(每人用且只用一次)用加减乘除四则运算,使其结果等于24. 比一比,看哪一个小组得到的算式最快最多.【点评】 通过这种游戏,激发同学们的兴趣,解决开放性问题,训练发散思想能力.(四)课堂跟踪反馈夯实基础1.选择题(1)下列各数中互为倒数的是 (B )A .-512和211B .-0.75和-43C .-1和1D .-512和211(2)若a<b<0,那么下列式子成立的是(C )A .1a <1bB .ab<1C .a b >1D .a b<1 (3)已知数a<0,ab<0,化简│a-b-3│-│4+b-a │的结果是(A )A .-1B .1C .7D .72.填空题(1)直接写出运算结果:(-9)×23= -6 ,-112÷0.5= -3 ,(12+13)÷(-6)= -536(2)若一个数的相反数是 15 ,这个数的倒数是 –5 . (3)若a 、b 互为倒数,c 、d 互为相反数,m 为最大的负整数,则3m +ab+4c d m =23(4)若a=25.6,b=-0.064,c=0.1,则(-a )÷(-b )÷c=-4 000. 提升能力3.计算题(1)(-423)÷(-213)÷(-117) (2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)(3)118÷(23+16-12) 开放探究4.已知a 、b 、c 在数轴上的位置如图所示: cb a 0求||a ab +1||b -2||bc bc 【分析】 由数轴可知b<0,a<0,c>0,∴ab>0,bc<0原式=a ab +1b --2bc bc -=1b -1b+2=2(六)课堂小结1.本节课学习了有理数的四则混合运算,要熟记运算法则,严格遵守运算顺序。
1.4.2 有理数的除法第1课时有理数的除法法则教学目标:1.了解有理数除法的定义.2.经历探索有理数除法法则的过程,会进行有理数的除法运算.3.会化简分数.教学重点:正确应用法则进行有理数的除法运算.教学难点:怎样根据不同的情况来选取适当的方法求商.教与学互动设计:(一)创设情境,导入新课1.小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?(50×20=1000)放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?(1000÷50=20).2.从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?(二)合作交流,解读探究1.比较大小:8÷(-4)8×(-);(-15)÷3 (-15)×;(-1)÷(-2)(-1)×(-).小组合作完成上面题目的填空,探讨并归纳出有理数的除法法则.2.运用法则计算:(1)(-15)÷(-3);(2)(-12)÷(-);(3)(-8)÷(-).观察商的符号及绝对值同被除数和除数的关系,探讨归纳有理数除法法则的另一种说法.3.师生共同完成课本P34例5,P35例6、例7.乘除混合运算该怎么做呢?通过课本P36例7的学习,由学生自己叙述计算的方法:先将除法转换为乘法,然后确定积的符号,最后求出结果.(三)应用迁移,巩固提高1.计算:(1)(-36)÷9;(2)(-63)÷(-9);(3)(-)÷;(4)0÷3;(5)1÷(-7);(6)(-6.5)÷0.13;(7)(-)÷(-);(8)0÷(-5).2.化简下列分数:(1);(2);(3);(4).(四)总结反思,拓展升华本节课大家一起学习了有理数除法法则.有理数的除法计算有2种方法:一是根据“除以一个数等于乘以这个数的倒数”,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种方法.(五)课堂跟踪反馈夯实基础1.选择题(1)如果一个数除以它的倒数,商是1,那么这个数是()D.±1(2)若两个有理数的商是负数,那么这两个数一定是()A.都是正数B.都是负数C.符号相同D.符号不同提升能力2.计算题(1)(-2)÷(-);(2)3.5÷÷(-1);(3)-÷(-7)÷(-);(4)(-1)÷(+)÷(-).第3课时二次函数y=a(x-h)2+k的图象和性质1.会用描点法画出y=a(x-h)2+k的图象.2.掌握形如y=a(x-h)2+k的二次函数图象的性质,并会应用.3.理解二次函数y=a(x-h)2+k与y=ax2之间的联系.一、情境导入对于二次函数y=(x-1)2+2的图象,你能说出它的顶点坐标、对称轴和开口方向吗?你能再说出一个和这个函数图象的顶点坐标、对称轴和开口方向一致的二次函数吗?二、合作探究探究点一:二次函数y=a(x-h)2+k的图象和性质【类型一】二次函数y=a(x-h)2+k的图象求二次函数y=x2-2x-1的顶点坐标、对称轴及其最值.解析:把二次函数y=x2-2x-1化为y=a(x-h)2+k(a≠0)的形式,就会很快求出二次函数y=x2-2x-1的顶点坐标及对称轴.解:y=x2-2x-1=x2-2x+1-2=(x-1)2-2,∴顶点坐标为(1,-2),对称轴是直线xx=1时,y最小值=-2.方法总结:把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)形式常用的方法是配方法和公式法.【类型二】二次函数y =a (x -h )2+k 的性质如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,x =-1是对称轴,有下列判断:①b -2a =0;②4a -2b +c <0;③a -b +c =-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④解析:∵-b 2a=-1,∴b =2a ,即b -2a =0,∴①正确;∵当x =-2时点在x 轴的上方,即4a -2b +c >0,②不正确;∵4a +2b +c =0,∴c =-4a -2b ,∵b =2a ,∴a -b +c =a -b -4a -2b =-3a -3b =-9a ,∴③正确;∵抛物线是轴对称图形,点(-3,y 1)到对称轴x =-1的距离小于点(32,y 2)到对称轴的距离,即y 1>y 2,∴④正确.综上所述,选B. 方法总结:抛物线在直角坐标系中的位置,由a 、b 、c 的符号确定:抛物线开口方向决定了a 的符号,当开口向上时,a >0,当开口向下时,a <0;抛物线的对称轴是x =-b2a ;当x =2时,二次函数的函数值为y =4a +2b +c ;函数的图象在x 轴上方时,y >0,函数的图象在x 轴下方时,y <0.【类型三】利用平移确定y =a (x -h )2+k 的解析式将抛物线y =13x 2向右平移2个单位,再向下平移1个单位,所得的抛物线是( ) A .y =13(x -2)2-1 B .y =13(x -2)2+1 C .y =13(x +2)2+1 D .y =13(x +2)2-1 解析:由“上加下减”的平移规律可知,将抛物线y =13x 2向下平移1个单位所得抛物线的解析式为:y =13x 2-1;由“左加右减”的平移规律可知,将抛物线y =13x 2-1向右平移2个单位所得抛物线的解析式为y =13(x -2)2-1,故选A. 探究点二:二次函数y =a (x -h )2+k 的应用【类型一】y =a (x -h )2+k 的图象与几何图形的综合如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =-2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为________.(用含a 的式子表示)解析:如图,∵对称轴为直线x =-2,抛物线经过原点,与x 轴负半轴交于点B ,∴OB =4,∵由抛物线的对称性知AB =AO ,∴四边形AOBC 的周长为AO +AC +BC +OB =△ABC 的周长+OB =a +4.故答案是:a +4.方法总结:二次函数的图象关于对称轴对称,本题利用抛物线的这一性质,将四边形的周长转化到已知的线段上去,在这里注意转化思想的应用.【类型二】二次函数y =a (x -h )2+k 的实际应用心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (分钟)之间满足函数y =-110(x -13)2+59.9(0≤x ≤30),y 值越大,表示接受能力越强. (1)x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低?(2)第10分钟时,学生的接受能力是多少?(3)第几分钟时,学生的接受能力最强?解:(1)0≤x ≤13时,学生的接受能力逐步增强;13≤x ≤30时,学生的接受能力逐步降低.(2)当x =10时,y =-110(10-13)2+59.9=59.故第10分钟时,学生的接受能力是59. (3)当x =13时,y 值最大,,故第13分钟时,学生的接受能力最强.三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y =a (x -h )2+k 的图象与性质,体会数学建模的数形结合思想方法.第2章 图形的轴对称复习课学习目标:1、理解轴对称与轴对称图形的概念,掌握轴对称的性质.2、掌握线段的垂直平分线、角的平分线的性质及应用.3、理解等腰三角形的性质并能够简单应用.4、理解等边三角形的性质并能够简单应用.5、能够按要求做出简单的平面图形的轴对称图形,初步体会从对称的角度欣赏设计简单的轴对称图案.重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用.难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用复习过程:【课前准备】如何画一个图形关于某条直线对称的图形?【课内探究】知识点整理:1、如果一个图形沿着某条直线折叠..后,直线两旁的部分能够互相重合..,那么这个图形就叫做轴对称图形,这条直线叫做这个图形的对称轴.轴对称图形是—个具有特殊性质的图形.常见的轴对称图形有:线段、角、等腰三角形、等边三角形、矩形、菱形、正方形、等腰梯形、正n 边形、圆形.2、 把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关1、 什么叫轴对称图形?2、 什么叫做两个图形关于某一条直线成轴对称?3、 “轴对称图形”与“两个图形关于某一条直线成轴对称”有什么区别?4、 什么叫做线段的垂直平分线?线段的垂直平分线有什么性质?如何用尺规作出线段的垂直平分线?5、 角的平分线具有什么性质?如何做角平分线?6、 等腰三角形有哪些性质?等边三角形呢?已知哪些条件,可以用尺规做出等腰三角形?7、 如果两个图形关于某直线对称,那么这两个图形具有什么性质?E DBC A 于这条直线对称,这条直线就是它们的对称轴.而两个图形中的各自的相对应点叫做关于这条直线的对称点.(1) 轴对称是指两个图形之间的位置关系;(2) 关于某条直线对称的两个图形是互相重合的;如果两个图形关于某直线对称,那么对称轴是对应点所连的线段的垂直平分线. 牛刀小试:下面几种图形,一定是轴对称图形的是( )3、有两条边相等的三角形叫做等腰三角形.巩固训练:(1)已知△ABC 中,AB = AC ,其周长为18cm ,AB = 5cm ,则BC = .(2)已知等腰三角形的腰长为4cm ,底边长为6cm ,则它的周长为 .(3)已知等腰三角形的两边长分别为6cm 、3cm ,则它的周长是 .(4)已知等腰三角形一边长为3,另一边为5,则它的周长是 .4、线段垂直平分线、角平分线、等腰三角形的性质:① 等腰三角形的两个底角相等;② 等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合;(三线合一) ③ 等腰三角形是轴对称图形,它的对称轴是顶角平分线(或底边上的高或底边上的中线)所在的直线.巩固训练:(1) 已知△ABC 中,AB = AC ,∠C = 50°,则∠B = .(2) △ABC 中,AB = AC ,若AD ⊥BC 于D ,则∠1 ∠2,BD CD.(3) 已知等腰三角形的一个底角为45°,则它的顶角为 .(4) 已知等腰三角形的一个角是70°,则其余两个角的度数是 .(5) 已知等腰三角形的一个角是120°,则其余两个角的度数是 . 思考:本章的作图有哪几种类型?(1)作线段的垂直平分线;(2)作角的平分线;(3)作等腰三角形;(4)作对称点.【巩固提升】1、已知A (-1,1),在y 轴上找一点P,使△AOP 是等腰三角形.这样的P 点可能有几个?2、已知Rt △ABC 中,∠C=90°,DE 垂直平分AB(1)若∠CAD=20°,则∠B=____°(2)若AC=4,BC=5,则△ACD 的周长为______.(3) 若∠B=30°,则∠CAD=____°图中共有几组相等的线段?为什么?【课堂小结】通过今天的学习,你对本章又增加了哪些新的认识?【达标检测】1、下列图形中一定是轴对称的图形是().A、梯形B、直角三角形C、角D、平行四边形2、等腰三角形的一个内角是50°,则另外两个角的度数分别是().A、65° 65°B、50°80°C、65°65°或50°80°D、50° 50°3、如果等腰三角形的两边长是6和3,那么它的周长是().A、9B、12C、12或 15D、154、到三角形的三个顶点距离相等的点是().A、三条角平分线的交点B、三条中线的交点C、三条高的交点D、三条边的垂直平分线的交点。
七年级(人教版)集体备课教学设计:1.4.2《有理数的除法(2)》一. 教材分析《有理数的除法(2)》这一节的内容是在学生已经掌握了有理数的加减乘除的基础上进行学习的,目的是让学生掌握有理数除法的基本运算方法,并能够熟练地进行计算。
教材通过例题和练习题的形式,让学生在实际操作中掌握有理数除法的运算规则。
二. 学情分析七年级的学生已经掌握了有理数的加减乘除的基本运算,但是对于除法运算的理解仍然有所欠缺,特别是在处理负数除法的时候,容易出错。
因此,在教学这一节的时候,需要让学生通过实际的操作,理解除法运算的规则,并能够熟练地进行计算。
三. 教学目标1.让学生掌握有理数除法的基本运算方法。
2.让学生能够熟练地进行有理数除法的计算。
3.让学生理解除法运算的规则,并能够灵活运用。
四. 教学重难点1.教学重点:让学生掌握有理数除法的基本运算方法,并能够熟练地进行计算。
2.教学难点:让学生理解除法运算的规则,特别是在处理负数除法的时候。
五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,让学生在实际操作中掌握有理数除法的运算规则。
六. 教学准备1.教学PPT2.粉笔、黑板七. 教学过程1.导入(5分钟)通过复习有理数的加减乘除的基本运算,引出有理数的除法运算,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现教材中的例题和练习题,让学生直观地看到有理数除法的运算过程。
3.操练(10分钟)教师通过示范和讲解,让学生跟随老师一起完成一些有理数除法的运算,让学生在实际操作中掌握有理数除法的运算规则。
4.巩固(10分钟)学生独立完成教材中的练习题,教师巡回指导,帮助学生巩固有理数除法的运算方法。
5.拓展(10分钟)教师通过出示一些有理数除法的实际问题,让学生进行讨论和解答,提高学生解决问题的能力。
6.小结(5分钟)教师引导学生对这一节课的学习内容进行小结,帮助学生梳理知识,形成体系。
1.一件羽绒服降价10%后售出价是270元,原价的60%是其成本,则它的成本是()A. 300元 B. 290元 C. 280元 D. 180元2.某冷冻厂一个冷库的室温是-2℃,现有一批食品需要在-26℃的室温下冷藏,如果该厂这个冷库每小时能降温4℃,那么降到所需温度需要()A. 6小时 B. 7小时 C. 8小时 D. 9小时3.高度每增加1千米,气温就下降2℃,现在地面气温是10℃,那么7千米高空的气温是()A. -14℃ B. -24℃ C. -4℃ D. 14℃4.新华书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为()A. 180元 B. 202.5元 C. 180元或202.5元 D. 180元或200元5.一般情况下,山体高度每增加1km,气温大约下降6℃,现在测得山脚的温度是27℃,山顶的温度是-3℃,则这座山的高度大约是___________千米.6.计算:[-43.8+(-3)×-76.6]÷2=___________.7.计算:(--3+-)÷(-)=___________.8.计算:1÷(116−834×27)+718÷1427=___________.9.计算:[1-(+-)×24]÷5=___________.10.用简便方法计算(1)[45−(−+)×36]÷5 (2)−×(−92)+(−)×34+×23.11.某冷冻厂的一个冷库的室温原来是-5℃,经过5小时室温降到-25℃.(1)这个冷库的室温平均每小时降低多少℃?(2)若把该冷库的室温降到-50℃,则还需经过多长时间?12.小华在课外书中看到这样一道题:计算:÷(+−−)+(+−−)÷.她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.答案解析1.【答案】D【解析】根据题意,得270÷(1-10%)×60%=270÷0.9×0.6=300×0.6=180(元).2.【答案】A【解析】根据题意得:[-2-(-26)]÷4=24÷4=6(小时),则降到所需温度需要6小时.3.【答案】C【解析】根据题意得:10-7÷1×2=-4.4.【答案】C【解析】因为200×0.9=180,200×0.8=160,160<162<180,所以一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.5.【答案】5【解析】[27-(-3)]÷6×1=30÷6×1=5×1=5(千米).6.【答案】61.7【解析】[-43.8+(-3)×-76.6]÷2=(-43.8-3-76.6)÷2=123.4÷2=61.7.7.【答案】182【解析】(--3+-)÷(-)=(--3+-)×(-56)=28+168-+=28+168-14=182.8.【答案】0.【解析】1÷(116−834×27)+718÷1427=1÷(76-354×27)+718×2714=1÷(76-52)+=-34+=0.9.【答案】解:[1-(+-)×24]÷5=[-(9+4-18)]×=(+5)×=+1=.10.【答案】解:(1)[45−(−+)×36]÷5=[45-(×36-×36+×36)]÷5=[45-(28-33+30)]÷5=(45-25)÷5=20÷5=4;(2)−×(−92)+(−)×34+×23=×92-×34+×23=×(92-34+23),=×(92-11)=×81=18.【解析】(1)先把括号里面的利用乘法分配律展开进行计算,再进行有理数的加减混合运算,最后根据有理数的除法除以5即可;(2)先根据同号得正异号得负进行符号运算,然后逆运用乘法分配律,提取,并利用加法结合律计算,最后进行有理数的乘法运算即可得解.11.【答案】解:(1)根据题意得:[-5-(-25)]÷5=20÷5=4,则这个冷库的室温平均每小时降低4℃;(2)根据题意得:[-25-(-50)]÷4=6,则还需经过6小时.【解析】根据题意列出算式,计算即可得到结果.12.【答案】解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.(+−−)÷=(+−−)×36=9+3-14-1=-3(3)因为前后两部分互为倒数,所以÷(+−−)=-;(4)根据以上分析,可知÷(+−−)+(+−−)÷=−+(−3)=-3.【解析】(1)根据倒数的定义可知:÷(+−−)与(+−−)÷互为倒数;(2)利用乘法的分配律可求得(+−−)÷的值;(3)根据倒数的定义求解即可;(4)最后利用加法法则求解即可。
第2课时 有理数的乘除混合运算1.能熟练地运用有理数的运算法则进行有理数的乘除混合运算;(重点)2.能运用有理数的乘法运算律简化运算;(难点)3.能利用有理数的乘除混合运算解决简单的实际问题.(难点)一、情境导入在小学我们已经学习过乘除混合运算,其运算顺序是按从________到________的顺序进行运算,如果有括号,先算__________里面的.二、合作探究探究点一:有理数的乘除混合运算计算:(1)-÷58×⎝ ⎛⎭⎪⎫-14; (2)⎝ ⎛⎭⎪⎫-47÷⎝ ⎛⎭⎪⎫-314×⎝⎛⎭⎪⎫-112. 解析:(1)把小数化成分数,同时把除法变成乘法,再根据有理数的乘法法则进行计算即可.(2)首先把乘除混合运算统一成乘法,再确定积的符号,然后把绝对值相乘,进行计算即可.解:(1)原式=-52×85×⎝ ⎛⎭⎪⎫-14=52×85×14=1; (2)原式=⎝ ⎛⎭⎪⎫-47×⎝ ⎛⎭⎪⎫-143×⎝ ⎛⎭⎪⎫-32= -⎝ ⎛⎭⎪⎫47×143×32=-4. 方法总结:解题的关键是掌握运算方法,先统一成乘法,再计算.探究点二:运用计算器进行有理数的乘除混合运算用计算器计算:15×(-23)÷5.解析:不同品牌的计算器的操作方法可能有所不同,具体参见计算器的使用说明.解:按键顺序为15×(-)2÷3÷5=就可得结果为-2.探究点三:有理数乘除混合运算的应用已知海拔每升高1000m,气温下降6℃,某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是-1℃,热气球的高度为________m.解析:此类问题考查有理数的混合运算,解题时要正确理解题意,列出式子求解,由题意可得[8-(-1)]×(1000÷6)=1500(m),故填1500.方法总结:本题的考点是有理数的混合运算,熟练运用运算法则是解题的关键.三、板书设计1.有理数的乘除混合运算的顺序:从左到右,有括号先算括号内的2.利用乘法运算律简化运算3.运用计算器进行有理数的乘除混合运算4.有理数乘除混合运算的应用这节课主要讲授了有理数的乘除混合运算.运算顺序学生早已熟练掌握,让学生学会分析题目中所包含的运算是本节课的重难点.在教学时,要注意结合学生平时练习中出现的问题,及时纠正和指导,培养学生良好的解题习惯.。