刚体的动量和质心运动定理
- 格式:ppt
- 大小:228.00 KB
- 文档页数:24
力学中的刚体运动刚体运动是力学中的基础概念之一,涉及物体在空间中的平移和旋转运动。
刚体指的是一个具有无穷多个质点的物体,其内部任意两点之间的相对位置保持不变。
本文将介绍刚体运动的基本原理、刚体运动的类型以及刚体运动的相关公式。
一、刚体运动的基本原理刚体运动的基本原理是“刚体上的任一质点在任意时刻的平面运动状态都完全相同”。
这意味着无论刚体如何运动,刚体上的各个质点之间的相对位置都保持不变。
这种相对位置的不变性使得刚体的运动可以用一个简化的模型来描述。
二、刚体运动的类型刚体运动可以分为平面运动和空间运动两种类型。
1. 平面运动平面运动指的是刚体在一个平面内的运动。
在平面运动中,刚体的质心沿直线或曲线轨迹运动,同时围绕质心进行旋转。
平面运动可以进一步分为平行轴定理和垂直轴定理两种类型。
- 平行轴定理:当刚体的所有质点在一个平面内运动,且对于每个平行于该平面的轴,刚体质量对该轴的转动惯量都相等,则刚体的转动可以看作是质心绕着某个轴的转动。
- 垂直轴定理:当刚体的所有质点在一个平面内运动,且对于每个垂直于该平面的轴,刚体质量对该轴的转动惯量都相等,则刚体的转动可以看作是绕着该轴的转动。
2. 空间运动空间运动指的是刚体在三维空间中的运动。
在空间运动中,刚体的质心和各个质点都可以沿直线或曲线轨迹进行平移和旋转。
空间运动需要考虑刚体在三个方向上的运动和转动,其描述较为复杂,常用欧拉角和四元数等方法进行分析和计算。
三、刚体运动的相关公式刚体运动的描述离不开相关的公式和定理。
以下是一些常用的刚体运动公式:1. 质心运动的描述:- 质心速度公式:v = ds/dt,其中v为质心速度,s为质心位移,t为时间。
2. 刚体的平面运动:- 转动惯量公式:I = ∑mi ri²,其中I为转动惯量,mi为每个质点的质量,ri为质点到旋转轴的距离。
- 角动量公式:L = Iω,其中L为角动量,ω为刚体的角速度。
- 动能定理:∑(1/2mi vi²) = (1/2)Iω²,其中vi为每个质点的速度。
刚体质心运动的动量定理
一、定义和概述
刚体质心运动是指刚体绕其质心进行的运动。
刚体质心运动的研究是刚体动力学中的重要部分,其研究的主要内容包括质心的位移、速度和加速度等。
而动量定理则是质心运动的基本定理之一,用于描述质心运动的动量变化和力矩之间的关系。
二、刚体质心运动的特点
刚体质心运动具有以下特点:
1.刚体的质心始终在同一直线上运动,即质心轨迹是一条直线或一个点。
2.刚体的角动量等于零,因为刚体绕质心的运动可以分解为质心的平动和相对于质心的旋转运动,而旋转运动的角动量为零。
3.刚体的动量等于质心的动量,因为刚体中任意一点的动量都与质心的动量相同。
三、动量定理在刚体质心运动中的应用
在刚体质心运动中,动量定理可以表述为:对于刚体绕其质心的运动,其动量的变化率等于作用在刚体上的外力对质心的力矩。
这个定理可以用来描述刚体在力矩作用下的质心运动规律。
具体来说,假设刚体的质量为m,质心的位置为r(t),则刚体的动量为p=m*r(t)。
设外力F作用于刚体上,其作用点相对于质心的位置为f(t),则外力对质心的力矩为M=F*f(t)。
根据动量定理,有dp/dt=M,即m*dr(t)/dt=M。
这个公式可以用来求解刚体在力矩作用
下的质心运动规律。
四、结论
综上所述,动量定理是刚体质心运动的基本定理之一,它可以用来描述刚体在力矩作用下的质心运动规律。
在具体的应用中,可以通过对动量定理进行变换和化简,求解出刚体在给定外力矩作用下的质心运动轨迹、速度和加速度等物理量。
力学(第二版)漆安慎习题解答第七章刚体力学第七章刚体力学一、基本知识小结1.刚体的质心定义:r c m i r i/ m r c rdm/ dm求质心方法:对称分析法,分割法,积分法。
2.刚体对轴的转动惯量定义:I m i r i2I r2dm平行轴定理I o = l c+md2正交轴定理I z = X+I y.常见刚体的转动惯量:(略)3.刚体的动量和质心运动定理p mv c F ma c4.刚体对轴的角动量和转动定理L I I5.刚体的转动动能和重力势能E k ?I 2E p mgy c6•刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程: F ma c c I c c(不必考虑惯性力矩)动能:E k 2mv;今I c c27.刚体的平衡方程、思考题解答火车在拐弯时所作的运动是不是平动答:刚体作平动时固联其上的任一一条直线,在各时刻的位置(方位)始终彼此平行。
若将火车的车厢看作一个刚体,当火车作直线运行时,车厢上各部分具有平行运动的轨迹、相同的运动速度和加速度,选取车厢上的任一点都可代替车厢整体的运动,这就是火车的平动。
但当火车拐弯时,车厢上各部分的速度和加速度都不相同,即固联在刚体上任一条直线,在各时刻的位置不能保持彼此平行,所以火车拐弯时的运动不是平动。
对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动r r答:对静止的刚体施以外力作用,当合外力为了零,即Fi ma c 0时,刚体的质心将保持静止,但合外力为零并不表明所有的外力都作用于刚体的同一点。
所以,对某一确定点刚体所受合外力的力矩M Mi r i Fi不一定为零。
由刚体的转动定律M J可知,刚体将发生转动。
比如,置于光滑水平面上的匀质杆,对其两端施以大小相同、方向相反,沿水平面且垂直于杆的两个作用力时,杆所受的外力的合力为零,其质心虽然保持静止,但由于所受合外力矩不为零,将作绕质心轴的转动。
如果刚体转动的角速度很大,那么(1)作用在它上面的力是否一定很大(2)作用在它上面的力矩是否一定很大M r i F sin j J J「答:由刚体的定轴转动定律dt可知,刚体受对轴的合外力矩正比于绕定轴转动角速度的时间变化率。
动量定理 质心运动定理质点的动量定理可以表述为:质点动量的微分,等于作用于质点上力的元冲量。
用公式表达为 Fv =)(m dt d(17-7)dt m d F v =)( (17-8)设1t 时刻质点系的动量为1p ,2t 时刻质点系的动量为2p ,将(17-8)式积分,积分区间为从1t 到2t ,得⎰=-2112t t dtF p p (17-9)记IF =⎰21t t dt ,称为力F 在1t 到2t 时间间隔内的冲量。
式(17-9)为质点系动量定理的积分形式,它表明质点系在某时间间隔内的冲量的改变量,等于作用在质点系上的外力主矢在该时间间隔内的冲量。
对于质点系而言,设)(e i F 为质点i M 所受到的外力,)(i i F 为该质点所受到的质点系内力,根据牛顿第二定律得)(i i (e)ii i m F F a += 即)()(i i e i iidt d m F F v +=除了火箭运动等一些特殊情况,一般机械在运动中可以认为质量不变。
如果质点的质量i m 不变,则有 )()()(i i e i i i dt m d F F v +=上式对质点系中任一点都成立,n 个质点有n 个这样的方程,把这n 个方程两端相加,得∑∑∑===+=ni i i ni e ini i i dtm d 1)(1)(1)(F F v质点系的内力总是成对地出现,内力的矢量和∑=ni i iF1)(等于零。
上式中∑=ni e iF1)(是质点系上外力的矢量和,即外力系的主矢,记作)(e RF ,则上式可写为)(e R dt d F p= (17-10)这就是质点系动量定理的微分形式,它表明:质点系的动量对时间的导数等于作用在质点系上外力的矢量和。
将式(17-10)写成微分形式dt d e R )(F p =设1t 时刻质点系的动量为1p ,2t 时刻质点系的动量为2p ,上式从1t 到2t 积分,得⎰=-21)(12t t e R dtF p p I =(17-11)当外力主矢为零时,由上式可推出质点系的动量是一常矢量,即0p p =这表明当作用在质点系上的外力的矢量和为零时,质点系的动量保持不变,这就是质点系的动量守恒定理。
第七章基本知识小结⒈刚体的质心定义:∑⎰⎰==dm dm r r m r m r c i i c //求质心方法:对称分析法,分割法,积分法。
⒉刚体对轴的转动惯量定义:∑⎰==dm rI r m I ii 22平行轴定理 I o = I c +md 2正交轴定理 I z = I x +I y.常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==c c a m F v m p⒋刚体对轴的角动量和转动定理∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==221ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程: ∑∑==c c c c I a m F βτ(不必考虑惯性力矩)动能:221221c c c k I mv E ω+=⒎刚体的平衡方程∑=0F, 对任意轴∑=0τ7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。
⑵在此时间内,发动机转了多少转?解:⑴21260/2)12003000(/7.15s rad t===-∆∆πωβ⑵rad 27.152)60/2)(12003000(21039.2622222⨯===∆⨯--πβωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ctbta dtd dtd -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。
边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2(θ:rad,t:s)。
⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。