斜拉桥理论分析计算共34页
- 格式:ppt
- 大小:2.47 MB
- 文档页数:4
斜拉桥设计计算参数分析1 概述斜拉桥属高次超静定结构,所采用的施工方法和安装程序与成桥后的主梁线形、结构内力有着密切的联系。
并且在施工阶段随着斜拉桥结构体系和荷载状态的断变化,主梁线形和结构内力亦随之不断发生变化。
因此,需对斜拉桥的每一施工阶段进行详尽的分析、验算,从而求得斜拉索张拉吨位和主梁挠度、主塔位移等施工控制参数,并依此对施工的顺序做出明确的规定,并在施工中加以有效的管理和控制。
2 设计参数分析2.1 主梁的中、边跨跨径比主梁的中、边跨跨径比反映了结构体系的变形特性和锚索的抗疲劳性能:从图1、图2可见,三跨钢斜拉桥的中边跨跨径比较多地位于2.0~3.5之间,集中在2.5处;三跨混凝土斜拉桥的相应数值则为1.5~3.0,较集中于2.2处。
就一般而言,中、边跨跨径的比值大于2.0,将能控制锚索的应力幅度在一定的范围内,并提高结构体系的总体刚度。
在许多斜拉桥中,虽然中、边跨跨径的比值较小,但边跨中往往采用设置辅助墩或将主梁与引桥连接形成组合体系以提高结构刚度,适应结构的变形要求。
2.2 主梁自重分析选取某斜拉桥桥5号、9号梁段(见图3),各自增重5 %(其它参数取理论值) ,分别计算得到在浇筑完5号、9号梁段后各控制点挠度及主梁控制截面弯矩变化情况,见图3 、图4 。
图3:主梁自重增大5 %的梁段挠度影响图4:主梁自重增大5 %的梁段弯矩影响从图3 、图4可见,梁段自重对控制点挠度的影响较大,且悬臂越大,影响越明显。
梁段自重对控制点弯矩的影响更加不容忽视, 9 号梁段自重增大5 %,导致6 号梁段的弯矩值增加至1 200 kN •m ,达到合理成桥状态下该截面弯矩值的7 %。
2.3 主梁弹性模量分析选取该桥5号、9号梁段弹性模量增大10 %(其它参数取理论值) ,分别计算得到在浇筑完9号梁段后主梁控制截面弯矩变化及各控制点挠度影响情况,见图5 、图6 。
图5:主梁弹性模量增大10%的梁段弯矩影响图6:主梁弹性模量增大10%的梁段挠度影响从图5 、图6 可见,主梁混凝土弹性模量增大10 %时,控制点挠度变化的最大值仅为1 mm ,弯矩变化的最大值也只有220 kN •m。
斜拉桥计算摘要本设计根据设计任务要求,依据现行公路桥梁设计规范,兼顾技术先进,安全可靠,适用耐久,经济合理的原则,提出了预应力混凝土双索面双塔斜拉桥、预应力混凝土连续刚构、变截面连续梁桥三个比选桥型。
综合各个方案的优缺点并考虑与环境协调,把预应力混凝土双索面双塔斜拉桥作为推荐设计方案。
进行结构细部尺寸拟定,并利用Midas6.7.1建模,进行静活载内力计算、配筋设计及控制截面应力验算、变形验算等。
经验算表明该设计计算方法正确,内力分布合理,符合设计任务的要求。
独塔斜拉桥方案斜拉桥方案造型美观,气势宏伟,跨越能力强,55米的主塔充分显示其高扬特性,拉索的作用相当于在主梁跨内增加了若干弹性支撑,从而减小了梁内弯矩、梁体自重,从而减小梁体尺寸。
施工技术较成熟。
斜拉桥设计与计算第1部分总体设计第 1节斜拉桥概述斜拉桥是一种桥面体系受压、支承体系受拉的结构,其桥面体系由加劲梁构成,其支承体系由钢索组成。
上世纪70年代后,混凝土斜拉桥的发展可分成三个阶段:第一阶段:稀索,主梁基本上为弹性支承连续梁;第二阶段:中密索,主梁既是弹性支承连续梁,又承受较大的轴向力;第三阶段:密索,主梁主要承受强大的轴向力,又是一个受弯构件。
近年来,结构分析的进步、高强材料的施工方法以及防腐技术的发展对大跨斜拉桥的发展起到了关键性的作用。
斜拉桥除了跨径不断增加外,主梁梁高不断减小,索距减少到10m以下,截面从梁式桥截面发展到板式梁截面。
混凝土斜拉桥已是跨径200m~500m范围内最具竞争力的桥梁结构。
(一)技术指标1,路线等级:公路一级,双向四车道:2,设计车速:100km/h;3,桥面宽:1.5m(拉索区)+0.5m(防撞护栏)+0.5m(过渡带)+7.5m(行车道)+ 0.5m(过渡带)+0.5m(防撞护栏)+1m(隔离带) +0.5m(防撞护栏) +0.5m(过渡带)+7.5m(行车道)+0.5m(过渡带)+0.5m(防撞护栏)+1.5m(拉索区)。
第三章斜拉桥计算①斜拉桥(或者其他桥梁)的计算分类:总体分析局部分析②局部应力分析方法③斜拉桥总体分析的特点a.考虑垂度效应的斜拉索弹性模量修正问题;b.考虑成桥索力可优化的成桥状态确定问题;c. 考虑施工分阶段进行,索力反复可调、施工方便、成桥达到设计内力目标和线形目标的施工张拉力和预拱度确定问题。
3、斜拉索等效弹模与斜拉索水平投影长、斜拉索应力的关系第二节斜拉桥合理成桥状态3.2.1 成桥恒载索力的初拟斜拉桥的设计存在一个通过优化成桥索力来优化斜拉桥成桥内力的合理成桥受力状态确定问题:斜拉桥主梁、主塔受力对索力大小很敏感;而斜拉索索力可以调节。
国内外学者探索出了多种方法:简支梁法、恒载平衡法、刚性支承连续梁法、最小弯曲能量原理法、最小弯矩法、内力平衡法(或应力平衡法)、影响矩阵法、用索量最小法。
讲授:李传习成桥恒载索力的初拟的方法•简支梁法–方法的定义:选择合理的成桥索力,使主梁在成桥状态的恒载弯矩与以拉索锚固点为主梁支点的简支梁的恒载弯矩一致。
(图)–特点:对于不对称结构,塔的弯矩难以照顾,所得结果难以应用。
–适应情况:已用得不多。
•恒载平衡法–方法:主跨斜拉索索力根据简支梁法确定;边跨斜拉索索力根据塔承受的不平衡水平力为零的条件确定;边跨的压重根据简支梁法确定。
–特点:主梁成桥恒载弯矩与简支梁相同;主塔恒载弯矩为零。
–适应情况:用得较多,适用范围较广。
•刚性支承梁法–方法:选择合理的成桥索力,使主梁在成桥状态的恒载弯矩与以拉索锚固点为主梁支点的连续梁的恒载弯矩一致(图)。
–特点:对于不对称结构,塔的弯矩难以照顾;索力跳跃性可能很大,不均匀。
–适应情况:已用得不多。
讲授:李传习成桥恒载索力的初拟的方法(续1)•最小弯曲能量原理法–方法(定义):以弯曲应变能最小为目标函数。
最初该法只适应于恒载索力优化,无法考虑活载和预应力的影响;将该法与影响矩阵结合后,这个缺点得到了克服。
此方法所得结果中一般弯矩均比较小,但两端索力不均匀,如人为调整易使受力状态调乱。
斜拉桥结构力学分析与设计斜拉桥作为一种重要的桥梁结构形式,具有独特的美学价值和结构力学特点。
本文将对斜拉桥的力学分析与设计进行探讨,从桥梁结构的基本原理、斜拉桥的力学特点以及设计要点等方面展开论述。
一、桥梁结构的基本原理桥梁作为连接两个地理位置的重要交通设施,需要具备一定的结构强度和稳定性。
桥梁结构的基本原理包括静力平衡、弯矩分配和刚度平衡等。
其中,静力平衡是指桥梁各构件所受的力能够保持平衡状态,使得桥梁整体不会发生倾覆或塌陷的现象。
弯矩分配是指桥梁在承受荷载时,各个构件能够合理分担荷载,使得桥梁整体力学性能达到最优。
刚度平衡是指桥梁在受力作用下能够保持结构的稳定性,不会发生过大的变形或振动。
二、斜拉桥的力学特点斜拉桥是一种通过斜拉索将桥面承载力传递到桥墩上的桥梁结构形式。
相比于悬索桥和梁桥,斜拉桥具有以下几个独特的力学特点。
首先,斜拉桥的主梁受力方式为受拉,而非受压。
这是因为斜拉索的作用使得主梁处于受拉状态,从而能够更好地抵抗外部荷载的作用。
其次,斜拉桥的斜拉索与主梁之间形成了一种特殊的力学关系。
斜拉索通过桥塔或桥墩传递受力到地基,使得桥梁整体具备较好的稳定性和承载能力。
此外,斜拉桥的斜拉索数量和布置方式对桥梁的力学性能有着重要影响。
合理的斜拉索布置能够使得桥梁承载力得到充分发挥,同时减小桥梁的自重和振动。
三、斜拉桥的设计要点在进行斜拉桥的设计时,需要考虑以下几个要点。
首先,斜拉桥的主梁和斜拉索的材料选择要合理。
主梁需要具备足够的强度和刚度,以承受外部荷载的作用。
斜拉索需要具备较高的抗拉强度和耐久性,以保证桥梁的稳定性和安全性。
其次,斜拉桥的斜拉索布置要合理。
斜拉索的布置方式应根据桥梁跨度和荷载情况进行优化设计,以减小桥梁的自重和振动。
此外,斜拉桥的桥塔或桥墩的设计也是关键。
桥塔或桥墩需要具备足够的强度和稳定性,以承受斜拉索传递的受力,并将受力传递到地基。
最后,斜拉桥的施工和维护要注意安全性和可持续性。
斜拉桥与悬索桥计算理论简析斜拉桥与悬索桥是桥梁结构中跨越能力最大的两种桥型,随着桥梁建造向大跨径方向发展,它们越来越成为人们研究的热点。
通过大跨径桥梁理论的学习,我对斜拉桥与悬索桥的计算理论有了较为系统的了解。
在本文中,我想从一个设计者的角度,在概念层次上,对斜拉桥与悬索桥的计算理论做个总结,以加深自己对这些计算理论的理解。
一、斜拉桥的计算理论斜拉桥诞生于十七世纪,在最近的五十年间,斜拉桥有了飞速的发展,成为200米到800米跨径范围内最具竞争力的桥梁结构形式之一。
有理由相信,在大江河口的软土地基上或不适合建造悬索桥的地区,有可能修建超过1200米的斜拉桥。
斜拉桥是塔、梁、索三种基本结构组成的缆索承重结构体系,一般表现为柔性的受力特性。
(一)、斜拉桥的静力设计过程1、方案设计阶段此阶段也称为概念设计。
本阶段的主要任务是凭借设计者的经验,参考别的斜拉桥的设计,结合自己的分析计算,来完成结构的总体布置,初拟构件尺寸。
根据此设计文件,设计者或甲方(有些地方领导说了算)进行方案比选。
2、初步设计阶段本阶段在前一阶段工作的基础上进一步细化。
主要任务是:通过反复计算比较以确定恒活载集度、恒载分析、调索初定恒载索力、修正斜拉索截面积、活载及附加荷载计算、荷载组合及梁体配索、索力优化以及强度刚度验算等。
3、施工图设计阶段此阶段要对斜拉桥的每一部位以及每一施工阶段进行计算,确保结构安全。
主要计算内容有:构件无应力尺寸计算、对施工阶段循环倒退分析、计算斜拉索初张力、预拱度计算、强度刚度稳定性验算以及前进分析验算等。
(二)、斜拉桥的计算模式1、平面杆系加横分系数此模式用在概念设计阶段研究结构的设计参数,以求获得理想的结构布置。
还可用于技术设计阶段,仅仅计算恒载作用下的内力。
2、空间杆系计算模式此模式用在空间荷载(风载、地震荷载以及局部温差等)作用下的静力响应分析。
此模式按照主梁可分为三种:“鱼骨”模式、双梁式模式与三梁式模型。