2019-2020届中考数学专题复习圆_圆心角圆周角专题训练
- 格式:doc
- 大小:287.57 KB
- 文档页数:7
圆的定义圆心角圆周角训练题一、单选题(共17题;共34分)1.(2020九上·江苏月考)下列说法错误的是()A. 长度相等的两条弧是等弧B. 直径是圆中最长的弦C. 面积相等的两个圆是等圆D. 半径相等的两个半圆是等弧2.(2019九上·台安期中)下列说法中,不正确的个数是()①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆心的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A. 1个B. 2个C. 3个D. 4个3.(2019九上·沭阳月考)下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )A. ①③B. ①③④C. ①②③D. ②④4.(2019九上·贾汪月考)下列说法中,错误的是()A. 半圆是弧B. 半径相等的圆是等圆C. 过圆心的线段是直径D. 直径是弦5.(2018九上·下城期末)下列命题中是真命题的为()A. 弦是直径B. 直径相等的两个圆是等圆C. 平面内的任意一点不在圆上就在圆内D. 一个圆有且只有一条直径6.(2020九上·浙江期中)如图,是的直径,,,则的度数是().A. 52°B. 57°C. 66°D. 78°7.(2019九上·柳江月考)如图,AB是⊙O的直径,,∠COD=34°,则∠AOE的度数是( )A. 51°B. 56°C. 68°D. 78°8.(2019九上·邯郸月考)如图,AB是O的直径, ,∠BOC=40°,则∠AOE的度数为()A. 30°B. 40°C. 50°D. 60°9.(2019九上·余杭期中)如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB于点D,交AC于点E,则∠A的度数为()A. 45º-αB. αC. 45º+αD. 25º+α10.(2020九下·南召月考)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A. AB=ADB. BC=CDC.D. ∠BCA=∠DCA11.(2020九上·无锡月考)在半径为的圆中,长度等于的弦所对的弧的度数为()A. B. C. 或 D. 或12.(2020·西湖模拟)如图,已知点A,B,C,D,E是⊙O的五等分点,则∠BAD的度数是()A. 36°B. 48°C. 72°D. 96°13.(2020·衢州模拟)如图,在⊙O中,=,∠A=40°,则∠B的度数是()A. 60°B. 40°C. 50°D. 70°14.(2020·乾县模拟)如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=70°,∠C=50°,则∠ADB 的度数是()A. 70°B. 80°C. 82°D. 85°15.(2019九上·龙湖期末)如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=( )A. 40°B. 45°C. 50°D. 60°16.(2019九上·道外期末)如图,,是的直径,,若,则的度数是()A. 32°B. 60°C. 68°D. 64°17.(2019九上·光明期中)如图,已知AB是⊙O的直径,∠CBA=25°,则∠D的度数为()A. B. C. D.参考答案一、单选题1.【答案】A【解析】【解答】解:A、等弧就是指能完全重合的两段弧,所以长度相等的弧的度数不一定是等弧,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确.故答案为:A.2.【答案】C【解析】【解答】在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.故答案为:C.3.【答案】A【解析】【解答】解:①直径相等的两个圆能重合,所以是等圆,①是真命题;②长度相等的弧不一定能重合,所以不一定是等弧,②是假命题;③圆中最长的弦是直径,通过圆心的弦是直径,③是真命题;④一条弦把圆分成两条弧,这两条弧可以是半圆,所以可能是等弧,④是假命题.故答案为:A.4.【答案】C【解析】【解答】解:A、半圆是弧,所以A选项的说法正确;B、半径相等的圆是等圆,所以B选项的说法正确;C、过圆心的弦为直径,所以C选项的说法错误;D、直径是弦,所以D选项的说法正确.故答案为:C.5.【答案】B【解析】【解答】解:弦不一定是直径,A是假命题;直径相等的两个圆是等圆,B是真命题;平面内的任意一点在圆上、圆内或圆外,C是假命题;一个圆有无数条直径,D是假命题;故选:B.6.【答案】C【解析】【解答】解:∵AB是⊙O的直径,,∠COD=38°,∴∠BOC=∠COD=∠DOE=38°.∴∠BOE=114°,∴∠AOE=180°-114°=66°.故答案为:C.7.【答案】D【解析】【解答】解:∵,∠COD=34°,∴∠BOC=∠COD=∠DOE=34°,∴∠AOE=180°-∠BOC-∠COD-∠DOE=180°-34°-34°-34°= 78° .故答案为:D.8.【答案】D【解析】【解答】解:∵,∠BOC=40°∴∠BOC=∠COD=∠EOD=40°∴∠BOE=120°∴∠AOE=180°-∠BOE=60°.9.【答案】A【解析】【解答】解:如图,连接CD,∵的度数为,∴∠DCE= ,∵BC=CD,∴∠CBD=∠BDC= ,∵∠C=90°,∴∠CBD+∠A=90°,∴,∴;故选择:A.10.【答案】B【解析】【解答】解:A.∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B.∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C.∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D.∠BCA与∠DCA的大小关系不确定,故本选项错误。
中考考点突破之圆的专题复习考点精讲1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;2.探索并证明垂径定理;3.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论;考点解读考点1:垂径定理及其运用①与圆有关的概念和性质:(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O. (2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧. (4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.②垂径定理及其推论:(1)定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)延伸:根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧AD; ②弧B D=弧C B;③C E=D E; ④AB⊥CD; ⑤AB是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.考点2:圆周角定理及其运用①圆心角、弧、弦的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.②圆周角定理及其推论:(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a ,∠A =1/2∠O .图a 图b 图c( 2 )推论:① 在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b ,∠A =∠C .② 直径所对的圆周角是直角.如图c ,∠C =90°.圆内接四边形的对角互补.如图a ,∠A +∠C =180°,∠ABC +∠ADC =180°.考点3:点与圆的位置关系①点与圆的位置关系:设点到圆心的距离为d .(1)d <r ⇔点在⊙O 内;(2)d =r ⇔点在⊙O 上;(3)d >r ⇔点在⊙O 外.考点4:切线性质及其证明①切线的判定:(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.②切线的性质:(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径考点5:正多边形与圆①正多边形的有关概念:边长(a )、中心(O )、中心角(∠AOB )、半径(R ))、边心距(r ),如图所示①. 222⎪⎭⎫ ⎝⎛-=a R r 边心距n ︒=360中心角②内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.考点6:与圆有关的计算①弧长和扇形面积的计算:扇形的弧长l =180n r π;扇形的面积S =2360n r π=12lr②圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:2180n R l r ππ==, S 侧=12lR =πrl考点突破1.(2021秋•德城区校级期中)在平面直角坐标系中,⊙C 的圆心坐标为(1,0),半径为1,AB 为⊙C 的直径,若点A 的坐标为(a ,b ),则点B 的坐标为( )A .(﹣a ﹣1,﹣b )B .(﹣a +1,﹣b )C .(﹣a +2,﹣b )D .(﹣a ﹣2,﹣b )2.(2021秋•普兰店区期末)如图,⊙O 的半径为5,C 是弦AB 的中点,OC =3,则AB 的长是()A.6 B.8 C.10 D.123.(2021秋•禹州市期中)如图拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,这些钢索中最长的一根的长度为25m,那么其正下方的路面AB的长度为()A.100m B.130m C.150m D.180m4.(2020秋•永城市期末)如图,点A,B,C,D均在以点O为圆心的圆O上,连接AB,AC 及顺次连接O,B,C,D得到四边形OBCD,若OD=BC,OB=CD,则∠A的度数为()A.20°B.25°C.30°D.35°5.(2021秋•郾城区期末)如图,在⊙O中,=,直径CD⊥AB于点N,P是上一点,则∠BPD的度数是()A.30°B.45°C.60°D.15°6.(2022•泗洪县一模)圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,∠D 的度数为()A.60°B.80°C.100°D.120°7.(2016•中山市模拟)如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC 于点Q.若QP=QO,则的值为()A.B.C.D.8.(2021秋•舞阳县期末)⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上9.(2021秋•丛台区校级期中)下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.同一平面内,过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在10.(2021秋•射阳县校级期末)下列语句中,正确的是()A.经过三点一定可以作圆B.等弧所对的圆周角相等C.相等的弦所对的圆心角相等D.三角形的外心到三角形各边距离相等11.(2021秋•禹州市期末)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.12.(2021•五通桥区模拟)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC =4,CD的长为.13.(2021秋•甘州区校级期末)在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.14.(2021秋•西峡县期末)如图,ABCD是⊙O的内接四边形,AD=CD,点E在AD的延长线上,∠CDE=52°,则∠AOD=.15.(2021秋•郾城区期末)如图,在⊙O中,AB为直径,∠ACB的平分线交⊙O于D,AB=6,则BD=.16.(2021•内乡县二模)婆罗摩笈多(公元598﹣660),印多尔北部乌贾因地方人(现巴基斯坦信德地区),在数学、天文学方面有所成就.他编著了《婆罗摩修正体系》《肯达克迪迦》等著作,他还提出了几何界的“婆罗摩笈多定理”.该定理可概述如下:如图,圆O的两条弦AB和CD互相垂直,垂足为E,连接BC,AD,若过点E作BC的垂线EF,延长FE与AD相交于点G,则G为AD的中点.为了说明这个定理的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图,在圆O的内部,AB⊥CD,垂足为E,.求证:.17.(2021秋•长垣市期末)豫东北机场待建在即,国道515围机场绕道而行.如图是公路转弯处的一段圆弧,点O是这段圆弧的圆心.直径CD⊥AB于点F.BE平分∠ABC交CD 于点E,AB=3km,DF=450m.(1)求圆的半径;(2)请判断A、B、E三点是否在以点D为圆心DE为半径的圆上?并说明理由.18.(2022•眉山模拟)如图所示,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD,BC,求证:(1)=;(2)AE=CE.19.(2021秋•内乡县期末)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=3,CE=4,求AC的长.20.(2021•信阳模拟)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.。
中考数学人教版专题复习:圆周角与圆心角一、考点突破1. 理解圆心角、圆周角定义,掌握圆周角定理。
2. 掌握弧、弦、弦心距、圆心角之间的关系定理。
3. 掌握圆内接四边形的相关定理,利用圆周角定理及推论解决相关问题。
二、重难点提示重点:掌握同弧所对的圆周角与圆心角度数关系。
难点:利用圆周角定理及推论解决问题。
考点精讲1. 圆周角与圆心角定义[圆心角:顶点在圆心,两边和圆相交的角叫作圆心角。
圆周角:顶点在圆周上,并且两边都和圆相交的角叫作圆周角。
注意:圆周角、圆心角与弧的对应关系。
2. 弧、弦、弦心距、圆心角之间的关系定理(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
3. 圆周角定理:圆周角的度数等于它所对的弧上的圆心角度数的一半。
∠∠1=22推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
∠1=∠2=∠3=∠4=∠5推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:圆内接四边形的对角互补。
(四个顶点在圆上的四边形叫作圆的内接四边形,这个圆叫作四边形的外接圆。
)∠1+∠3=180°,∠2+∠4=180°典例精析例题1已知,AB是⊙O的直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连接CD,BD,若∠OCD=22°,则∠ABD的度数是。
思路分析:按点D在直线OC左侧、右侧两种情形分类讨论,利用圆周角定理求解。
答案:解:由题意,①当点D在直线OC左侧时,如答图1所示,连接OD,则∠1=∠2=22°,∴∠COD=180°-∠1-∠2=136°,∴∠AOD=∠COD-∠AOC=136°-90°=46°,∠AOD=23°;∴∠ABD=12②当点D在直线OC右侧时,如答图2所示,连接OD,则∠1=∠2=22°,并延长CO,则∠3=∠1+∠2=44°,∴∠AOD=90°+∠3=90°+44°=134°,∠AOD=67°,∴∠ABD=12综上所述,∠ABD的度数是23°或67°,故答案为23°或67°。
专题24.1圆的有关性质(测试)一、单选题1.下列各角中,是圆心角的是( )A .B .C .D .【答案】D 【解析】顶点在圆心,两边和圆相交的角是圆心角,选项D 中,是圆心角, 故选D .2.一个周长是l 的半圆,它的半径是( ) A .l π÷ B .2l π÷C .()2l π÷+D .()1l π÷+【答案】C 【解析】半圆的周长为半径的π倍加上半径的2倍,所以一个周长是l 的半圆,它的半径是()2l π÷+,所以选C. 3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .B .4C .D .4.8【答案】C【解析】∵AB 为直径, ∴90ACB ︒∠=,∴6BC =, ∵OD AC ⊥, ∴142CD AD AC ===,故选C . 4.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,30ADC ∠=︒,则BOC ∠的度数为( ).A .30°B .40°C .50°D .60°【答案】D【解析】解:如图,∵30ADC ∠=︒, ∴260AOC ADC ∠=∠=︒. ∵AB 是O 的弦,OC AB ⊥交O 于点C ,∴AC BC =.∴60AOC BOC ∠=∠=︒. 故选:D ..5.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器( )台.A .3B .4C .5D .6【答案】A【解析】设需要安装n (n 是正整数)台同样的监控器,由题意,得:65°×2×n ≥360°, 解得n ≥3613,∴至少要安装3台这样的监控器,才能监控整个展厅.故选:A .且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m【答案】A 【解析】解:OC AB ⊥,20AD DB m ∴==,在Rt AOD ∆中,222OA OD AD =+, 设半径为r 得:()2221020r r =-+, 解得:25r m =,∴这段弯路的半径为25m故选:A .7.若AB 和CD 的度数相等,则下列命题中正确的是( ) A .AB =CDB .AB 和CD 的长度相等C .AB 所对的弦和CD 所对的弦相等D .AB 所对的圆心角与CD 所对的圆心角相等 【答案】D【解析】如图,AB 与CD 的度数相等,A 、根据度数相等,不能推出弧相等,故本选项错误;B 、根据度数相等,不能推出两弧的长度相等,故本选项错误;C 、根据度数相等,不能推出所对应的弦相等,故本选项错误;D 、根据度数相等,能推出弧所对的两个圆心角相等,故本选项正确;8.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC=∠BOC;③AD =CD=OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个【答案】A【解析】∵C、D为半圆上三等分点,∴»»»AD CD BC==,故①正确,∵在同圆或等圆中,等弧对的圆心角相等,等弧对的弦相,∴AD=CD=OC,∠AOD=∠DOC=∠BOC=60°,故②③正确,∵OA=OD=OC=OB,∴△AOD≌△COD≌△COB,且都是等边三角形,∴△AOD沿OD翻折与△COD重合.故④正确,∴正确的说法有:①②③④共4个,故选A.9.下列说法:①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆内的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.其中不正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】解:在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.10.如图所示,AB 是半圆O 的直径。
《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有( )A。
1个B.2个C。
3个D。
4个2.下列命题是假命题的是( )A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形.3。
下列命题正确的是( )A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D。
一个圆只有一个外接三角形4.下列说法正确的是()A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等D.直径所对的圆周角等于90°5。
下面四个图中的角,为圆心角的是( )A.B.C.D.二.和圆有关的角:1. 如图1,点O是△ABC的内心,∠A=50 ,则∠BOC=_________图1 图22。
如图2,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( )A.116°B.64°C。
58°D。
32°3. 如图3,点O为优弧AB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为A图3 图44。
如图4,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC=_________度.5。
如图5,在⊙O中,BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=.A图5 图66. 如图6,A,B,C,是⊙O上的三个点,若∠AOC=110°,则∠ABC=°.7.圆的内接四边形ABCD中,∠A:∠B:∠C=2:3:7,则∠D的度数为。
8。
若⊙O的弦AB所对的劣弧是优弧的13,则∠AOB=。
9。
圆周角定理综合训练一.选择题(共14小题)1.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长 D.2CD的长2.如图,已知AB是⊙O的直径,C是⊙O上的一点,连接AC,过点C作直线CD⊥AB交AB于点D.E是OB上的一点,直线CE与⊙O交于点F,连接AF交直线CD于点G,AC=2,则AG•AF是()A.10 B.12 C.8 D.163.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE等于()A.B.C.D.4.如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A.2 B.4 C.8 D.165.如图,四边形ABCD内接于⊙O,它的对角线把四个内角分成八个角,其中相等的角有()A.2对 B.4对 C.6对 D.8对6.已知,如图弧BC与弧AD的度数之差为20°,弦AB与CD交于点E,∠CEB=60°,则∠CAB等于()A.50°B.45°C.40°D.35°7.如图,B是线段AC的中点,过点C的直线l与AC成60°的角,在直线L上取一点P,使∠APB=30°,则满足条件的点P的个数是()A.3个 B.2个 C.1个 D.不存在8.如图,已知∠DEC=80°,弧CD的度数与弧AB的度数的差为20°,则∠DAC的度数为()A.35°B.45°C.25°D.50°9.如图,⊙O是正五边形ABCDE的外接圆,则正五边形的中心角∠AOB的度数是()A.72°B.60°C.54°D.36°10.如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()A.1 B.2 C.1+D.2﹣11.如图,已知△ABC为等腰直角三角形,D为斜边BC的中点,经过点A、D 的⊙O与边AB、AC、BC分别相交于点E、F、M.对于如下五个结论:①∠FMC=45°;②AE+AF=AB;③;④2BM2=BE•BA;⑤四边形AEMF为矩形.其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个12.已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB 的弦心距为()A.B.2 C.D.13.如图,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,则∠BCO等于()A.20°B.30°C.40°D.50°14.如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD•CD;②BE2=EG•AE;③AE•AD=AB•AC;④AG•EG=BG•CG.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个二.填空题(共5小题)15.如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数是度.16.如图,点A、B、C是⊙O上的三点,若∠BOC=56°,则∠A=度.17.如图,圆内接四边形ABCD的两条对角线交于点P.已知AB=BC,CD=BD=1,设AD=x,用关于x的代数式表示PA与PC的积:PA•PC=.18.如图所示,在圆O中,弧AB=弧AC=弧CD,AB=3,AE•ED=5,则EC的长为.19.如图,△ABC内接于⊙O,AE是⊙O的直径,AE与BC交于点D,且D是OE 的中点,则tan∠ABC•tan∠ACB=.三.解答题(共7小题)20.如图,AB是⊙O的直径,AC切⊙O于点A,AD是⊙O的弦,OC⊥AD于F 交⊙O于E,连接DE,BE,BD.AE.(1)求证:∠C=∠BED;(2)如果AB=10,tan∠BAD=,求AC的长;(3)如果DE∥AB,AB=10,求四边形AEDB的面积.21.如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是C D的中点,连接OG.(1)判断OG与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若OG⋅DE=3(2﹣),求⊙O的面积.22.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE 于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.23.如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.(1)求证:△CBE∽△AFB;(2)当时,求的值.24.如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG•BF.25.如图,点I是△ABC的内心,线段AI的延长线交△ABC的外接圆于点D,交BC边于点E.(1)求证:ID=BD;(2)设△ABC的外接圆的半径为5,ID=6,AD=x,DE=y,当点A在优弧上运动时,求y与x的函数关系式,并指出自变量x的取值范围.26.已知:如图,等边△ABC内接于⊙O,点P是劣弧上的一点(端点除外),延长BP至D,使BD=AP,连接CD.(1)若AP过圆心O,如图①,请你判断△PDC是什么三角形?并说明理由;(2)若AP不过圆心O,如图②,△PDC又是什么三角形?为什么?参考答案与试题解析一.选择题(共14小题)1.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长 D.2CD的长【解答】解:连接AO并延长交圆于点E,连接BE.则∠C=∠E,由AE为直径,且BD⊥AC,得到∠BDC=∠ABE=90°,所以△ABE和△BCD都是直角三角形,所以∠CBD=∠EAB.又△OAM是直角三角形,∵AO=1,∴sin∠CBD=sin∠EAB==OM,即sin∠CBD的值等于OM的长.故选:A.2.如图,已知AB是⊙O的直径,C是⊙O上的一点,连接AC,过点C作直线CD⊥AB交AB于点D.E是OB上的一点,直线CE与⊙O交于点F,连接AF交直线CD于点G,AC=2,则AG•AF是()A.10 B.12 C.8 D.16【解答】解:连接BC,则∠B=∠F,∵CD⊥AB,∴∠ACD+∠CAD=90°,∵AB是直径,∴∠ACB=90°,∠CAB+∠B=90°,∴∠ACG=∠F.又∵∠CAF=∠FAC,∴△ACG∽△AFC,∴AC:AF=AG:AC,即AG•AF=AC2=(2)2=8.故选:C.3.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE等于()A.B.C.D.【解答】解法一:∵∠D=∠A,∠DCA=∠ABD,∴△AEB∽△DEC;∴=;设BE=2x,则DE=5﹣2x,EC=x,AE=2(5﹣2x);连接BC,则∠ACB=90°;Rt△BCE中,BE=2x,EC=x,则BC=x;在Rt△ABC中,AC=AE+EC=10﹣3x,BC=x;由勾股定理,得:AB2=AC2+BC2,即:72=(10﹣3x)2+(x)2,整理,得4x2﹣20x+17=0,解得x1=+,x2=﹣;由于x<,故x=﹣;则DE=5﹣2x=2.解法二:连接OD,OC,AD,∵OD=CD=OC则∠DOC=60°,∠DAC=30°又AB=7,BD=5,∴AD=2,在Rt△ADE中,∠DAC=30°,所以DE=2.故选:A.4.如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A.2 B.4 C.8 D.16【解答】解:如图,连接BO并延长交圆于点E,连接AE,则∠E=∠C=30°,∠EAB=90°;∴直径BE==2,∵直径是圆内接正方形的对角线长,∴圆内接正方形的边长等于∴⊙O的内接正方形的面积为2.故选:A.5.如图,四边形ABCD内接于⊙O,它的对角线把四个内角分成八个角,其中相等的角有()A.2对 B.4对 C.6对 D.8对【解答】解:由圆周角定理知:∠ADB=∠ACB;∠CBD=∠CAD;∠BDC=∠BAC;∠ABD=∠ACD;由对顶角相等知:∠1=∠3;∠2=∠4;共有6对相等的角.故选:C.6.已知,如图弧BC与弧AD的度数之差为20°,弦AB与CD交于点E,∠CEB=60°,则∠CAB等于()A.50°B.45°C.40°D.35°【解答】解:由题意,弧BC与弧AD的度数之差为20°,∴两弧所对圆心角相差20°,∴2∠A﹣2∠C=20°,∴∠A﹣∠C=10°…①;∵∠CEB是△AEC的外角,∴∠A+∠C=∠CEB=60°…②;①+②,得:2∠A=70°,即∠A=35°.故选:D.7.如图,B是线段AC的中点,过点C的直线l与AC成60°的角,在直线L上取一点P,使∠APB=30°,则满足条件的点P的个数是()A.3个 B.2个 C.1个 D.不存在【解答】解:如图,分别以AC,BC为边,作等边△APC,等边△BP′C,连接BP,依题意,结合等边三角形的性质可知∠APB=∠AP′B=30°,所以满足条件的点P的个数为2个.故选:B.8.如图,已知∠DEC=80°,弧CD的度数与弧AB的度数的差为20°,则∠DAC的度数为()A.35°B.45°C.25°D.50°【解答】解:∵弧CD的度数与弧AB的度数的差为20°,∴2(∠A﹣∠D)=20°即∠A﹣∠D=10°∵∠DEC=80°∴∠DEC=∠D+∠A=80°∴∠A=45°,∠D=35°.故选:B.9.如图,⊙O是正五边形ABCDE的外接圆,则正五边形的中心角∠AOB的度数是()A.72°B.60°C.54°D.36°【解答】解:∵⊙O是正五边形ABCDE的外接圆,∴∠AOB=360°÷5=72°.故选:A.10.如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()A.1 B.2 C.1+D.2﹣【解答】解:连接AD,OD∵∠BAC=90°,AB=AC=2∴△ABC是等腰直角三角形∵AB是圆的直径∴∠ADB=90°∴AD⊥BC∴点D是BC的中点∴OD是△ABC的中位线∴∠DOA=90°∴△ODA,△ADC都是等腰直角三角形∴两个弓形的面积相等=AD2=1.∴阴影部分的面积=S△ADC故选:A.11.如图,已知△ABC为等腰直角三角形,D为斜边BC的中点,经过点A、D 的⊙O与边AB、AC、BC分别相交于点E、F、M.对于如下五个结论:①∠FMC=45°;②AE+AF=AB;③;④2BM2=BE•BA;⑤四边形AEMF为矩形.其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:连接AM,根据等腰三角形的三线合一,得AD⊥BC,再根据90°的圆周角所对的弦是直径,得EF、AM是直径,根据对角线相等且互相平分的四边形是矩形,得四边形AEMF是矩形,∴①根据等腰直角三角形ABC的底角是45°,易得∠FMC=45°,正确;②根据矩形和等腰直角三角形的性质,得AE+AF=AB,正确;③连接FD,可以证明△EDF是等腰直角三角形,则③中左右两边的比都是等腰直角三角形的直角边和斜边的比,正确;④根据BM=BE,得左边=4BE2,故需证明AB=4BE,根据已知条件它们之间不一定有这种关系,错误;⑤正确.所以①②③⑤共4个正确.故选C.12.已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB 的弦心距为()A.B.2 C.D.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.13.如图,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,则∠BCO等于()A.20°B.30°C.40°D.50°【解答】解:连接OD,∵AO=OC=OD,DA=DC,∴△ADO≌△CDO.∴∠COD=∠AOD=∠AOC=80°.∴∠ODC=∠OCD=∠ODA=∠OAD=50°.∴∠CDA=100°.∵AD∥BC,∴∠DCB=180°﹣∠CDA=180°﹣100°=80°.∴∠BCO=∠BCD﹣∠OCD=80°﹣50°=30°.故选:B.14.如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD•CD;②BE2=EG•AE;③AE•AD=AB•AC;④AG•EG=BG•CG.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①若△ABD∽△CAD,则一定有AD:BD=CD:AD,即AD2=BD•CD,而两三角形只有一对角对应相等,不会得到另外的对应角相等,故①不正确;②若△BEG∽△AEB,则一定有BE:EG=AE:BE,即BE2=EG•AE,而两三角形只有一对公共角相等,不会得到另外的对应角相等,故②不正确;③∵∠ABD=∠AEC,∠ADB=∠ACE=90°,∴△ABD∽△AEC,∴AE:AC=AB:AD,即AE•AD=AC•AB,故③正确;∵根据相交弦定理,可直接得出AG•EG=BG•CG,故④正确.故选:B.二.填空题(共5小题)15.如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数是60度.【解答】解:∵△ABC是正三角形,∴∠BAC=60°;由圆周角定理,得:∠BDC=∠A=60°.16.如图,点A、B、C是⊙O上的三点,若∠BOC=56°,则∠A=28度.【解答】解:∵∠BOC=56°∴∠A=∠BOC=28°.17.如图,圆内接四边形ABCD的两条对角线交于点P.已知AB=BC,CD=BD=1,设AD=x,用关于x的代数式表示PA与PC的积:PA•PC=﹣x2+x.【解答】解:根据相交弦定理,可知PA•PC=BP•PD,∵CD=1,BD=2而AB=BC∴∴∠ADB=∠BDC∵∠ABD=∠ACD∴△ADB∽△PDC∴CD:BD=PD:AD而BD=2CD∴PD=x∴BP=BD﹣PD=2﹣x∴PA•PC=BP•PD=(2﹣x)×x=﹣x2+x.18.如图所示,在圆O中,弧AB=弧AC=弧CD,AB=3,AE•ED=5,则EC的长为2.【解答】解:∵弧AB=弧AC=弧CD,∴∠1=∠2=∠3=∠4;∴△AEC∽△BAC;∴CE:AC=AC:BC;∵AC=AB=3,因此CE•BC=3×3=9;∵BC=BE+CE,∴CE(BE+CE)=9,整理得:CE•BE+CE2=9 ①;由根据相交弦定理得,BE•CE=A E•ED=5 ②;②代入①得:5+CE2=9,解得:CE=2(负值舍去).19.如图,△ABC内接于⊙O,AE是⊙O的直径,AE与BC交于点D,且D是OE 的中点,则tan∠ABC•tan∠ACB=3.【解答】解:连接BE、CE,则∠ABE=∠ACE=90°.∵∠EAC=∠CBE,∠BED=∠ACB,∴△ADC∽△BDE,∴.①同理可由△ADB∽△CDE,得.②①×②,得==3.Rt△AEC中,tan∠AEC=.同理得tan∠AEB=.故tan∠AEC•tan∠AEB==3.∵∠EAC=∠CBE,∠BED=∠ACB,∴tan∠ABC•tan∠ACB=3.三.解答题(共7小题)20.如图,AB是⊙O的直径,AC切⊙O于点A,AD是⊙O的弦,OC⊥AD于F 交⊙O于E,连接DE,BE,BD.AE.(1)求证:∠C=∠BED;(2)如果AB=10,tan∠BAD=,求AC的长;(3)如果DE∥AB,AB=10,求四边形AEDB的面积.【解答】(1)证明:∵AB是⊙O的直径,CA切⊙O于A,∴∠C+∠AOC=90°;又∵0C⊥AD,∴∠OFA=90°,∴∠AOC+∠BAD=90°,∴∠C=∠BAD.又∵∠BED=∠BAD,∴∠C=∠BED.(2)解:由(1)知∠C=∠BAD,tan∠BAD=,∴tan∠C=.在Rt△OAC中,tan∠C=,且OA=AB=5,∴,解得.(3)解:∵OC⊥AD,∴,∴AE=ED,又∵DE∥AB,∴∠BAD=∠EDA,∴,∴AE=BD,∴AE=BD=DE,∴,∴∠BAD=30°,又∵AB是直径,∴∠ADB=90°,∴BD=AB=5,DE=5,在Rt△ABD中,由勾股定理得:AD=,过点D作DH⊥AB于H,∵∠HAD=30°,∴DH=AD=,∴四边形AEDB的面积=.21.如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接OG.(1)判断OG与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若OG⋅DE=3(2﹣),求⊙O的面积.【解答】(1)解:猜想OG⊥CD.证明:如图,连接OC、OD,∵OC=OD,G是CD的中点,∴由等腰三角形的性质,有OG⊥CD.(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,而∠CAE=∠CBF(同弧所对的圆周角相等),在Rt△ACE和Rt△BCF中,∵∠ACE=∠BCF=90°,AC=BC,∠CAE=∠CBF,∴Rt△ACE≌Rt△BCF(ASA).∴AE=BF.(3)解:如图,过点O作BD的垂线,垂足为H,则H为BD的中点.∴OH=AD,即AD=2OH,又∠CAD=∠BAD⇒CD=BD,∴OH=OG.在Rt△BDE和Rt△ADB中,∵∠DBE=∠DAC=∠BAD,∴Rt△BDE∽Rt△ADB,∴,即BD2=AD•DE.∴.又BD=FD,∴BF=2BD,∴①,设AC=x,则BC=x,AB=,∵AD是∠BAC的平分线,∴∠FAD=∠BAD.在Rt△ABD和Rt△AFD中,∵∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD,∴Rt△ABD≌Rt△AFD(ASA).∴AF=AB=,BD=FD.∴CF=AF﹣AC=.在Rt△BCF中,由勾股定理,得②,由①、②,得,∴x2=12,解得或(舍去),∴,∴⊙O的半径长为.=π•()2=6π.∴S⊙O22.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE 于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.【解答】(1)证明:连接AC,如图∵C是弧BD的中点∴∠BDC=∠DBC(1分)又∵∠BDC=∠BAC在△ABC中,∠ACB=90°,CE⊥AB∴∠BCE=∠BAC∠BCE=∠DBC(3分)∴CF=BF;(4分)(2)解:解法一:作CG⊥AD于点G,∵C是弧BD的中点∴∠CAG=∠BAC,即AC是∠BAD的角平分线.(5分)∴CE=CG,AE=AG(6分)在Rt△BCE与Rt△DCG中,CE=CG,CB=CD∴Rt△BCE≌Rt△DCG(HL)∴BE=DG(7分)∴AE=AB﹣BE=AG=AD+DG即6﹣BE=2+DG∴2BE=4,即BE=2(8分)又∵△BCE∽△BAC∴BC2=BE•AB=12(9分)BC=±2(舍去负值)∴BC=2.(10分)解法二:∵AB是⊙O的直径,CE⊥AB ∴∠BEF=∠ADB=90°,(5分在Rt△ADB与Rt△FEB中,∵∠ABD=∠FBE∴△ADB∽△FEB,则,即,∴BF=3EF(6分)又∵BF=CF,∴CF=3EF利用勾股定理得:(7分)又∵△EBC∽△ECA则,则CE2=AE•BE(8分)∴(CF+EF)2=(6﹣BE)•BE即(3EF+EF)2=(6﹣2EF)•2EF ∴EF=(9分)∴BC=.(10分)23.如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.(1)求证:△CBE∽△AFB;(2)当时,求的值.【解答】(1)证明:∵AE=EB,AD=DF,∴ED是△ABF的中位线,∴ED∥BF,∴∠CEB=∠ABF,又∵∠C=∠A,∴△CBE∽△AFB.(2)解:由(1)知,△CBE∽△AFB,∴,又AF=2AD,∴.24.如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG•BF.【解答】证明:∵AB是⊙O的直径,∠ACB=90°,又CD⊥AB于D,∴∠BCD=∠A,又∠A=∠F.∴∠F=∠BCD.在△BCG和△BFC中,,∴△BCG∽△BFC.∴.即BC2=BG•BF.25.如图,点I是△ABC的内心,线段AI的延长线交△ABC的外接圆于点D,交BC边于点E.(1)求证:ID=BD;(2)设△ABC的外接圆的半径为5,ID=6,AD=x,DE=y,当点A在优弧上运动时,求y与x的函数关系式,并指出自变量x的取值范围.【解答】(1)证明:∵点I是△ABC的内心∴∠BAD=∠CAD,∠ABI=∠CBI(2分)∵∠CBD=∠CAD∴∠BAD=∠CBD(3分)∴∠BID=∠ABI+∠BAD,∴∠ABI=∠CBI,∠BAD=∠CAD=∠CBD,∵∠IBD=∠CBI+∠CBD,∴∠BID=∠IBD∴ID=BD;(5分)(2)解:∵∠BAD=∠CBD=∠EBD,∠D=∠D∴△ABD∽△BED(7分)∴∴AD×DE=BD2=ID2(8分)∵ID=6,AD=x,DE=y∴xy=36(9分)又∵x=AD>ID=6,AD不大于圆的直径10∴6<x≤10∴y与x的函数关系式是(6<x≤10).(10分)说明:只要求对xy=36与6<x≤10,不写最后一步,不扣分.26.已知:如图,等边△ABC内接于⊙O,点P是劣弧上的一点(端点除外),延长BP至D,使BD=AP,连接CD.(1)若AP过圆心O,如图①,请你判断△PDC是什么三角形?并说明理由;(2)若AP不过圆心O,如图②,△PDC又是什么三角形?为什么?【解答】解:(1)如图①,△PDC为等边三角形.(2分)理由如下:∵△ABC为等边三角形∴AC=BC∵在⊙O中,∠PAC=∠PBC又∵AP=BD∴△APC≌△BDC∴PC=DC∵AP过圆心O,AB=AC,∠BAC=60°∴∠BAP=∠PAC=∠BAC=30°∴∠PBC=∠PAC=30°,∠BCP=∠BAP=30°∴∠CPD=∠PBC+∠BCP=30°+30°=60°∴△PDC为等边三角形;(6分)(2)如图②,△PDC仍为等边三角形.(8分)理由如下:∵△ABC为等边三角形∴AC=BC∵在⊙O中,∠PAC=∠PBC又∵AP=BD∴△APC≌△BDC∴PC=DC∵∠BAP=∠BCP,∠PBC=∠PAC∴∠CPD=∠PBC+∠BCP=∠PAC+∠BAP=60°∴△PDC为等边三角形.(12分)31 / 31。
中考数学复习《圆》经典题型及测试题(含答案)【专题分析】圆在中考中的常见考点有圆的性质及定理,圆周角定理及其推论,圆心角、圆周角、弧、弦之间的“等推”关系;切线的判定,切线的性质,切线长定理,弧长及扇形面积的计算,求阴影部分的面积等.对圆的考查在中考中以客观题为主,考查题型多样,关于圆的基本性质一般以选择题或填空题的形式进行考查,切线的判定等综合性强的问题一般以解答题的形式进行考查;圆在中考中的比重约为10%~15%.【解题方法】解决圆的有关问题常用的数学思想就是转化思想,方程思想和数形结合思想;常用的数学方法有分类讨论法,设参数法等.【知识结构】【典例精选】如图,⊙O的半径是3,点P是弦AB延长线上的一点,连结OP,若OP =4,∠APO=30°,则弦AB的长为( )A.2 5 B. 5C.213 D. 13【思路点拨】先过点O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,进而得出AB的值.【解析】如图,过点O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=4×sin 30°=2.∵OB=3,∴BC=OB2-OC2=32-22=5,∴AB=2 5.故选A.答案:A规律方法:利用垂径定理进行证明或计算,通常是在半径、圆心距和弦的一半所组成的直角三角形中,利用勾股定理构建方程求出未知线段的长.如图,从一块直径是8 m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是( )A.4 2 m B.5 m C. 30 m D.215 m【思路点拨】首先连结AO,求出AB,然后求出扇形的弧长BC,进而求出扇形围成的圆锥的底面半径,最后应用勾股定理求出圆锥的高即可.【解析】如图,连结AO,∵AB=AC,点O是BC的中点,∴AO⊥BC.又∵∠BAC=90°,∴∠ABO=∠ACO=45°,∴AB=2OB=2×(8÷2)=42(m).∴l BC=90π×42180=22π(m).∴将剪下的扇形围成的圆锥形的半径是22π÷2π=2(m).∴圆锥的高是422-22=30(m).故选C.答案:C规律方法:解决圆锥的相关问题,可以利用圆的周长等于扇形的弧长建立方程,利用方程解决问题.如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心、ED 为半径作半圆,交A,B所在的直线于M,N两点,分别以MD,ND为直径作半圆,则阴影部分的面积为( )A.9 5 B.18 5 C.36 5 D.72 5【思路点拨】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN 的面积-大半圆的面积,MN为半圆的直径,从而可知∠MDN=90°,在Rt△MDN 中,由勾股定理可知MN2=MD2+DN2,从而可得到两个小半圆的面积=大半圆的面积,故此阴影部分的面积=△DMN的面积,在Rt△AED中,ED=AD2+AE2=62+32=35,所以MN=65,然后利用三角形的面积公式求解即可.【解析】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积-大半圆的面积.∵MN为大半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积和=大半圆的面积.∴阴影部分的面积=△DMN 的面积.在Rt△AED中,ED=AD2+AE2=62+32=35,∴阴影部分的面积=△DMN的面积=12MN·AD=12×65×6=18 5.故选B.答案:B规律方法:求阴影部分的面积,一般是将所求阴影部分进行分割组合,转化为规则图形的和或差.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连结CD.(1)求证:∠A=∠BCD.(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【思路点拨】(1)根据圆周角定理可得∠ADC=90°,根据直角三角形的性质可得∠A+∠ACD=90°,再由∠DCB+∠ACD=90°,可得∠A=∠BCD;(2)当点M是BC的中点时,直线DM与⊙O相切.连结DO,证明∠ODM =90°,进而证得直线DM与⊙O相切.【自主解答】(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠A=∠BCD.(2)解:当点M是BC的中点时,直线DM与⊙O相切.理由如下:如图,连结DO,∵DO=CO,∴∠1=∠2.∵∠BDC=90°,点M是BC的中点,∴DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.规律方法:在判定一条直线是圆的切线时,如果这条直线和圆有公共点,常作出经过公共点的半径,证明这条直线与经过公共点的半径垂直,概括为“连半径,证垂直,得切线”.【能力评估检测】一、选择题1.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( B )A.40° B.50° C.60° D.20°2.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为( C )A. 3 B.3 C.2 3 D.43.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( A )A.25° B.50° C.60° D.30°4.如图,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP 的度数为( B )A.15° B.30° C.60° D.90°5.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心、AB长为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( D )A.6 B.7 C.8 D.96.如图,已知AB为⊙O的直径,AD切⊙O于点A,EC=CB.则下列结论中不一定正确的是( D )A.BA⊥DA B.OC∥AEC.∠COE=2∠CAE D.OD⊥AC7.如图,菱形ABCD的对角线BD,AC分别为2,23,以B为圆心的弧与AD,DC相切,则阴影部分的面积是( D )A.23-33π B.43-33πC.43-π D.23-π8.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为( B )A .13π cmB .14π cmC .15π cmD .16π cm9.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D .2 5 解:如图,连接OE ,OF ,ON ,OG .∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO =∠AFO =∠OFB =∠BGO =90°.∴四边形AFOE ,FBGO 都是正方形.∴AF =BF =AE =BG =2.∴DE =3.∵DM 是⊙O 的切线,∴DN =DE =3,MN =MG . ∴CM =5-2-MN =3-MN .在Rt △DMC 中,DM 2=CD 2+CM 2,∴(3+MN )2=(3-MN )2+42.∴NM =43.∴DM =3+43=133.故选A. 答案:A二、填空题10.在平面直角坐标系中,O 为坐标原点,则直线y =x +2与以O 点为圆心,1为半径的圆的位置关系为 相切.11.如图,圆内接四边形ABCD 两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =40° .12.如图,正三角形ABC 的边长为2,点A ,B 在半径为2的圆上,点C 在圆内,将正三角形ABC 绕点A 逆时针旋转,当点C 第一次落在圆上时,点C 运动的路线长为 .【解析】设点C 落在圆上的点为C ′,连结OA ,OB ,OC ′,则OA =OB = 2.又∵AB =2,∴OA 2+OB 2=AB 2,∴∠AOB =90°,∴∠OAB =45°,同理∠OAC ′=45°,∴∠BAC ′=90°.∵△ABC 为等边三角形,∴∠CAB =60°,∴∠CAC ′=30°,∴点C 运动的路线长为30π×2180=π3.故答案为π3. 答案:π3 13.如图,在△ABC 中,∠BAC =90°,AB =5 cm ,AC =2 cm ,将△ABC 绕顶点C按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中的阴影部分)的面积为 cm 2.【解析】在Rt△ABC 中,BC =AC 2+AB 2=29(cm),S 扇形BCB 1=45π×292360=29π8(cm 2),S △CB 1A 1=12×5×2=5(cm 2),S 扇形CAA 1=45π×22360=π2(cm 2),故S 阴影部分=S 扇形BCB 1+S △CB 1A 1-S △ABC -S 扇形CAA 1=29π8+5-5-π2=25π8(cm 2). 答案:25π8三、解答题14.如图,AB 是⊙O 的直径,BC 切⊙O于点B ,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P .求证:(1)PE =PD ;(2)AC ·PD =AP ·BC .证明:(1)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴EP BC =AE AB .又∵AD ∥OC ,∴∠DAE =∠COB ,∴△AED ∽△OBC ,∴ED BC =AE OB =AE 12AB =2AE AB .∴ED =2EP ,∴PE =PD . (2)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴AP AC =PE BC .∵PE =PD ,∴AP AC =PD BC,∴AC ·PD =AP ·BC . 15.如图,在△OAB 中,OA =OB =10,∠AOB =80°,以点O 为圆心,6为半径的优弧MN 分别交OA ,OB 于点M ,N .(1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′,求证:AP =BP ′;(2)点T 在左半弧上,若AT 与弧相切,求点T 到OA 的距离;(3)设点Q 在优弧MN 上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.(1)证明:如图,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′.又∵OA=OB,OP=OP′,∴△AOP≌△BOP′.∴AP=BP′.(2)解:如图,连结OT,过点T作TH⊥OA于点H.∵AT与MN相切,∴∠ATO=90°.∴AT=OA2-OT2=102-62=8.∵12OA·TH=12AT·OT,即12×10×TH=12×8×6,∴TH=245,即点T到OA的距离为245.(3)10°,170°.16.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).解:(1)直线BC与⊙O相切.理由如下:如图,连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于点D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.∴直线BC与⊙O相切.(2)①设OA=OD=r,∵在Rt△BDO中,∠B=30°,∴OB=2r,∴在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.②∵在Rt△ODB中,∠B=30°,∴∠BOD=60°,∴S扇形ODE=60π×22360=23π,∴阴影部分面积为S△BOD-S扇形ODE=23-23π.11。
第5卷 圆心角、圆周角专题一、选择题1.如图,AC 是⊙O 的直径,点B 、D 在⊙O 上,那么图中(不再添辅助线)等于21∠BOC 的角有( ) (A )1个(B )2个(C )3个(D )4个(第1题图)(第2题图)(第3题图)2.如图,A ,B ,C ,D 是⊙O 上的四个点,B 是AC 的中点,M 是半径OD 上任意一点.若∠BDC =40°,则∠AMB 的度数不可能是( ) (A )45°(B )60°(C )75°(D )85°3.如图,在扇形OAB 中,∠AOB =110°,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在AB 上的点D 处,折痕交OA 于点C ,则AD 的度数为( )(A )40°(B )50° (C )60° (D )70°4.如图,⊙O 中,AB 、AC 是弦,O 在∠BAC 的内部,∠ABO =α,∠ACO =β,∠BOC =θ,则下列关系式中,正确的是( ) (A )θ=α+β(B )θ=2α+2β (C )θ+α+β=180° (D )θ+α+β=360°5.如图,E ,B ,A ,F 四点共线,点D 是正三角形ABC 的边AC 的中点,点P 是直线AB 上异于A ,B 的一个动点,且满足∠CPD =30°,则( )(A )点P 一定在射线BE 上 (B )点P 可以在射线AF 上,也可以在线段AB 上(C )点P 一定在线段AB 上 (D )点P 可以在射线BE 上,也可以在线段(第4题图)(第5题图)(((6.如图,AB 是⊙O 的直径,点C 是半径OA 的中点,过点C 作DE ⊥AB ,交⊙O 于D ,E 两点,过点D 作直径DF ,连结AF ,则∠DF A = .7.如图,已知⊙O 的半径是R .C ,D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则PC +PD 的最小值为 . 8.已知,AB 是⊙O 直径,半径OC ⊥AB ,点D 在⊙O 上,且点D 与点C 在直径AB 的两侧,连结CD ,BD .若∠OCD =22°,则∠ABD 的度数是 .9.如图,AB 是⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45°,给出下列五个结论:①∠EBC =22.5°;②BD =DC ;③AE =2EC ;④劣弧AE 是劣弧DE 的2倍;⑤AE =BC .其中正确结论的序号是 .10.如图,已知EF 是⊙O 的直径,把∠A 为60°的直角三角板ABC 的一条直角边BC 放在直线EF 上,斜边AB 与⊙O 交于点P ,点B 与点O 重合;将三角形ABC 沿OE 方向平移,使得点B 与点E 重合为止.设∠POF =x °,则x 的取值范围是 . 11.如图,已知AB 为⊙O 的直径,点C 为半圆上的四等分点,在直径AB 所在的直线上找一点P ,连接CP 交⊙O 于点Q (异于点P ),使PQ =OQ ,则∠CPO = . 12.如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是 .(第6题图)(第7题图)(第9题图)(第10题图)(第11题图)(第12题图)((13.如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,∠CDB =15°,OE =32. (1)求⊙O 的半径;(2)将△OBD 绕O 点旋转,使弦BD 的一个端点与弦AC 的一个端点重合,则弦BD与弦AC 的夹角为 .14.已知:如图,在⊙O 中,AB =2AC ,AD ⊥OC 于D .求证:AB =2AD .15.已知:如图,已知AB 是⊙O 的直径,D 是⊙O 上一点,弦DE ⊥AB 于C ,弦EF 交线段CB 于G . 求证:BD 平分∠FDG .(第13题图)(第15题图) (第14题图) ((16.如图,△ABC 内接于⊙O ,∠BAC =60°,点D 是BC 的中点.BC ,AB 边上的高AE ,CF 相交于点H .试证明: (1)∠F AH =∠CAO ; (2)四边形AHDO 是菱形.17.已知:AB 、AC 是⊙O 的两条弦,AB =AC ,BG ⊥AC 于点G ,∠ABG 的平分线交AC 点D 交⊙O 于点E ,连接AE 、BC .(1)如图①,求∠EBC 的度数;(2)如图②,F 为BG 上一点,连接DF ,当∠BAC =2∠FDG 时,求证:DC =BF ; (3)如图③,在(2)的条件下,当BE 为⊙O 的直径时,经过点G 的弦MN 交AB 于点H ,若MH =GN ,△BDF 的面积为4,求线段AE 的长.(第16题图)(第17题图③)(第17题图②)(第17题图①)(九上第5卷 圆心角、圆周角专题参考答案一.选择题 1.C提示∵OA =OB ,∴∠OAB =∠OBA ,由圆周角定理知,∠BAC =∠CDB =21∠BOC , 故∠OBA =∠BAC =∠CDB =21∠BOC . 2.D提示∵B 是AC 的中点,∴∠AOB =2∠BDC =80°, 又∵M 是OD 上一点,∴∠AMB ≤∠AOB =80°. 则不符合条件的只有85°. 3.B提示:连结OD ,如图,∵扇形OAB 沿过点B 的直线折叠,点O 恰好落在AB 上的点D 处,折痕交OA 于点C ,∴BC 垂直平分OD , ∴BD =BO , ∵OB =OD ,∴△OBD 为等边三角形, ∴∠DOB =60°,∴∠AOD =∠AOB -∠DOB =110°-60°=50°, ∴AD 的度数为为50°. 4.B提示:过A 作⊙O 的直径,交⊙O 于D ;△OAB 中,OA =OB ,则∠BOD =∠OBA +∠OAB =2α; 同理可得:∠COD =∠OCA +∠OAC =2β; ∵∠BOC =∠BOD +∠COD ,∴θ=2α+2β. 5.C提示:连接BD 、PC 、PD ,如图,∵△ABC 等边三角形, ∴∠CBD =30°,又∠CPD =30°,∴∠CBD =∠CPD , ∴B 、C 、D 、P 四点共圆,又∠BDC =90°,∴点P 在以BC 为直径的圆上,∴点P 一定在线段AB 上. 二.填空题 6.30°(第3题图)(第4题图)(第5题图)(((7.R 3提示:将C 点对称,连接DC ’,根据题意以及垂径定理,得弧C ’D 的度数是120°, 则∠C ’OD =120°.作OE ⊥C ’D 于E , 则∠DOE =60°,则DE =R 23,C ’D =R 3.8.23°或67°①当点D 在直线OC 左侧时,如图所示. 连接OD ,则∠1=∠2=22°, ∴∠COD =180°-∠1-∠2=136°,∴∠AOD =∠COD -∠AOC =136°-90°=46°, ∴∠ABD =21∠AOD =23°; ②当点D 在直线OC 右侧时,如图所示. 连接OD ,则∠1=∠2=22°; 并延长CO ,则∠3=∠1+∠2=44°. ∴∠AOD =90°+∠3=90°+44°=134°, ∴∠ABD =21∠AOD =67°. 9.①②④.提示:连接AD ,AB 是⊙O 的直径,则∠AEB =∠ADB =90°,∵AB =AC ,∠BAC =45°,∴∠ABE =45°, ∠C =∠ABC =67.5°,AD 平分∠BAC , ∴AE =BE ,∠EBC =90°-67.5°=22.5°, DB =CD ,故②正确,∵∠ABE =45°,∠EBC =22.5°,故①正确, ∵AE =BE ,∴AE =BE ,又AD 平分∠BAC , 所以,即劣弧AE 是劣弧DE 的2倍,④正确.∵∠EBC =22.5°,BE ⊥CE ,∴BE >2EC ,∴AE >2EC ,故③错误. ∵∠BEC =90°,∴BC >BE ,又∵AE =BE ,∴BC >AE ,故⑤错误. 10.30≤x ≤60.提示:当O 、B 重合时,∠POF 的度数最小,此时∠POF =∠PBF =30°; 当B 、E 重合时,∠POF 的度数最大,∠POF =2∠PBF =60°;(第7题图)(第8题图①)(第8题图②)(第9题图)((故x 的取值范围是30≤x ≤60. 11. 15°或30°或45°或105°.提示:当P 在直线AB 延长线上时,如图所示: 连接OC , 设∠CPO =x °, ∵PQ =OQ ,∴∠QOP =∠CPO =x °, ∴∠CQO =2x °, ∵OQ =OC ,∴∠OCQ =∠CQO =2x °, ∵点C 为半圆上的四等分点,∴∠AOC =45°或∠AOC =90°(此时点C 亦为半圆的二等分点), ∴x +2x =45或x +2x =90, ∴x =15或x =30,∴∠CPO =15°或∠CPO =30°,当P 在直线BA 延长线上,PC 是切线时,点C 与点Q 重合,此时∠CPO =45°. 同理可得,当P 在线段AB 上时,∠CPO =105°. 12.24提示:过点O 作OC ⊥AB 于C ,交⊙O 于D 、E 两点,连结OA 、OB 、DA 、DB 、EA 、EB ,∵∠AMB =45°,∴∠AOB =2∠AMB =90°,∴△OAB 为等腰直角三角形, ∴AB =2OA =22,∵S 四边形MANB =S △MAB +S △NAB ,∴当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB 的距离最大时,△NAB 的面积最大,此时,MN 过圆心是直径.此时四边形MANB 面积的最大值=21AB (CM +CN )=21AB •MN =21×22×4=42. 三.解答题13.(1)∵AB 为⊙O 的直径,弦CD ⊥AB 于E ,∴弧BC =弧BD ,∴∠BDC =21∠BOD , 而∠CDB =15°,∴∠BOD =2×15°=30°,在Rt △ODE 中,∠DOE =30°,OE =23,∴OE =3DE ,OD =2DE ,∴DE =332=2;∴OD =4,即⊙O 的半径为4;(第11题图)(2)有4种情况:如图:(第13题图①)(第13题图②)(第13题图③)①如图①所示:∵OA =OB ,∠AOB =30°, ∴∠OAB =∠OBA =75°, ∵CD ⊥AB ,AB 是直径, ∴弧BC =弧BD , ∴∠CAB =21∠BOD =15°, ∴∠CAB =∠BAO +∠CAB =15°+75°=90°; ②如图②所示,∠CAD =75°-15°=60°; ③如图③所示:∠ACB =90°; ④如图④所示:∠ACB =60°; 故答案为:60°或90°. 14.证明:延长AD 交⊙O 于E , ∵OC ⊥AD ,∴AE =2AC ,AE =2AD , ∵AB =2AC ,∴AE =AB ,,∴AB =AE ,∴AB =2AD .15.证明:连接BD 、BE ,如图所示: ∵AB 为直径,DE ⊥AB , ∴AB 垂直平分DE , ∴BD =BE ,CD =CE , ∴△BDG ≌△BEG (SSS ), ∴∠BDG =∠BEG , ∵∠BDF =∠BEF , ∴∠BDG =∠BDF , 即:BD 平分∠FDG .(第14题图)(第13题图④)(第14题图)(第15题图) (( ((( (16.证明:(1)连接AD ,∵点D 是BC 的中点, ∴∠BAD =∠CAD ,OD ⊥BC , ∵AE ⊥BC , ∴AE ∥OD , ∴∠DAH =∠ODA , ∵OA =OD , ∴∠DAO =∠ODA ,∴∠BAD -∠DAH =∠CAD -∠DAO , ∴∠F AH =∠CAO ;(2)过点O 作OM ⊥AC 于M ,∴AC =2AM , ∵CF ⊥AB ,∠BAC =60°,∴AC =2AF ,∴AF =AM , 在△AFH 与△AMO 中,∵∠F AH =∠CAO ,AF =AM ,∠AFH =∠AMO , ∴△AFH ≌△AMO ,∴AH =OA , ∵OA =OD ,∴AH 平行且等于OD .∴四边形AHDO 是平行四边形(一组对边平行且相等的四边形是平行四边形), 又∵OA =OD ,∴平行四边形AHDO 是菱形(邻边相等的平行四边形是菱形) 17.解:(1)设∠GBC =α, ∵BG ⊥AC , ∴∠BGC =90°, ∴∠C =90°-α, ∵AB =AC ,∴∠ABC =∠C =90°-α,∴∠BAC =180°-(∠ABC +∠C )=180°-(90°-α+90°-α)=2α, ∴∠ABG =90°-2α, ∵BE 平分∠ABG , ∴∠DBG =45°-α,∴∠EBC =∠DBG +∠GBC =45°-α+α=45°; (2)延长DF 交BC 于点P ,如图① 由(1)∠BAC =2α=2∠GBC(第16题图)(∵∠BAC =2∠FDG ,∴∠FDG =∠GBC , ∵∠BFP =∠DFG ,∴∠BPF =∠DGF =90°, ∴∠BDF =∠DBC =45°,∴DP =BP , ∴△DPC ≌△BPF (ASA ), ∴DC =BF ;(3)∵当BE 为⊙O 的直径, ∴∠BAE =90°=∠AGB ∵∠EAC =∠EBC =45°, ∴∠BAC =∠ABG =45°, ∵BE 平分∠ABG ,∴∠ABE =∠DBG =∠CBG =22.5°, ∴∠BDG =∠BCG =67.5°, ∴BD =BC ,∴设DG =CG =a , ∴BF =CD =2a ,S △BDF =21BF •DG =21×2a •a =4, ∴a =2,BF =CD =4过点O 作OK ⊥MN 于点K ,连接OH 、OG ,∴MK =NK , ∵MH =GN ,∴HK =GK ,∴OH =OG ,连接OA 、OC ,延长GO 交AB 于T ,过O 作OQ ⊥AC 于Q (图②), ∵BC=BC ,∴∠BOC =2∠BAC =90°, ∵G 为CD 的中点,∴OG =21CD =2, ∵AG =BG ,AO =BO ,∴TG ⊥AB ,AT =BT , ∴∠AGT =45°,∴OQ =2, ∵AB =AC =2BT =2CQ ,BO =CO , ∴Rt △BOT ≌Rt △COQ (HL ), ∴OT =OQ =2,∵Rt △OTH ≌Rt △OQG (HL ), ∴TH =QG ,∴AH =CG =2,∵AT =BT ,EO =BO ,∴AE =2TO =22.(第17题图②)(第17题图①)((。
圆---圆心角、圆周角1. 如图,已知AB是⊙O的直径,C.D是上的三等分点,∠AOE=60°,则∠COE是( )A.40°B.60°C.80°D.120°2.如图,已知在⊙O中,点C为的中点,∠A=40°,则∠BOC等于( )A.40°B.50°C.70°D.80°3. 下面四个图中的角,是圆心角的是( )4. 下列说法正确的是( )A.相等的圆心角所对的弦相等B.相等的圆心角所对的弧相等C.等弧所对的弦相等D.度数相等的弧的长度相等5. 如图,在⊙O中,弦AB.CD相交于点E,且AB=CD,连接AD.BC,则下列给出的结论中,正确的有( )①②AD=BC ③∠CBD=∠ADB ④∠A=∠C ⑤AE=CEA.5个B.4个C.3个D.2个6. 如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为( )A.25°B.50°C.60°D.80°7. 如图,已知经过原点的⊙P与x、y轴分别交于A.B两点,点C是劣弧OB上一点,则∠ACB=( )A.80°B.90°C.100°D.无法确定8. 圆内接四边形ABCD中,已知∠A=70°,则∠C=( )A.20°B.30°C.70°D.110°9. 如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为( )A.50°B.80°C.100°D.130°10. 顶点在圆心,两边与圆相交的角叫做_________.在同圆或等圆中,相等的圆心角所对的弧_____,所对的弦也______;在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角______,所对的弦_________;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角_____,所对的弦_______-.11. 顶点在_________,两边都和圆_______的角叫圆周角.一条弧所对的圆周角等于它所对的圆心角的_______.在__________(或相等的圆)中,同弧或等弧所对的圆周角_______;反之,相等的圆周角所对的弧_________.12. 半圆(或直径)所对的圆周角是_______;90°的圆周角所对的弦是________.13.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做__________,这个圆叫做___________;圆内接四边形对角_________-.14. 已知圆O的半径为5cm,弦AB的长为5cm,则弦AB所对的圆心角∠AOB=__________.15. 如图,已知AB为⊙O的直径,点D为半圆周上的一点,且所对圆心角的度数是所对圆心角度数的两倍,则圆心角∠BOD的度数为_____.16. 下列四个图中,∠x是圆周角的是________.17. 如图,AB.CD是⊙O的两条互相垂直的弦,圆心角∠AOC=130°,AD.CB的延长线相交于P,则∠P=_______-.18. 如图所示,A.B.C.D是⊙O上顺次四点.若∠AOC=160°,则∠D=_______________ ,∠B=____________.19. 如图,已知A.B.C.D是⊙O上四点,若AC=BD,求证:AB=CD.20. 如图,在△AOB中,AO=AB,以点O为圆心,OB为半径的圆交AB于D,交AO于点E,AD=BO.试说明,并求∠A的度数.21. 如图,A.B.C在圆上,弦AE平分∠BAC交BC于D.求证:BE2=ED·EA.22. 如图所示,AB是⊙O的直径,AB=8cm,∠ADE=60°,DC平分∠ADE,求AC.BC的长.23. 如图,△ABC内接于⊙O,过C作CD∥AB与⊙O相交于D点,E是上一点,且满足AD=DE,连接BD与AE相交于点F.求证:△ADF∽△ABC.24. 如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.25. 如图,已知△ABC是等边三角形,⊙O经过点A.B.C,点P是BC上任一点.(1)图中与∠PBC相等的角为________;(2)试猜想三条线段PA.PB.PC之间的数量关系,并证明.26. 如图,以△ABC的一边AB为直径的半圆与其它两边AC.BC的交点分别为D.E,且.(1)试判断△ABC的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.参考答案:1—9 CBDCA BBDD10. 圆心角 相等 相等 相等 相等 相等 相等11. 圆上 相交 一半 同一圆 相等 相等12. 90° 直径13. 圆的内接多边形 多边形的外接圆 互补14. 60°15. 60°16. ③17. 40°18. 80° 100° 19.20. 解:设∠A =x°.∵AD =BO ,又OB =OD ,∴OD =AD ,∴∠AOD =∠A =x°,∴∠ABO =∠ODB =∠AOD +∠A =2x°.∵AO =AB ,∴∠AOB =∠ABO =2x°.从而∠BOD =2x°-x°=x°,即∠BOD =∠AOD ,∴由三角形的内角和为180°,有2x°+2x°+x°=180°,x°=36°,即∠A =36°.21. 证明:∵AE 平分∠BAC ,∴∠EAB =∠EAC ,又∵∠EBC =∠EAC ,∴∠EBC =∠EAB ,又∵∠E 公用,∴△EBD ∽△EAB ,∴EB EA =ED EB,∴EB2=EA·ED. 22. 解:∵∠ADE =60°,DC 平分∠ADE ,∴∠ADC =12∠ADE =30°=∠ABC.又∵AB 为⊙O 的直径,∴∠ACB =90°,∴AC =12AB =4cm.BC =AB2-AC2=82-42=43(cm). 23. 证明:∵AB ∥CD ,∴∠BAC =∠ACD ,∵AD =DE ,∴∠DAE =∠AED ,∴∠DAE =∠AED =∠ACD =∠BAC ,∵∠ADF =∠ACB ,∠DAE =∠BAC ,∴△ADF ∽△ABC.24. (1)解:∵BC =DC ,∴∠CBD =∠CDB =39°,∵∠BAC =∠CDB =39°,∠CAD =∠CBD =39°,∴∠BAD =∠BAC +∠CAD =39°+39°=78°;(2)证明:∵EC =BC ,∴∠CEB =∠CBE ,而∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE =∠1+∠CBD ,∵∠BAE =∠CBD ,∴∠1=∠2.25. 解:(1)∠PAC ;(2)PA =PB +PC.在AP 上截取PD =PC ,连接CD 可证△PCD 是等边三角形,△ACD ≌△BCP.26. 解:(1)△ABC 为等边三角形.理由如下:连接AE ,如图,∵,∴∠DAE =∠BAE ,即AE 平分∠BAC ,∵AB 为直径,∴∠AEB =90°,∴AE ⊥BC ,∴△ABC 为等腰三角形;(2)∵△ABC 为等腰三角形,AE ⊥BC ,∴BE =CE =12BC =12×12=6,在Rt △ABE 中,∵AB =10,BE =6,∴AE =102-62=8,∵AB 为直径,∴∠ADB =90°,∴12AE·BC=12BD·AC,∴BD =8×1210=485,在Rt △ABD 中,∵AB =10,BD =485,∴AD =AB2-BD2=145,∴sin ∠ABD =AD AB =14510=725.。
备考之圆三大定理突破训练:圆周角定理综合练习一.选择题1.如图,将一块三角板放置在⊙O中,点A、B在圆上,边AC经过圆心O,∠C为直角,∠ABC=60°,P为圆上异于A、B的点,则∠APB的度数为()A.60°B.120°C.30°或150°D.60°或120 2.如图,已知在⊙A中,B、C、D三个点在圆上,且满足∠CBD=2∠BDC.若∠BAC=44°,则∠CAD的度数为()A.68°B.88°C.90°D.112°3.如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠BOC的度数是()A.64°B.58°C.32°D.26°4.如图,AB是⊙O的直径,点C,D在⊙O上.若∠ABD=50°,则∠BCD的度数为()A.30°B.35°C.40°D.45°5.如图,已知⊙O的半径为5,弦AB、CD所对的圆心角分别是∠AOB,∠COD,且∠AOB与∠COD互补,弦CD=8,则弦AB的长为()A.6 B.8 C.5D.56.如图,AB为⊙O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交⊙O于点D,过点D作DE∥BC交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A.6﹣8 B.3﹣3 C.2 D.12﹣67.如图所示,cos∠BAC的大小等于()A.B.C.D.8.如图,AB是半圆O的直径,点C为半圆O上一点,D是的中点,∠DAC=40°,则∠CAB的度数为()A.10°B.15°C.20°D.25°9.如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC=30°,DC =1,则⊙O的半径为()A.2 B.C.2﹣D.110.如图,在⊙O内(含边界)放置六个全等的正方形,这些正方形均有两个顶点在圆上,另两个顶点分别紧靠相邻正方形的顶点,则cos∠AOB的值为()A.B.C.D.二.填空题11.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于点D,则BC的长为,CD的长.12.如图,O是半圆的圆心,半径为4.C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.若∠COA=60°,则FG=.13.如图,BD为⊙O的直径,∠A=30°,BC=1.5cm,则⊙O的半径是cm.14.如图,△ABC中,∠BAC=90°,AC=12,AB=10,D是AC上一个动点,以AD为直径的⊙O交BD于E,则线段CE的最小值是.15.如图,AB是⊙O的直径,E是OB的中点,过E点作弦CD⊥AB,G是弧AC上任意一点,连结AG、GD,则∠G=.三.解答题16.如图,AB是⊙O的直径,C,D为圆上AB同侧的两点,=,BA,DC的延长线交于点E,AE=AB(1)求证:EC=2CD(2)延长AC,BD交于点F,求sin∠F的值.17.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点,CE交AB于点H,且AH=AC,AF平分线∠CAH.(1)求证:BE∥AF;(2)若AC=6,BC=8,求EH的长.18.如图,在△ABC中,以AB为直径的⊙O分别与AC,BC交于点E,D,且BD=CD.(1)求证:∠B=∠C.(2)过点D作DF⊥OD,过点F作FH⊥AB,若AB=5,CD=,求AH的值.19.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点D,交BC于点E,延长AE 至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=3,求⊙O和菱形ABFC的面积.20.已知四边形ABCD内接于⊙O,BC=CD,连接AC,BD.(I)如图①,若∠CBD=36°,求∠BAD的大小;(Ⅱ)如图②,若点E在对角线AC上,且EC=BC,∠EBD=24°,求∠ABE的大小.21.如图,AB为⊙O的直径,点C,D为上的点,且=,延长AD,BC相交于点E,连接OD交AC于点F.(1)求证:△ABC≌△AEC;(2)若OA=3,BC=4,求AD的长.22.如图,AB是圆的直径,点C、D分别在AB两侧的半圆上,AC=BC,点E是BD延长线上一点,且AE∥CD.(1)求证:△ADE是等腰直角三角形.(2)若AB=6,DE=2,请求出CD的长.23.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E.(1)求证:BD=CD;(2)若∠BAC=50°,求∠EBC和∠EDC的度数.参考答案一.选择题1.解:连接OB,PA=PB.∵OB=OA,∴∠OBA=∠OAB=30°,∴∠AOB=120°,∴∠P=∠AOB=60°,当点P′在劣弧AB上时,∠AP′B=180°﹣60°=120°,∴∠APB的值为60°或120°,故选:D.2.解:∵∠CBD=2∠BDC,∠CAD=2∠CBD,∠BAC=2∠BDC,∴∠CAD=2∠BAC,而∠BAC=44°,∴∠CAD=88°,故选:B.3.解:∵在⊙O中,OC⊥AB,∴,∵∠ADC=32°,∴∠BOC=2∠ADC=64°,故选:A.4.解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=50°,∴∠DAB=90°﹣50°=40°,∴∠BCD=∠DAB=40°.5.解:解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===6,故选:A.6.解:连接OD,交CB于点F,连接BD,∵=,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∴BF∥DE,∴OB=BE=6∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.故选:B.7.解:如图,在Rt△EFG中,∵∠EGF=90°,FG=2,EG=5,∴EF==,∴cos∠FEG==,∵∠BAC=∠BEC,∴cos∠BAC=cos∠BEC=,故选:A.8.解:连接OD,∵D是的中点,∴,∴AD=CD,∴∠C=∠DAC=40°,∴∠AOD=2∠C=80°,∵OD=OA,∴∠DAO==50°,∴∠BAC=50°﹣40°=10°,故选:A.9.解:∵AB是⊙O的直径,∴∠BDA=∠ADC=90°,∵∠DAC=30°,DC=1,∴AC=2DC=2,∠C=60°,则在Rt△ABC中,AB=AC tan C=2,∴⊙O的半径为,故选:B.10.解:如图,连接FB.由题意:∠MEB=∠FEN=90°,∠MEN=120°,∴∠BEF=360°﹣120°﹣90°﹣90°=60°,∵EB=EF,∴△BEF是等边三角形,∴AB=BF,∴=,∴∠AOB==30°,∴cos∠AOB=,故选:C.二.填空题(共5小题)11.解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,AB=10,AC=6,∴BC==8;∵AB为⊙O的直径,∴∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD,∴AD=BD,∴△ABD为等腰直角三角形,∴BD=AB=5;作BH⊥CD于H,如图,∵∠BCH=45°,∴△BCH为等腰直角三角形,∴BH=CH=BC=4,在Rt△BDH中,DH==3,∴CD=CH+DH=4+3=7,故答案为:8,7.12.解:作GH⊥AB,连接EO.∵EF⊥AB,EG⊥CO,∴∠EFO=∠EGO=90°,∴G、O、F、E四点共圆,所以∠GFH=∠OEG,又∵∠GHF=∠EGO,∴△GHF∽△OGE,∵CD⊥AB,GH⊥AB,∴GH∥CD,∴,又∵CO=EO,∴CD=GF.∵半径为4.∠COA=60°,∴CD=2,∴GF=,故答案为:2.13.解:∵∠A=30°,∴∠D=∠A=30°,∵BD是⊙O的直径,∴∠BCD=90°,∵BC=1.5cm,∴BD=2BC=3cm,∴⊙O的半径是1.5cm,故答案为:1.5.14.解:如图,连接AE,则∠AED=∠BEA=90°,∴点E在以AB为直径的⊙Q上,∵AB=10,∴QA=QB=5,当点Q、E、C三点共线时,QE+CE=CQ(最短),而QE长度不变,故此时CE最小,∵AC=12,∴QC==13,∴CE=QC﹣QE=13﹣5=8,故答案为:8.15.解:连接OD,BD,∵CD⊥AB,E是OB的中点,∴∠OED=90°,2OE=OD,∴∠BOD=60°,∵OB=OD,∴△OBD是等边三角形,∴∠B=60°,∴∠G=60°,故答案为:60°.三.解答题(共8小题)16.(1)证明:如图1,连接AC,AD,OD,∵=,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∴=,∵AE=AB,∴AE=2AO,∴EC=2CD;(2)解:如图2,连接AD,∵AB是⊙O的直径,∴AD⊥BF,∵∠CAD=∠BAD,∴AF=AB,∴∠B=∠F,设CD=BD=x,AE=AB=d,则EC=2x,DE=3x,BE=2d,∵∠ACE=∠B,∠E=∠E,∴△EAC∽△EDB,∴=,∴=,∴=,∴=,设BD=k,AB=3k,∴AD==k,∴sin F=sin B===.17.(1)证明:∵AH=AC,AF平分线∠CAH∴∠HAF=∠CAF,AF⊥EC,∴∠HAF+∠ACH=90°∵∠ACB=90°,即∠BCE+∠ACH=90°,∴∠HAF=∠BCE,∵E为的中点,∴,∴∠EBD=∠BCE,∴∠HAF=∠EBD,∴BE∥AF;(2)解:连接OH、CD.∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,AC=6,BC=8,∴AB=,∵AH=AC=6∴BH=AB﹣AH=10﹣6=4,∵∠EBH=∠ECB,∠BEH=∠CEB∴△EBH∽△ECB,∴,EB=2EH,由勾股定理得BE2+EH2=BH2,即(2EH)2+EH2=42,∴EH=.18.证明:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵BD=CD,∴AD是BC的垂直平分线,∴AB=AC,∴∠B=∠C;(2)在Rt△ADB中,AB=5,CD=BD=,∴AD===2,∵∠B=∠C,∠DFC=∠ADB=90°,∴△ADB∽△DFC,∴,∴,∴CF=1,DF=2,∴AF=AC﹣CF=5﹣1=4,过O作OG⊥AC于G,∵∠OGF=∠GFD=∠ODF=90°,∴四边形OGFD是矩形,∴OG=DF=2,∴sin∠FAH=,∴,FH=,Rt△AFH中,AH==.19.(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=62﹣x2,解得x=2或﹣9(舍弃)∴AB=9,BD=,=36.∴S菱形ABFC=π•()2=π.∴S⊙O20.解:(Ⅰ)∵BC=CD,∴=,∴∠DBC=∠BAC=∠CAD,∵∠CBD=36°,∴∠BAC=∠CAD=36°,∴∠BA D=36°+36°=72°.(Ⅱ)∵CB=CE,∴∠CBE=∠CEB,∴∠DBE+∠CBD=∠BAE+∠ABE,∵∠CBD=∠BAC,∴∠ABE=∠DBE=24°.21.(1)证明:∵=,∴∠CAE=∠CAB,∵AB是直径,∠ACB=∠ACE=90°,∵AC=AC,∴△ABC≌△AEC(ASA).(2)连接BD交OC于K,作OH⊥BC于H.∵OH⊥BC,∴CH=HB=2,∵OB=3,∴OH==,∵=,∴OC⊥BD,DK=KB,∵•BC•OH=•OC•BK,∴BK=,∴OK==,∵OA=OB,DK=KB,∴AD=2OK=.22.解(1)∵AB是圆的直径,∴∠ACB=∠ADB=90°.又∵AC=BC,∴∠CAB=45°∴∠CDB=∠CAB=45°.∵AE∥CD,∴∠E=∠CDB=45°∴△ADE是等腰直角三角形.(2)过点C作CF⊥BD于F,则△CDF是等腰直角三角形.∵△ADE是等腰直角三角形,∴AD=DE=2,∴在Rt△ADB中,由勾股定理可得BD==8.在等腰直角三角形△ABC中,∵AB=6,∴BC=AC=6.设DF=CF=x,则BF=8﹣x,在Rt△CBF中,由勾股定理可知CF2+BF2=BC2,即x2+(8﹣x)2=62,解得x=4±.∵显然DF>BF,∴x=4+,∴CD=x=2+4.23.(1)证明:连接AD∵AB⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴BD=CD.(2)∵AB=AC,∠BAC=50°,2019年中考数学备考之圆三大定理突破训练:圆周角定理综合练习题(含解析) 21 / 21 ∴∠ABC =∠C=(180°﹣50°)=65°,∵AB ⊙O 的直径,∴∠AEB =90°,∵∠BAC =50°,∴∠ABE =40°,∴∠EBC =25°,∵四边形ABDE 内接于⊙O ,∴∠BAC +∠BDE =180°,∵∠EDC +∠BDE =180°,∴∠EDC =∠BAC =50°.。
圆专题一、圆的相关概念1.圆的定义(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作”O⊙“,读作”圆O“.(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:注意:同圆或等圆的半径相等.2.弦和弧(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作AB,读作弧AB.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3.圆心角和圆周角(1)圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.二、圆的对称性1.旋转对称性(1)圆是中心对称图形,对称中心是圆心;圆是旋转对称图形,无论绕圆心旋转多少度角,总能与自身重合.(2)圆的旋转对称性⇒圆心角、弧、弦、弦心距之间的关系.2.轴对称性(1)圆是轴对称图形,经过圆心的任一条直线是它的对称轴.(2)圆的轴对称性⇒垂径定理.三、圆的性质定理1.圆周角定理(1) 定理:一条弧所对的圆周角等于它所对的圆心角的一半. (2) 推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.2. 圆心角、弧、弦、弦心距之间的关系(1) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.(2) 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.注意:①前提条件是在同圆或等圆中;②在由等弦推出等弧时应注意:优弧与优弧相等;劣弧与劣弧相等.3. 垂径定理(1) 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2) 推论1:①平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧.②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (3) 推论2:圆的两条平行线所夹的弧相等.注意:若“过圆心的直线”、“垂直于弦”、“平分弦(非直径)”、“平分弦所对的优弧”、“平分弦所对的劣弧”中的任意两个成立,则另外三个都成立.注意:应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.F EBA CDOr a 2d O CBA所对的两圆心角相等所对的两条弦相等 所对的两条弧相等所对的两条弦的弦心距相等EO D B A【例1】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>【例2】 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm ,则该半圆的半径为______.二、圆的性质定理1. 圆周角定理【例3】 如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.【例4】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180︒,70︒,30︒,则PAQ ∠的大小为( )A .10︒B .20︒C .30︒D .40︒【例5】 如图,O ⊙是ABC ∆的外接圆,已知60B ∠=︒,则CAO ∠的度数是( )A .15︒B .30︒C .45︒D .60︒【例6】 如图,已知O 的弦AB CD ,相交于点E ,AC 的度数为60︒,BD 的度数为100︒,则AEC ∠等于ON MHG FE DC BA( ) A .60°B .100°C .80°D .130°【例7】 如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.【例8】 如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.【例9】 如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.【例10】 如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.DCA BBA【例11】 如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65︒.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.【例12】 如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )B.4D.5【例13】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【例14】 如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.2. 圆内接四边形【例15】 如图,O ⊙外接于正方形ABCD ,P 为弧AD 上一点,且1AP =,PB =PC 的长.【例16】 如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点P ,BAPEC BAP DCBAAB BD =,且0.6PC =,求四边形ABCD 的周长.【例17】 如图,AB CD ,是O ⊙的两条弦,它们相交于点P ,连结AD BD 、,已知4AD BD ==,6PC =,求CD 的长.一、点与圆的位置关系4. 确定圆的条件(5) 圆心(定点),确定圆的位置; (6)半径(定长),确定圆的大小.注意:只有当圆心和半径都确定时,圆才能确定. 5. 点与圆的位置关系(7) 点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定. (8) 设O ⊙的半径为r ,点P 到圆心O 的距离为d ,则有:点在圆外⇔d r >;点在圆上⇔d r =;点在圆内⇔d r <.如下表所示:C二、过已知点的圆1. 过已知点的圆(1) 经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. (2) 经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个. (3) 过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个. (4) 过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.2. 定理:不在同一直线上的三点确定一个圆(1) “不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆; (2) “确定”一词的含义是”有且只有”,即”唯一存在”.三、三角形的外接圆及外心1. 三角形的外接圆(1) 经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. (2) 锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部. 2. 三角形外心的性质(1) 三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; (2) 三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.一、点与圆的位置关系【例18】 已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .7二、过三点的圆【例19】 如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【例20】 如图,直角坐标系中一条圆弧经过网格点A B C ,,,其中B 点的坐标为()44,,则该圆弧所在圆的圆心的坐标为 .三、三角形的外接圆及外心【例21】 如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .【例22】 等边三角形的外接圆的半径等于边长的( )倍. ABCD .12【例23】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【例24】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【例25】 已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E . ⑴ 求证:AD 的延长线平分∠CDE ;⑴ 若30∠=︒BAC ,∆ABC 中BC边上的高为2+∆ABC 外接圆的面积.直线与圆的位置关系设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:6. 切线的性质(9) 定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.(10) 注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心①过圆心,过切点⇒垂直于切线.AB 过圆心,AB 过切点M ,则AB l ⊥. ②过圆心,垂直于切线⇒过切点.AB 过圆心,AB l ⊥,则AB 过切点M . ③过切点,垂直于切线⇒过圆心.AB l ⊥,AB 过切点M ,则AB 过圆心.7. 切线的判定(1) 定义法:和圆只有一个公共点的直线是圆的切线; (2) 距离法:和圆心距离等于半径的直线是圆的切线; (3) 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.AB CD El8. 切线长和切线长定理(1) 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. (2) 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.三、三角形的内切圆1. 三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3. 直角三角形内切圆的半径与三边的关系设a 、b 、c 分别为ABC △中A ∠、B ∠、C ∠的对边,面积为S ,则内切圆半径为sr p=,其中()12p a b c =++.若90C ∠=︒,则()12r a b c =+-.二、切线的性质及判定【例1】 如图,ABC ∆为等腰三角形,AB AC =,O 是底边BC 的中点,O ⊙与腰AB 相切于点D ,求证AC 与O ⊙相切.lcb acbaO F ED CACBAB A【例2】 已知:如图,ABC ∆内接于O ,AD 是过A 的一条射线,且B CAD ∠=∠.求证:AD 是O 的切线.【例3】 已知:如图,AB 是O ⊙的直径,C 为O ⊙上一点,MN 过C 点,AD MN ⊥于D ,AC 平分DAB ∠.求证:MN 为O ⊙的切线.【例4】 如图,已知OA 是O ⊙的半径,B 是OA 中点,BC OA ⊥,P 是OA 延长线上一点,且PA AC =.求证:PC 是O ⊙的切线.【例5】 已知:如图,C 为O ⊙上一点,DA 交O ⊙于B ,连结AC BC 、,且DCB CAB ∠=∠DC 为O ⊙的切线;(2)2CD AD BD =⋅.【例6】 如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.C【例7】 如图,已知AB 为⑴O 的弦,C 为⑴O 上一点,⑴C =⑴BAD ,且BD ⑴AB 于B .(1)求证:AD 是⑴O 的切线.(2)若⑴O 的半径为3,AB =4,求AD 的长.【例8】 如图,Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.【例9】 如图,AB 是O ⊙的的直径,BC AB ⊥于点B ,连接OC 交O ⊙于点E ,弦AD OC ∥,弦DF AB⊥于点G .(1)求证:点E 是BD 的中点; (2)求证:CD 是O ⊙的切线;(3)若4sin 5BAD ∠=,O ⊙的半径为5,求DF 的长.【例10】 如图,等腰三角形ABC 中,10AC BC ==,12AB =.以BC 为直径作O ⊙交AB 于点D ,交AC于点G ,DF AC ⊥,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是O ⊙的切线; (2)求sin E ∠的值.一、切线长定理1.如图,PA PB ,分别是O 的切线,A B ,为切点,AC 是O 的直径,已知35BAC ∠=︒,P ∠的度数为( ) A .35︒ B .45︒ C .60︒ D .70︒2.如图,PA PB 、分别切O ⊙于A B ,两点,PC 满足AB PB AC PC AB PC AC PB ⋅-⋅=⋅-⋅,且AP PC ⊥,2PAB BPC ∠=∠,求ACB ∠的度数.3.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠=,8PA =,那么弦AB 的长是( )A .4B .8C.D.P则OP =( )A .50cm B.cm Ccm D.cm5.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D C E ,,.若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是( )A .9B .10C .12D .146.等腰梯形ABCD 外切于圆,且中位线MN 的长为10,那么这个等腰梯形的周长是________.7.如图,PA PB DE 、、分别切O ⊙于A B C 、、,若10PO =,PDE ∆周长为16,求O ⊙的半径.8.如图,PA PB ,切O 于AB ,,MN 切O 于C ,交PA PB ,于M N ,两点,已知8PA =,求PMN ∆的周长.PB P于G,交AB AC、于MN,则BMN∆的周长为______________.10.如图,已知AB是O⊙的直径,BC是和O⊙相切于点B的切线,O⊙的弦AD平行于OC,若2OA=,且6AD OC+=,求CD的长.补充讲义两圆的公切线(选讲自己了解)9.两圆的外公切线(11)求两圆外公切线长:构造外公切线、圆心距、大圆与小圆半径的差为边的特征直角三角形.如图,设大圆的半径为R,小圆的半径为r,两圆的圆心距为d,两外公切线的夹角为α,则两圆的外公切线长为:l=,sin2R rdα-=(12)求两圆内公切线长:构造外公切线、圆心距、大圆与小圆半径的和为边的特征直角三角形.10.两圆的内公切线如图,设大圆的半径为R,小圆的半径为r,两圆的圆心距为d,两外公切线的夹角为α,则两圆的内公切线长l=,sin2R r dα+ =CB AP圆与相似三角形经典证明题1.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3 点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系为.2.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4..Rt.ABC...ACB=90°.D.AB.......BD.....O.AC..E...DE.....BC.......F..BD=BF..1....AC..O....2..BC=6.AB=12...O....5....AB..O......A..O..........C...OC..O..D.BD.....AC.E...AD..1.....CDE..CAD..2..AB=2.AC=2..AE...6. 已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB 于点E..1....AC•AD=AB•AE..2...BD.⊙O....D....E.OB.....BC=2...AC...7.如图所示,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.8. 如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.9. 如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.10......O..AB....OC.AB..CD.OB...F..AB.......E..EF=ED..1....DE..O.....2..OF.OB=1.3..O...R=3.....11....AB .⊙O .....D ......∠BDE =∠CBE .BD .AE ...F .(1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF •DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若PA =AO ,DE =2,求PD 的长和⊙O 的半径.12.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P ,连接AC ,BC ,PB :PC =1:2. (1)求证:AC 平分∠BAD ;(2)探究线段PB ,AB 之间的数量关系,并说明理由; (3)若AD =3,求△ABC 的面积.13.已知,如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BC 于点F ,交⊙O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且∠ODB =∠AEC . (1)求证:BD 是⊙O 的切线; (2)求证:2CE EH EA =⋅; (3)若⊙O 的半径为5,3sin 5A =,求BH 的长.第13题图FH EOC B A。
中考数学复习----《圆周角定理》知识点总结与专项练习题(含答案)知识点总结1.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
2.圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。
3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
4.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
5.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
②性质:I:圆内接四边形的对角互补。
II:圆内接四边形的任意一个外角等于它的内对角。
练习题1、(2022•襄阳)已知⊙O的直径AB长为2,弦AC长为2,那么弦AC所对的圆周角的度数等于.【分析】首先利用勾股定理逆定理得∠AOC=90°,再根据一条弦对着两种圆周角可得答案.【解答】解:如图,∵OA=OC=1,AC=,∴OA2+OC2=AC2,∴∠AOC=90°,∴∠ADC=45°,∴∠AD'C=135°,故答案为:45°或135°.2、(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为.【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC 即可.【解答】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC===13(cm),所以圆形镜面的半径为cm,故答案为:cm.3、(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半求出∠AOC的度数,根据平角的定义即可得到∠BOC=180°﹣∠AOC的度数.【解答】解:∵∠ADC是所对的圆周角,∴∠AOC=2∠ADC=2×30°=60°,∴∠BOC=180°﹣∠AOC=180°﹣60°=120°.故答案为:120.4、(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D=°.【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.5、(2022•湖州)如图,已知AB 是⊙O 的弦,∠AOB =120°,OC ⊥AB ,垂足为C ,OC 的延长线交⊙O 于点D .若∠APD 是AB ⌒所对的圆周角,则∠APD 的度数是 .【分析】由垂径定理得出,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =∠AOD =30°,得出答案.【解答】解:∵OC ⊥AB ,∴,∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =∠AOB =60°,∴∠APD =∠AOD =×60°=30°,故答案为:30°.6、(2022•徐州)如图,A 、B 、C 点在圆O 上,若∠ACB =36°,则∠AOB = .【分析】利用一条弧所对的圆周角等于它所对的圆心角的一半即可得出结论.【解答】解:∵∠ACB =∠AOB ,∠ACB =36°,∴∠AOB =2×∠ACB =72°.故答案为:72°.7、(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为.【分析】利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,利用直径所对的圆周角是直角得到∠ACB=90°,然后利用直角三角形的两个锐角互余计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.8、(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为.【分析】根据邻补角的概念求出∠BCD,根据圆内接四边形的性质求出∠A,根据圆周角定理解答即可.【解答】解:∵∠DCE=72°,∴∠BCD=180°﹣∠DCE=108°,∵四边形ABCD内接于⊙O,∴∠A=180°﹣∠BCD=72°,由圆周角定理,得∠BOD=2∠A=144°,故答案为:144°.9、(2022•甘肃)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.【分析】根据圆内接四边形的对角互补即可得到结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=110°,∴∠ADC=180°﹣∠ABC=180°﹣110°=70°,故答案为:70.。
初中数学圆形专题训练50题含参考答案一、单选题1.下列说法错误的是()A.等弧所对的圆心角相等B.弧的度数等于该弧所对的圆心角的度数C.经过三点可以作一个圆D.三角形的外心到三角形各顶点距离相等【答案】C【分析】根据三角形的外心的性质,确定圆的条件,圆心角、弧、弦的关系判定即可.【详解】解:A等弧所对的圆心角相等,故不符合题意;B、弧的度数等于该弧所对的圆心角的度数,故不符合题意;C、经过不在同一条直线上的三点可以作一个圆,故符合题意;D、三角形的外心到三角形各顶点距离相等,故不符合题意;故选:C.【点睛】本题考查了三角形的外接圆与外心,确定圆的条件,圆心角、弧、弦的关系,正确的理解题意是解题的关键.2.已知O的半径是5cm,线段OP的长为4cm,则点P()A.在O外B.在O上C.在O内D.不能确定【答案】C【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.OP=<【详解】解:45∴点P在O内,故选:C.【点睛】本题考查了点和圆的位置关系,熟悉点和圆的位置关系的判断是关键.3.用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形?()A.B.C .D . 【答案】B【详解】试题分析:根据直径所对的圆周角为直角可得:B 为正确答案.4.已知⊙O 的半径是一元二次方程2340x x --=的一个根,点A 与圆心O 的距离为6,则下列说法正确在是( )A .点A 在⊙O 外B .点A 在⊙O 上C .点A 在⊙O 内D .无法判断 【答案】A【分析】先求方程的根,可得r 的值,由点与圆的位置关系的判断方法可求解.【详解】解:⊙2340x x --=,⊙1x =﹣1,2x =4,⊙⊙O 的半径为一元二次方程2340x x --=的根,⊙r =4,⊙6>4,⊙点A 在⊙O 外,故选:A .【点睛】本题考查了解一元二次方程,点与圆的位置关系,解决此类问题可通过比较点到圆心的距离d 与圆半径大小关系完成判定.5.如图,AB 是半圆O 的直径,28BAC ∠=︒,则D ∠的度数是( )A .62︒B .118︒C .152︒D .138︒【答案】B 【分析】连接BC ,则直径所对的圆周角是直角可求得B ∠的度数,再由圆内接四边形的性质即可求得结果的度数.【详解】连接BC ,如图所示,AB 是直径,90ACB ∴∠=︒, 90902862B BAC ∴∠=︒-∠=︒-︒=︒,180********D B ∴∠=︒-∠=︒-︒=︒;故选:B .【点睛】本题考查了直径所对的圆周角是直角,圆内接四边形的性质等知识,掌握这两条性质是关键.6.如图,AB 是O 的直径,CD 是O 的弦.若=21BAD ∠︒,则ACD ∠的大小为( )A .21°B .59°C .69°D .79°【答案】C 【分析】先求出ABD ∠的度数,然后再根据圆周角定理的推论解答即可.【详解】解:⊙AB 是O 的直径⊙=90BDA ∠︒,⊙=21BAD ∠︒,⊙=1809021=69ABD ∠--︒︒︒︒,又⊙=AD AD ,⊙==69ACD ABD ∠∠︒,故答案为:C .【点睛】本题主要考查了圆周角定理的推论,解题的关键是熟练掌握在同圆或等圆中同弧或等弧所对圆周角相等;直径所对圆周角等于90°.7.如图,圆与圆的位置关系没有( )A .相交B .相切C .内含D .外离 【答案】A 【分析】根据圆与圆的位置关系,寻找交点个数即可解题.【详解】解:圆与圆相交有两个交点,但是图像中没有两个交点的情况,所以圆与圆的位置关系没有相交,故选A.【点睛】本题考查了圆与圆的位置关系,属于简单题,熟悉位置关系的辨析方法是解题关键.8.已知在Rt ABC 中, 9034ACB AC BC ∠=︒==,,, 则Rt ABC 的外接圆的半径为( ) A .4B .2.4C .5D .2.5 Rt ABC 中,根据勾股定理得,223BC =直角三角形的外心为斜边中点,Rt ABC 的外接圆的半径为故选:D .【点睛】本题考查了直角三角形的外心的性质,勾股定理的运用,关键是明确直角三角形的斜边为三角形外接圆的直径.9.如图,12∠=∠,则AB CD =的是( ).A .B .C .D .【答案】C【分析】根据圆周角与弧的关系即可求解.【详解】解:根据同圆或等圆,相等的弧所对的圆周角相等,只有C 选项符合题意;⊙12∠=∠,⊙AB CD =.故选:C .【点睛】本题考查了圆周角与弧的关系,掌握同圆或等圆中,相等的圆周角所对的弧相等是解题的关键.10.ABC ∆中,10AB AC cm ==,12BC cm =,若要剪一张圆形纸片盖住这个三角形,则圆形纸片的最小半径为( )cm .A .5B .6C .152D .254 AB AC =BD DC ∴=连接OB ,在Rt⊙ABD 设圆形纸片的半径为【点睛】本题考查的是三角形的外接圆与外心、等腰三角形的性质,掌握等腰三角形的三线合一、三角形外接圆的性质及勾股定理是解题的关键. 11.如图所示,MN 是半圆O 的直径,MP 与半圆0相切于点M ,R 是半圆上一动点,RE MP ⊥于E ,连接MR .设MR x =,MR RE y -=,则下列函数图象能反映y 与x 之间关系的是( )A .B .C .D .,可得~EMR RNM ,设半圆2)r ,根据函数的解析式即可判断函数图象⊙~EMR RNM , ER MR MR MN=, 设半圆O 的半径为值2(02x y x x r=-+<<可得到y 是x 的二次函数,开口方向向下,对称轴12.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y=k x经过正方形AOBC 对角线的交点,半径为4-⊙ABC ,则k 的值为( ).A B .2 C .4 D .=4,⊙DN×NO=4,即:xy=k=4.故选C .考点:反比例函数图象上点的坐标特征;正方形的性质;三角形的内切圆与内心. 13.若5cm AB =,作半径为4cm 的圆,使它经过A 、B 两点,这样的圆能作( ) A .0个B .1个C .2个D .无数个【答案】C【分析】先作AB 的垂直平分线l ,再以点A 为圆心,4cm 为半径作圆交l 于O 1和O 2,然后分别以O 1和O 2为圆心,以4cm 为半径作圆即可;【详解】解:这样的圆能画2个.如图:作AB 的垂直平分线l ,再以点A 为圆心,4cm 为半径作圆交l 于O 1和O 2,然后分别以O 1和O 2为圆心,以4cm 为半径作圆,则⊙O 1和⊙O 2为所求【点睛】本题考查了点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有点P 在圆外⇔d >r ;点P 在圆上⇔d =r ;点P 在圆内⇔d <r . 14.如图,在ABC 中,3AB =,6BC =,60ABC ∠=︒,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( )A .3πB 2π-C πD 32πAB BD =ABD ∴是等边三角形,AD AB ∴=6BC =,3CD ∴=,AD CD ∴=C CAD ∴∠=∠C CAD ∠+∠30C ∴∠=BAC ∴∠=AC ∴=∴图中阴影部分的面积15.如图,已知AB 是O 的直径,弦CD AB ⊥,垂足为E ,且30BCD ∠=︒,CD = )A .24π-B .83π-C .43π-D .348π-故选:B .【点睛】本题考查了扇形的面积计算,勾股定理,含30︒角的直角三角形的性质,等边三角形的性质和判定等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键.16.已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ).A .3πB .4πC .5πD .6π17.如图,四边形ABCD 内接于O ,:2:1,2ABC ADC AB ∠∠== ,点C 为BD 的中点,延长AB 、DC 交于点E ,且60E ∠=,则O 的面积是( )A .πB .2πC .3πD .4π 【答案】D 【分析】连接BD ,根据圆内接四边形的外角等于其内对角可得∠D =∠CBE =60°,根据等边对等角以及三角形内角和定理求出∠BCE =60°,可得∠A =60°,点C 为BD 的中点,可得出∠BDC =∠CBD =30°,进而得出⊙ABD =90°,AD 为直径,可得出AD =2AB =4,再根据面积公式计算得出结论;【详解】解:连接BD ,∵ABCD 是⊙O 的内接四边形,∴∠CBE =∠ADC ,∠BCE =∠A⊙:2:1ABC ADC ∠∠=∴:2:1ABC CBE ∠∠=∴∠CBE =∠ADC=60°,∠CBA =120°⊙60E ∠=⊙⊙CBE 为等边三角形⊙∠BCE =∠A=60°,⊙点C 为BD 的中点,⊙∠CDB =∠DBC=30°⊙⊙ABD =90°,⊙ADB =30°⊙AD 为直径⊙AB =2⊙AD =2AB =4 ⊙O 的面积是=224ππ⨯=故答案选:D【点睛】本题考查了圆内接四边形的性质,圆周角定理,等边三角形的判定与性质,三角形内角和定理,掌握相关性质及公式是解题的关键.18.一个圆锥的侧面展开图是半径为8,圆心角为120°的扇形,则这个圆锥的高为( )A cmB .163 cmC cmD .83cm19.⊙O 的半径为10cm, A 是⊙O 上一点, B 是OA 中点, C 点和B 点的距离等于5cm, 则C 点和⊙O 的位置关系是 ( )A .C 在⊙O 内B .C 在⊙O 上 C .C 在⊙O 外D .C 在⊙O 上或C 在⊙O 内【答案】D【详解】试题解析:因为⊙O 的半径是10cm ,A 是圆上一点,所以OA=10cm , 又B 是OA 的中点,所以BA=5cm .而BC=5cm ,所以点C 应在以B 为圆心,5cm 为半径的⊙B 上.⊙B 上的点除点A 在⊙O 上外,其它的点都在⊙O 内.故选D .20.如图,在ABC 中,90ACB ∠=︒.AC BC =,4cm AB =.CD 是中线,点E 、F 同时从点D 出发,以相同的速度分别沿DC 、DB 方向移动,当点E 到达点C时,运动停止,直线AE 分别与CF 、BC 相交于G 、H ,则在点E 、F 移动过程中,点G 移动路线的长度为( ).A .2B .πC .2πD .π2【答案】D 【详解】试题解析:如图,,90CA CB ACB AD DB =∠==,,⊙CD ⊙AB ,⊙⊙ADE =⊙CDF =90,CD =AD =DB ,在⊙ADE 和⊙CDF 中,AD CD ADE CDF DE DF ,=⎧⎪∠=∠⎨⎪=⎩⊙⊙ADE ⊙⊙CDF (SAS),⊙⊙DAE =⊙DCF ,⊙⊙AED =⊙CEG ,90,四点共圆,的运动轨迹为弧CD90,的运动轨迹的长为二、填空题21.如图,点C为半圆的中点,AB是直径,点D是半圆上一点,AC、BD交于点BD=,则AC=________.E,若1AD=,722.如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S =扇形________2cm .23.如图,ABC ∆中,90,6,4,ACB BC AC D ∠=︒==是AC 边上的一个动点,过点C 作,CE BD ⊥垂足为,E 则AE 长的最小值为_______________________.【答案】2【分析】取BC 中点F ,连接AE 、EF .易得点E 在以BC 长为直径的圆周上上运动,24.如图,⊙O内接正五边形ABCDE与等边三角形AFG,则⊙FBC=__________.【分析】连接OA,OB,OF,OC,分别求出正五边形ABCDE和正三角形AFG的中心角,结合图形计算即可.【详解】解:连接OA,OB,OF,OC.25.如图,点A、B在半径为3的⊙O上,劣弧AB长为π2,则⊙AOB=____.26.如图,Rt⊙ABC中,⊙ACB=90°,⊙A=30°,BC=6,D,E分别是AB,AC边的中点,将⊙ABC绕点B顺时针旋转60°到⊙A′BC′的位置,则整个旋转过程中线段DE所扫过部分的面积(即图中阴影部分面积)为_____.【详解】27.四边形ABCD 是O 的内接四边形,2C A ∠=∠,则C ∠的度数为___.【答案】120°##120度【分析】根据圆内接四边形对角互补,再结合已知条件求解即可.【详解】解:四边形ABCD 是O 的内接四边形,180C A∴∠+∠=︒2C A∠=∠,120C∴∠=︒.故答案为:120︒.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形对角互补是解答本题的关键.28.如图,在Rt⊙ABC中,⊙C=90°,AB=13,AC=5,以点C为圆心r为半径作圆,如果⊙C与AB相切,则半径r的值是_______.【答案】6013##8413来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了勾股定理.29.如图,在⊙O中,点C在优弧ACB上,将弧沿BC折叠后刚好经过AB的中点D,若⊙O AB=4,则BC的长是_____.30.如图,AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直,垂足为,2D AB BC ==,则AOB ∠=_________.31.如图,在正方形网格中建立平面直角坐标系,一条圆弧经过点()()()0,4,4,4,6,2A B C --.(1)若该圆弧所在圆的圆心为D ,则AD 的长为__________.(2)该圆弧的长为___________.90255180π=【详解】解:(1)如图,易知点2425+=即D 的半径为AD CD ==2AD DC +ACD ∆为直角三角形,根据题意得90255180π=即该圆弧的长为5π.【点睛】本题主要考查圆,扇形等知识的综合应用,掌握确定圆心的方法,即确定出的坐标是解题的关键.OD BC,OD与32.如图,已知AB是半圆O的直径,C、D是半圆O上的两点,且//∠=______.AC交于点E,若E是OD中点,,则CAD【答案】30°【分析】先判定AC垂直平分OD,进而可判定⊙OAD是等边三角形,再由三线合一即可求出⊙CAD的度数.【详解】⊙AB是半圆O的直径,⊙⊙ACB=90°.OD BC,⊙//⊙⊙AED=90°.⊙E是OD中点,⊙AC垂直平分OD,⊙AD=OA,⊙OA=OD,⊙⊙OAD是等边三角形,⊙⊙OAD=60°,⊙⊙CAD=30°.故答案为:30°.【点睛】本题考查了圆周角定理,平行线的性质,线段垂直平分线的判定与性质,以及等边三角形的判定与性质,熟练掌握圆周角定理、线段垂直平分线的判定与性质是解答本题的关键.33.如图,在半径为2cm的扇形纸片AOB中,⊙AOB=90°,将其折叠使点B落在点O 处,折痕为DE,则图中阴影部分的面积为________cm2334.若点O 是等腰ABC 的外心,且60,BOC ∠=︒底边4,BC =则ABC 的边BC 上的高为 ____________________.E,如果点F是弧EC的中点,联结FB,那么tan⊙FBC的值为.关系;解直角三角形.【答案】【详解】试题分析:连接CE交BF于H,连接BE,根据矩形的性质求出AB=CD=3,AD=BC=5=BE,⊙A=⊙D=90°,根据勾股定理求出AE=4,求出DE=1,根据勾股定理求出CE,求出CH,解直角三角形求出即可.解:连接CE交BF于H,连接BE,⊙四边形ABCD是矩形,AB=3,BC=5,⊙AB=CD=3,AD=BC=5=BE,⊙A=⊙D=90°,由勾股定理得:AE==4,DE=5﹣4=1,由勾股定理得:CE==,由垂径定理得:CH=EH=CE=,在Rt⊙BFC中,由勾股定理得:BH==,所以tan⊙FBC===.故答案为.36.O是ABC的外心,且140∠=________;若I是ABC的内心,∠=,则ABOC且140∠=________.BIC∠=,则A70100是ABC的外心,且140,如图所示:是ABC的内心,且140,如图所示:⊙I 是⊙ABC 的内心,⊙⊙A=180°-(⊙ABC+⊙ACB)= 180°-2(⊙IBC+⊙ICB)=180°-2(180°-140°)=100°. 故答案为70°;100°.【点睛】本题考查了三角形内外心的性质,熟知三角形内外心的性质是解题的关键. 37.冬天的雪是我们的乐园,一次下雪后,小伙伴们堆了一大雪人,准备给雪人制作一个底面半径为9cm ,母线长为30cm 的圆锥形礼帽,则这个圆锥形礼帽的侧面积为____________cm 2 .(结果保留π)【答案】270π.【详解】试题分析:S=πrl=9×30π=270π(2cm ).考点:圆锥的侧面积计算.38.已知O 的直径10AB =cm ,CD 是O 的弦,AE CD ⊥,垂足为点E ,BF CD ⊥,垂足为点F ,且8CD =cm ,则BF AE -的长为________cm .39.如图,I 是直角ABC 的内切圆,切点为D 、E 、F ,若10AF ,3BE =,则ABC 的面积为_____.的值,再利用三角形的面积公式求得ABC 的面积即可.【详解】解:I 是直角ABC 的内切圆,且10AF ,BE =3,10AF AD ==,CE 13=,x ,则3BC x ,AC 中,222AC BC AB +=,即)22313x +=,(不符题意,舍去)ABC ∴的面积为故答案为:【点睛】本题考查了切线长定理、勾股定理、一元二次方程的应用,熟记切线长定理是解题的关键.40.如图,正六边形ABCDEF内接于半径为1cm的⊙O,则图中阴影部分的面积为_____cm2(结果保留π).三、解答题41.如图,在边长为4的正方形ABCD中,以AD为直径作⊙O,以C为圆心,CD长为半径作⊙C,两圆交于正方形内一点E,连CE并延长交AB于F.(1)求证:CF 与⊙O 相切;(2)求△BCF 和直角梯形ADCF 的周长之比. 【答案】(1)证明见详解;(2)6:7.【分析】(1)连接OE 、DE ,根据等腰三角形性质推出⊙ODE =⊙OED ,⊙CDE =⊙CED ,推出⊙OED +⊙CED =90°,根据切线的判定推出即可;(2)过F 作FM⊙DC 于M ,得出四边形ADMF 是矩形,推出AD =FM =4,AF =DM ,求出AF =EF ,设AF =EF =x ,DM =x ,在Rt △FMC 中,由勾股定理得出方程()()222444x x +-=+,求出x 的值,即可求出△BCF 的周长和直角梯形ADCF 的周长.【详解】(1)证明:连接OE ,DE ,⊙OD =OE ,CE =CD ,⊙⊙ODE =⊙OED ,⊙CDE =⊙CED ,⊙四边形ABCD 是正方形,⊙⊙ADC =90°,⊙⊙ADC =⊙ODE +⊙CDE =90°,⊙⊙OED +⊙CED =90°,即OE⊙CF ,⊙OE 为半径,⊙CF 与⊙O 相切.(2)解:如图:过F 作FM⊙DC 于M ,⊙四边形ABCD 是正方形,⊙AD =DC =BC =AB =CE =4,⊙FAD =⊙ADM =⊙FMD =⊙FMC =90°,⊙四边形ADMF 是矩形,⊙AD =FM =4,AF =DM⊙⊙OAF =90°,OA 为半径,⊙AF 切⊙O 于A ,CF 切⊙O 于E ,⊙AF =EF ,设AF =EF =x ,DM =x ,在Rt △FMC 中,由勾股定理得:222FM MC CF +=,()()222444x x +-=+, 解得:x =1,⊙AF =EF =DM =1,⊙CF =4+1=5,⊙⊙BCF 的周长是BC +CF +BF =4+5+4−1=12,直角梯形ADCF 的周长是AD +DC +CF +AF =4+4+5+1=14,⊙⊙BCF 和直角梯形ADCF 的周长之比是12:14=6:7.【点睛】本题考查了正方形性质,切线的性质和判定,矩形的性质和判定,勾股定理的应用,主要考查学生综合运用定理进行推理的能力.42.已知ABC 内接于O ,BAC ∠的平分线交O 于点D ,连接DB ,DC . (1)如图⊙,当120BAC ∠=时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式: ;(2)如图⊙,当90BAC ∠=时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论;(3)如图⊙,若BC=5,BD=4,求AD AB AC+ 的值.43.如图,在Rt⊙ABC中,⊙C=90°,BE平分⊙ABC交AC于点E,点D在AB边上且DE⊙BE.(1)判断直线AC与⊙DBE外接圆的位置关系,并说明理由;(2)若AD=6,BC的长.【答案】(1)直线AC与⊙DBE外接圆相切.(2)BC=4.【分析】(1)取BD的中点O,连接OE,证明⊙OEB=⊙CBE后可得OE⊙AC;(2)设OD=OE=OB=x,利用勾股定理求出x的值,再证明△AOE⊙⊙ABC,利用线段比求解.【详解】(1)直线AC与⊙DBE外接圆相切.理由:⊙DE⊙BE⊙BD为⊙DBE外接圆的直径取BD的中点O(即⊙DBE外接圆的圆心),连接OE⊙OE=OB⊙⊙OEB=⊙OBE⊙BE平分⊙ABC⊙⊙OBE=⊙CBE⊙⊙OEB=⊙CBE⊙⊙CBE+⊙CEB=90°⊙⊙OEB+⊙CEB=90°,即OE⊙AC44.如图,已知AB是⊙O的直径,⊙O交⊙ABE边AE于点D,点P在BA的延长线上,PD交BE于点C.现有3个选项:⊙AB=BE,⊙PC⊙BE,⊙PD是⊙O的切线.(1)请从3个选项中选择两个作为条件,余下一个作为结论,得到一个真命题,并证明;你选择的两个条件是,结论是(只要填写序号);(2)在(1)的条件下,连接OC,如果P A=2,sin⊙ABC=45,求OC的长.=AB BE∴∠=BAE∴∥OD BE∴∠=ODP∴PD是⊙4CP =2,PA OD∴=OD OA45.如图,BD是⊙O的直径,过点D的切线交⊙O的弦BC的延长线于点E,弦AC⊙DE交BD于点G(1)求证:BD平分弦AC;(2)若弦AD=5㎝,AC=8㎝,求⊙O的半径.46.如图,⊙ABC 为⊙O 的内接三角形,其中AB 为⊙O 的直径,过点A 作⊙O 的切线P A .(1)求证:⊙P AC =⊙ABC ;(2)若⊙P AC =30°,AC =3,求劣弧AC 的长.603180π=π.【点睛】本题考查了切线的性质,圆周角定理的推论,弧长公式,熟练掌握相关知识是解题的关键.47.如图,在⊙ABC中,AB=AC,以AB为直径的半圆分别交AC,BC边于点D,E,连结BD,(1)求证:DE BE=;(2)当AB=10,BD=8,求CD和BE的长.48.在复习菱形的判定方法时,某同学进行了画图探究,其作法和图形如下:⊙画线段AB;⊙分别以点A,B为圆心,大于AB长的一半为半径作弧,两弧相交于M、N两点,作直线MN交AB于点O;⊙在直线MN上取一点C(不与点O重合),连接AC、BC;⊙过点A作平行于BC的直线AD,交直线MN于点D,连接B D.(2)该同学在图形上继续探究,他以点O为圆心作四边形ADBC的内切圆,构成如图所示的阴影部分,若AB=⊙BAD=30°,求图中阴影部分的面积.1149.如图,AB是⊙O的直径,CD与⊙O相切于点C,且与AB的延长线交于点D,连接AC.作CE⊙AB于点E.(1)求证:⊙BCE=⊙BCD;(2)若AD=8,12BCAC=,求CD的长.【答案】(1)见解析;(2)CD=4【分析】(1)连接OC,如图,利用圆周角定理得到⊙ACB=90°,利用切线的性质得到⊙DCO=90°,则根据等角的余角相等得到⊙ACO=⊙BCD,同样方法证明⊙A=⊙BCE,从而得到⊙BCE=⊙BCD;(2)证明⊙ACD⊙⊙CBD,然后利用相似比求CD的长.【详解】(1)证明:连接OC,如图,⊙AB是⊙O的直径,⊙⊙ACB=90°,即⊙ACO+⊙OCB=90°,⊙CD与⊙O的相切于点C,⊙⊙DCO=90°,即⊙BCD+⊙OCB=90°,⊙⊙ACO=⊙BCD,⊙OC=OA,⊙⊙A=⊙ACO,50.如图,ABC 中,90ACB ∠=︒,30A ∠=︒,2AB =,点P 从点A 出发,以每秒12个单位长度的速度沿AB 向点B 运动,到点B 停止.同时点Q 从点A 出发,沿AC CB -的线路向点B 运动,在边AC BC 上的速度为每秒2个单位长度,到B 停止,以PQ 为边向右或右下方构造等边PQR ,设P 的运动时间为t 秒,解答下列问题:(1)填空:BC =__________,AC =__________.(2)当Q 在AC 上,R 落在BC 边上时,求t 的值.(3)连结BR .⊙当Q 在边AC 上,BR 与ABC 的一边垂直时,求PQR 的边长.⊙当Q 在边BC 上且R 不与点B 重合时,判断BR 的方向是否变化,若不变化,说明理由.理由见解析⊙ABC中,90,30∠,ABA=,3作QD⊙AB59⊙⊙QPR是等边三角形,⊙⊙QRP=60°,⊙⊙ABC=90°-⊙A=60°,⊙⊙QBP=⊙QRP=60°,⊙Q、P、B、R四点共圆,⊙⊙QBR=⊙QPR=60°,⊙BR的方向不变.【点睛】本题主要考查了等边三角形的性质,含30度角的直角三角形的性质,四点共圆等等,解题的关键在于能够熟练掌握相关知识进行求解.。
垂径定理圆心角圆周角练习1.如图.⊙O中OA⊥BC,∠CDA=25o,则∠AOB的度数为_______.2.如图.AB为⊙O的直径,点C、D在⊙O上,∠BAC=50o.则∠ADC=_______.第1题第2题第3题3.如图,点A、B、C都在⊙O上,连结AB、BC、AC、OA、OB,且∠BAO=25°,则∠ACB的大小为___________.第4题第5题4.已知:如图,四边形ABCD是⊙O的内接四边形,∠BOD=140°,则∠DCE=.5、如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠1+∠2=.6、⊙O中,若弦AB长22cm,弦心距为2cm,则此弦所对的圆周角等于.7、已知AB是⊙O的直径,AC,AD是弦,且AB=2,AC=2,AD=1,则圆周角∠CAD的度数是()A.45°或60°B.60°C.105°D.15°或105°8、如图,AB是⊙的直径,弦CD垂直平分OB,则∠BDC=()A.20°B.30°C.40°D.50°9、如图,点A、B、C为圆O上的三个点,∠AOB=的度数.13∠BOC,∠BAC=45°,求∠ACB 10、如图,AD是∆ABC的高,AE是∆ABC的外接圆的直径.试说明狐B E CF。
DF11、如图,AB,AC是⊙O的两条弦,且AB=AC.延长CA到点D.使AD=AC,连结DB并延长,交⊙O于点E.求证:CE是⊙O的直径.12、已知:如图,AB为⊙O的直径,AB=AC,B C交⊙O于点D,AC交⊙O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.△13.如图所示,ABC为圆内接三角形,A B>AC,∠A的平分线AD交圆于D,作D E⊥AB于E,D F⊥AC于F,求证:BE=CFAEB CFD△14.如图所示,在ABC中,∠BAC与∠ABC的平分线AE、BE相交于点E,延长AE交△ABC的外接圆于D点,连接BD、CD、CE,且∠BDA=60°(1)求证△BDE是等边三角形;(2)若∠BDC=120°,猜想BDCE是怎样的四边形,并证明你的猜想。
圆---圆心角、圆周角
1. 如图,已知AB是⊙O的直径,C.D是上的三等分点,∠AOE=60°,则∠COE是( )
A.40°
B.60°
C.80°
D.120°
2.如图,已知在⊙O中,点C为的中点,∠A=40°,则∠BOC等于( )
A.40°
B.50°
C.70°
D.80°
3. 下面四个图中的角,是圆心角的是( )
4. 下列说法正确的是( )
A.相等的圆心角所对的弦相等
B.相等的圆心角所对的弧相等
C.等弧所对的弦相等
D.度数相等的弧的长度相等
5. 如图,在⊙O中,弦AB.CD相交于点E,且AB=CD,连接AD.BC,则下列给出的结论中,正确的有( )
①②AD=BC ③∠CBD=∠ADB ④∠A=∠C ⑤AE=CE
A.5个
B.4个
C.3个
D.2个
6. 如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为( )
A.25°
B.50°
C.60°
D.80°
7. 如图,已知经过原点的⊙P与x、y轴分别交于A.B两点,点C是劣弧OB上一点,则∠ACB=( )
A.80°
B.90°
C.100°
D.无法确定
8. 圆内接四边形ABCD中,已知∠A=70°,则∠C=( )
A.20°
B.30°
C.70°
D.110°
9. 如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为( )
A.50°
B.80°
C.100°
D.130°
10. 顶点在圆心,两边与圆相交的角叫做_________.在同圆或等圆中,相等的圆心角所对的弧_____,所对的弦也______;在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角______,所对的弦_________;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角_____,所对的弦_______-.
11. 顶点在_________,两边都和圆_______的角叫圆周角.一条弧所对的圆周角等于它所对的圆心角的_______.在__________(或相等的圆)中,同弧或等弧所对的圆周角_______;反之,相等的圆周角所对的弧_________.
12. 半圆(或直径)所对的圆周角是_______;90°的圆周角所对的弦是________.
13.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做__________,这个圆叫做___________;圆内接四边形对角_________-.
14. 已知圆O的半径为5cm,弦AB的长为5cm,则弦AB所对的圆心角∠AOB=__________.
15. 如图,已知AB为⊙O的直径,点D为半圆周上的一点,且所对圆心角的度数是所对圆心角度数的两倍,则圆心角∠BOD的度数为_____.
16. 下列四个图中,∠x是圆周角的是________.
17. 如图,AB.CD是⊙O的两条互相垂直的弦,圆心角∠AOC=130°,AD.CB的延长线相交于P,则∠P=_______-.
18. 如图所示,A.B.C.D是⊙O上顺次四点.若∠AOC=160°,则∠D=_______________ ,∠B=____________.
19. 如图,已知A.B.C.D是⊙O上四点,若AC=BD,求证:AB=CD.
20. 如图,在△AOB中,AO=AB,以点O为圆心,OB为半径的圆交AB于D,交AO于点E,AD=BO.试说明
,并求∠A的度数.
21. 如图,A.B.C在圆上,弦AE平分∠BAC交BC于D.
求证:BE2=ED·EA.
22. 如图所示,AB是⊙O的直径,AB=8cm,∠ADE=60°,DC平分∠ADE,求AC.BC的长.
23. 如图,△ABC内接于⊙O,过C作CD∥AB与⊙O相交于D点,E是上一点,且满足AD=DE,连接BD与AE相交于点F.
求证:△ADF∽△ABC.
24. 如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.
(1)若∠CBD=39°,求∠BAD的度数;
(2)求证:∠1=∠2.
25. 如图,已知△ABC是等边三角形,⊙O经过点A.B.C,点P是BC上任一点.
(1)图中与∠PBC相等的角为________;
(2)试猜想三条线段PA.PB.PC之间的数量关系,并证明.
26. 如图,以△ABC的一边AB为直径的半圆与其它两边AC.BC的交点分别为D.E,且.
(1)试判断△ABC的形状,并说明理由;
(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.
参考答案:
1—9 CBDCA BBDD
10. 圆心角 相等 相等 相等 相等 相等 相等
11. 圆上 相交 一半 同一圆 相等 相等
12. 90° 直径
13. 圆的内接多边形 多边形的外接圆 互补
14. 60°
15. 60°
16. ③
17. 40°
18. 80° 100° 19.
20. 解:设∠A =x°.∵AD =BO ,又OB =OD ,∴OD =AD ,∴∠AOD =∠A =x°,∴∠ABO =∠ODB =∠AOD +∠A =2x°.∵AO =AB ,∴∠AOB =∠ABO =2x°.从而∠BOD =2x°-x°=x°,即∠BOD =∠AOD ,∴
由三角形的内角和为180°,有2x°+2x°+x°=180°,x°=36°,即∠A =36°.
21. 证明:∵AE 平分∠BAC ,∴∠EAB =∠EAC ,又∵∠EBC =∠EAC ,∴∠EBC =∠EAB ,又∵∠E 公用,∴
△EBD ∽△EAB ,∴EB EA =ED EB
,∴EB2=EA·ED. 22. 解:∵∠ADE =60°,DC 平分∠ADE ,∴∠ADC =12
∠ADE =30°=∠ABC.又∵AB 为⊙O 的直径,∴∠ACB =90°,∴AC =12
AB =4cm.BC =AB2-AC2=82-42=43(cm). 23. 证明:∵AB ∥CD ,∴∠BAC =∠ACD ,∵AD =DE ,∴∠DAE =∠AED ,∴∠DAE =∠AED =∠ACD =∠BAC ,∵∠ADF =∠ACB ,∠DAE =∠BAC ,∴△ADF ∽△ABC.
24. (1)解:∵BC =DC ,∴∠CBD =∠CDB =39°,∵∠BAC =∠CDB =39°,∠CAD =∠CBD =39°,∴∠BAD =∠BAC +∠CAD =39°+39°=78°;
(2)证明:∵EC =BC ,∴∠CEB =∠CBE ,而∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE =∠1
+∠CBD ,∵∠BAE =∠CBD ,∴∠1=∠2.
25. 解:(1)∠PAC ;
(2)PA =PB +PC.在AP 上截取PD =PC ,连接CD 可证△PCD 是等边三角形,△ACD ≌△BCP.
26. 解:(1)△ABC 为等边三角形.理由如下:连接AE ,如图,
∵,∴∠DAE =∠BAE ,即AE 平分∠BAC ,∵AB 为直径,∴∠AEB =90°,∴AE ⊥BC ,∴△ABC 为等腰三角形;
(2)∵△ABC 为等腰三角形,AE ⊥BC ,∴BE =CE =12BC =12
×12=6,在Rt △ABE 中,∵AB =10,BE =6,∴AE =102-62=8,∵AB 为直径,∴∠ADB =90°,∴12AE·BC=12BD·AC,∴BD =8×1210=485
,在Rt △ABD 中,∵AB =10,BD =485,∴AD =AB2-BD2=145,∴sin ∠ABD =AD AB =14510=725
.。