18版高中数学第二章平面向量疑难规律方法学案苏教版必修4
- 格式:doc
- 大小:247.54 KB
- 文档页数:6
高中数学必修 4 第二章平面向量教课设计( 12课时 )本章内容介绍向量这一看法是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具 .向量看法引入后,全等和平行(平移)、相似、垂直、勾股定理即可转变为向量的加(减)法、数乘向量、数目积运算,从而把图形的基天性质转变为向量的运算系统.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实质背景.在本章中,学生将认识向量丰富的实质背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数目积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题.而后介绍本节从物理上的力和位移出发,抽象出向量的看法,并说了然向量与数目的差别,了向量的一些基本看法 . (让学生对整章有个初步的、全面的认识 .)第 1课时§2.1 平面向量的实质背景及基本看法教课目标:1.认识向量的实质背景,理解平面向量的看法和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等看法;并会划分平行向量、相等向量和共线向量 .2.经过对向量的学习,使学生初步认识现实生活中的向量和数目的实质差别.3.经过学生对向量与数目的鉴别能力的训练,培育学生认识客观事物的数学实质的能力.教课要点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的看法,会表示向量.教课难点:平行向量、相等向量和共线向量的差别和联系.学法:本节是本章的入门课,看法许多,但难度不大.学生可依据在原有的位移、力等物理看法来学习向量的看法,联合图形实物划分平行向量、相等向量、共线向量等看法.教具:多媒体或实物投影仪,尺规讲课种类:新讲课教课思路:一、情形设置:如图,老鼠由 A 向西北逃跑,猫在 B 处向东追去,设问:猫能否追到老鼠?(画图)C结论:猫的速度再快也没用,因为方向错了.A DB 解析:老鼠逃跑的路线AC 、猫追赶的路线BD 实质上都是有方向、有长短的量 .前言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:(一)向量的看法:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1、数目与向量有何差别?2、如何表示向量?3、有向线段和线段有何差别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为 1 的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向同样或相反,这组向量有什么关系?7、假如把一组平行向量的起点所有移到一点O,这是它们能否是平行向量?这时各向量的终点之间有什么关系?(三)研究学习1、数目与向量的差别:数目只有大小,是一个代数目,可以进行代数运算、比较大小;向量有方向,大小,两重性,不可以比较大小.2.向量的表示方法:a①用有向线段表示;②用字母a、bA(起点)(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;B (终点)④向量 AB 的大小――长度称为向量的模,记作| AB |.3.有向线段:拥有方向的线段就叫做有向线段,三个因素:起点、方向、长度.向量与有向线段的差别:(1)向量只有大小和方向两个因素,与起点没关,只要大小和方向同样,则这两个向量就是同样的向量;(2)有向线段有起点、大小和方向三个因素,起点不一样,尽管大小和方向同样,也是不一样的有向线段 .4、零向量、单位向量看法:①长度为 0 的向量叫零向量,记作0. 0 的方向是任意的.注意 0 与 0 的含义与书写差别.②长度为 1 个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都不过限制了大小.5、平行向量定义:①方向同样或相反的非零向量叫平行向量;②我们规定0 与任一直量平行.说明:( 1)综合①、②才是平行向量的完好定义;( 2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向同样的向量叫相等向量.说明:( 1)向量a与b相等,记作a=b;( 2)零向量与零向量相等;( 3)任意两个相等的非零向量,都可用同一条有向线段来表示,而且与有..向线段的起点没关.........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同向来线上(与有向线段的......起点没关)..... .说明:( 1)平行向量可以在同向来线上,要差别于两平行线的地点关系;(2)共线向量可以相互平行,要差别于在同向来线上的线段的地点关系.(四)理解和牢固:例1 书籍 86页例 1.例2判断:(1)平行向量能否必定方向同样?(不必定)(2)不相等的向量能否必定不平行?(不必定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同向来线上,则这两个向量必定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且方向同样)(7)共线向量必定在同向来线上吗?(不必定)例 3 以下命题正确的选项是()A. a与b共线,b与c共线,则a与 c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四极点C.向量a与b不共线,则a与b都是非零向量D.有同样起点的两个非零向量不平行解:因为零向量与任一直量都共线,所以 A 不正确;因为数学中研究的向量是自由向量,所以两个相等的非零向量可以在同向来线上,而此时就构不行四边形,根本不行能是一个平行四边形的四个极点,所以 B 不正确;向量的平行只要方向同样或相反即可,与起点能否同样没关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来下手考虑,倘若a与b不都是非零向量,即a与b最少有一个是零向量,而由零向量与任一直量都共线,可有a与b共线,不吻合已知条件,所以有a与b都是非零向量,所以应选 C.例 4如图,设O是正六边形ABCDEF 的中心,分别写出图中与向量OA 、 OB 、 OC 相等的向量 .变式一:与向量长度相等的向量有多少个?(11 个)变式二:能否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?(CB, DO, FE )课堂练习:1.判断以下命题能否正确,若不正确,请简述原由.①向量 AB 与 CD 是共线向量,则A、 B、 C、D 四点必在向来线上;②单位向量都相等;③任一直量与它的相反向量不相等;④四边形 ABCD 是平行四边形当且仅当AB = DC⑤一个向量方向不确立当且仅当模为0;⑥共线的向量,若起点不一样,则终点必定不一样.解:①不正确.共线向量即平行向量,只要求方向同样或相反即可,其实不要求两个向量AB 、 AC 在同向来线上.②不正确 .单位向量模均相等且为1,但方向其实不确立.③不正确 .零向量的相反向量还是零向量,但零向量与零向量是相等的. ④、⑤正确 .⑥不正确 .如图AC与BC共线,虽起点不一样,但其终点却相同. 2.书籍 88 页练习三、小结:1、描述向量的两个指标:模和方向.2、平行向量不是平面几何中的平行线段的简单类比.3、向量的图示,要标上箭头和始点、终点.四、课后作业:书籍 88 页习题 2.1 第 3、5 题第 2课时§向量的加法运算及其几何意义教课目标:1、掌握向量的加法运算,并理解其几何意义;2、会用向量加法的三角形法规和平行四边形法规作两个向量的和向量,培育数形联合解决问题的能力;3、经过将向量运算与熟习的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,浸透类比的数学方法;教课要点:会用向量加法的三角形法规和平行四边形法规作两个向量的和向量.教课难点:理解向量加法的定义.学法:数能进行运算,向量能否也能进行运算呢?数的加法启示我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生理所应当接受向量的加法定义.联合图形掌握向量加法的三角形法规和平行四边形法规 .联系数的运算律理解和掌握向量加法运算的交换律和联合律.教具:多媒体或实物投影仪,尺规讲课种类:新讲课教课思路:一、设置情形:1、复习:向量的定义以及相关看法重申:向量是既有大小又有方向的量.长度相等、方向同样的向量相等.所以,我们研究的向量是与起点没关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移就任何地点2、情形设置:A B C(1)某人从 A 到 B ,再从 B 按原方向到C,则两次的位移和:AB BC AC(2)若上题改为从 A 到 B,再从 B 按反方向到 C, C A B 则两次的位移和:AB BC ACC (3)某车从 A 到 B ,再从 B 改变方向到 C,则两次的位移和:AB BC AC A BC (4)船速为AB,水速为BC,则两速度和:AB BC AC二、研究研究:1、向量的加法:求两个向量和的运算,叫做向量的加法.A B2、三角形法规(“首尾相接,首尾连” )如图,已知向量a、b .在平面内任取一点 A ,作 AB =a,BC=b,则向量AC叫做a 与b的和,记作a+b,即a+bAB BC AC ,规定: a + 0-= 0 + aaaaC bbaa+ b bA a+ bbaB研究:( 1)两相向量的和还是一个向量;( 2)当向量a与b不共线时, a + b 的方向不一样向,且|a + b |<|a |+| b |;( 3)当a与b同向时,则a + b、a、b同向,O a A且| a + b |=| a |+|b |,当a与b反向时,若 | a |>|b |,bb b a则 a + b 的方向与 a 同样,且| a + b |=| a |-| b |;若a B | a |<| b |,则a + b的方向与b同样,且 | a +b|=| b |-| a |.( 4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推行到n个向量连加3.例一、已知向量 a 、 b ,求作向量 a + b作法:在平面内取一点,作OA a AB b ,则 OB a b .4.加法的交换律和平行四边形法规问题:上题中 b + a 的结果与 a + b 能否同样?考据结果同样从而获得:1)向量加法的平行四边形法规(对于两个向量共线不适应)aa +b = b + a2)向量加法的交换律:5.向量加法的联合律:( a + b ) + c = a + ( b + c )证:如图:使AB a ,BC b ,CD c则( a + b ) + c = AC CD AD , a + ( b + c ) =AB BD AD∴( a + b ) + c = a + ( b + c )从而,多个向量的加法运算可以依据任意的次序、任意的组合来进行.三、应用举例:例二( P94— 95)略练习: P95四、小结1、向量加法的几何意义;2、交换律和联合律;3、注意: | a + b | ≤ | a | + | b |,当且仅当方向同样时取等号.五、课后作业:P103 第2、3题六、板书设计(略)七、备用习题1、一艘船从 A 点出发以23km/ h 的速度向垂直于对岸的方向行驶,船的实质航行的速度的大小为4km/ h ,求水流的速度.2、一艘船距对岸 4 3km ,以23km / h 的速度向垂直于对岸的方向行驶,到达对岸时,船的实质航程为8km ,求河水的流速.3、一艘船从 A 点出发以v1的速度向垂直于对岸的方向行驶,同时河水的流速为v 2,船的实质航行的速度的大小为4km/ h ,方向与水流间的夹角是60,求v1和 v2.4、一艘船以5km/h的速度内行驶,同时河水的流速为2km/h ,则船的实质航行速度大小最大是km/h ,最小是km/h5、已知两个力F1,F2的夹角是直角,且已知它们的合力 F 与F1的夹角是60,|F|=10N 求 F1和 F2的大小 .6、用向量加法证明:两条对角线相互均分的四边形是平行四边形第 3课时§2.2.2 向量的减法运算及其几何意义教课目标:1.认知趣反向量的看法;2.掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3.经过论述向量的减法运算可以转变为向量的加法运算,使学生理解事物之间可以相互转变的辩证思想 .教课要点:向量减法的看法和向量减法的作图法.教课难点:减法运算时方向的确定.学法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上联合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量.教具:多媒体或实物投影仪,尺规讲课种类:新讲课教课思路:一、复习:向量加法的法规:三角形法规与平行四边形法规向量加法的运算定律:DCB BA BA例:在四边形中,.解: CB BA BA CB BA AD CDA B二、提出课题:向量的减法1.用“相反向量”定义向量的减法( 1)“相反向量”的定义:与 a 长度同样、方向相反的向量.记作a( 2)规定:零向量的相反向量还是零向量. ( a) = a.任一直量与它的相反向量的和是零向量.a + ( a) = 0假如 a、 b 互为相反向量,则 a =b, b = a, a + b = 0( 3)向量减法的定义:向量 a 加上的 b 相反向量,叫做 a 与 b 的差 .即: a b = a + (b)求两个向量差的运算叫做向量的减法.2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若 b + x = a,则 x 叫做 a 与 b 的差,记作 a b3.求作差向量:已知向量a、 b,求作向量∵ (a b) + b = a + ( b) + b = a + 0 = a a O作法:在平面内取一点O,bba bBCa作 OA = a,AB = b则 BA = a b即 a b 可以表示为从向量 b 的终点指向向量 a 的终点的向量 .注意: 1AB 表示a b.重申:差向量“箭头”指向被减数2 用“相反向量”定义法作差向量, a b = a + ( b)明显,此法作图较繁,但最后作图可一致.B’a bB a+ ( b)Ob ab bAB4.研究:1)假如从向量 a 的终点指向向量 b 的终点作向量,那么所得向量是 b a.a ab a bbO B A B’O BAa ab a bb O A b B BO A2)若 a∥b,如何作出 a b?三、例题:例一、( P97例三)已知向量a、b、 c、 d,求作向量 a b、 c d.解:在平面上取一点O,作OA = a,OB = b,OC = c,OD = d,作 BA ,DC ,则BA= a b,DC = c db aA BD dcCOD CA B例二、平行四边形ABCD 中,AB a,AD b ,用 a、 b 表示向量AC 、 DB .解:由平行四边形法规得:,DB= AB AD= a bAC = a + b变式一:当 a, b 满足什么条件时,a+b 与 a b 垂直?( |a| = |b|)变式二:当 a, b 满足什么条件时,|a+b| = |a b|?( a, b 相互垂直)变式三: a+b 与 a b 可能是相当向量吗?(不行能,∵对角线方向不一样)练习:P 98四、小结:向量减法的定义、作图法|五、作业: P103 第 4、5题六、板书设计(略)七、备用习题:1.在△ABC中,BC=a,CA=b ,则AB等于 ()A. a+bB.- a+(- b) D. b-a为平行四边形ABCD平面上的点,设OA=a,OB=b,OC=c,OD=d ,则A. a+b+c+d=03 .如图,在四边形B.a-b+c-d=0 C.a+b -c-d=0ABCD 中,依据图示填空:D.a-b -c+d=0a+b=, b+c=,c-d=, a+b+c-d=.4、以以下图,O 是四边形ABCD内任一点,试依据图中给出的向量,确立a、b 、 c、d 的方向(用箭头表示),使a+b=AB ,c-d=DC,并画出 b -c 和a+d.第3题平面向量的基本定理及坐标表示第 4课时§ 2.3.1 平面向量基本定理教课目标:(1)认识平面向量基本定理;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实质问题的重要思想方法;(3)可以在详尽问题中合适地采用基底,使其余向量都可以用基底来表达.教课要点:平面向量基本定理.教课难点:平面向量基本定理的理解与应用.讲课种类:新讲课教具:多媒体、实物投影仪教课过程:一、复习引入:1.实数与向量的积:实数λ与向量 a 的积是一个向量,记作:λa(1)|λa |=|λ ||a |;( 2)λ >0 时λa与a方向同样;λ <0 时λa与a方向相反;λ =0 时λa =02.运算定律联合律:λ ( μa )=( λ μ);分配律: (λ +μ)=λa +μ,λ ( a +b)= λa+λba a a3. 向量共线定理向量 b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa.二、讲解新课:平面向量基本定理:假如e1, e2是同一平面内的两个不共线向量,那么对于这一平面内的任一直量 a ,有且只有一对实数λ1,λ 2 使a=λ 1e1+λ2e2.研究:(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,要点是不共线;(3)由定理可将任一直量 a 在给出基底e1、e2的条件下进行分解;(4)基底给准时,分解形式唯一 . 1λ,λ2是被a,e1,e2独一确立的数目三、讲解模范:例 1 已知向量e1,e2求作向量 2.5 e1 +3 e2 .例 2如图ABCD的两条对角线交于点M ,且AB = a,AD = b ,用a, b 表示 MA , MB , MC 和 MD例 3 已知 ABCD 的两条对角线 AC 与 BD 交于 E, O 是任意一点,求证: OA + OB + OC + OD =4 OE例 4( 1)如图,OA,OB不共线,AP =t AB(t R)用OA,OB表示OP.uuur uur( 2 )设OA、OB不共线,点P 在 O、A、B所在的平面内,且uuur uuur uuurR) .求证:A、B、P三点共线.OP(1t )OA tOB (t例 5已知 a=2 e121212不共线,向量12-3e , b= 2e +3e ,此中 e , e c=2e -9e,问能否存在这样的ur r r实数、 ,使 d a b 与c共线.四、课堂练习:1.设 e 、 e 是同一平面内的两个向量,则有()12A. e1、 e2必定平行1、 e2的模相等C.同一平面内的任一直量 a 都有 a =λe1+μe2 (λ、μ∈ R )D.若 e1、 e2不共线,则同一平面内的任一直量 a 都有 a =λe1+ue2(λ、 u∈R )2.已知矢量 a = e1-2e2, b =2e1+e2,此中 e1、 e2不共线,则a+b 与 c =6 e1-2e2的关系A. 不共线B.共线C.相等D. 没法确立3.已知向量e1、e2不共线,实数x、y 满足 (3x-4y)e1+(2x-3y)e2=6e1+3e2,则 x-y 的值等于 ( )4.已知 a、b 不共线,且 c =λ1a+λ2b(λ1,λ2∈ R),若 c 与 b 共线,则λ1=.5.已知λ1> 0,λ2> 0,e1、e2是一组基底,且 a =λ1e1+λ2e2,则 a 与 e1_____,a 与 e2_________( 填共线或不共线 ).五、小结(略)六、课后作业(略):七、板书设计(略)八、课后记:第 5课时§—§ 2.3.3 平面向量的正交分解和坐标表示及运算教课目标:(1)理解平面向量的坐标的看法;(2)掌握平面向量的坐标运算;(3)会依据向量的坐标,判断向量能否共线.教课要点:平面向量的坐标运算教课难点:向量的坐标表示的理解及运算的正确性.讲课种类:新讲课教具:多媒体、实物投影仪教课过程:一、复习引入:1.平面向量基本定理:假如e1, e2是同一平面内的两个不共线向量,那么对于这一平面内的任一直量 a ,有且只有一对实数λ1,λ 2 使a=λ 1 e1+λ2e2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,要点是不共线;(3)由定理可将任一直量a在给出基底e1、e2的条件下进行分解;(4)基底给准时,分解形式唯一 . λ1,λ2是被a,e1,e2独一确立的数目二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y轴方向同样的两个单位向量基底 .任作一个向量 a ,由平面向量基本定理知,有且只有一对实数x 、y,使得i 、j 作为a xi yj ○1我们把 ( x, y) 叫做向量 a 的(直角)坐标,记作a ( x, y) ○2此中 x 叫做 a 在 x 轴上的坐标,y 叫做a在 y 轴上的坐标,○2式叫做向量的坐标表示 .与a相等的向量的坐标也为( x, y)............特别地, i(1,0) , j(0,1), 0 (0,0) .如图,在直角坐标平面内,以原点O 为起点作OA a ,则点A的地点由 a 独一确立.设 OA xi yj ,则向量OA的坐标(x, y)就是点 A 的坐标;反过来,点 A 的坐标(x, y)也就是向量 OA 的坐标.所以,在平面直角坐标系内,每一个平面向量都是可以用一对实数独一表示 .2.平面向量的坐标运算(1)若a ( x1 , y1 ),b ( x2 , y2 ),则 a b(x1x2 , y1y2 ),a b( x1x2 , y1y2 )两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为 i 、 j ,则 a b( x1i y1 j ) ( x2 i y2 j ) ( x1x2 )i ( y1y2 ) j即 a b(x1x2 , y1y2 ) ,同理可得a b(x1x2 , y1y2 )(2)若A (x1,y1), B( x2 , y2 ) ,则AB x2x1 , y2y1一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB= OB OA=( x 2,y2)(x1, y1)= (x2x1,y2y1)(3)若a(x, y)和实数,则a(x,y).实数与向量的积的坐标等于用这个实数乘本来向量的相应坐标.设基底为 i 、j ,则a( xi yj )xi yj ,即 a ( x, y)三、讲解模范:uuur例 1 已知 A(x 1, y1), B(x 2, y2),求AB的坐标 .r r r r r r r r例 2 已知a =(2 ,1),b =(-3 ,4) ,求a + b,a - b,3 a +4 b的坐标.例 3 已知平面上三点的坐标分别为 A( 2, 1), B( 1, 3), C(3, 4),求点 D 的坐标使这四点构成平行四边形四个极点 .解:当平行四边形为 ABCD 时,由 AB DC 得 D 1=(2, 2)当平行四边形为ACDB 时,得 D 2=(4 , 6),当平行四边形为 DACB 时,得 D 3=( 6, 0)例 4 已知三个力 F 1 (3, 4), F 2 (2, 5), F 3 (x , y)的合力 F 1 + F 2 + F 3 = 0 ,求 F 3 的坐标 .解:由题设 F 1 + F 2 +F 3=0得: (3, 4)+ (2 , 5)+(x , y)=(0 , 0)32 x 0x 5 ∴ F 3 ( 5,1)即:5 y∴14 y四、课堂练习 :1.若 M(3 , -2)N(-5 , -1) 且 MP1MN ,求 P 点的坐标22.若 A(0 , 1), B(1, 2),C(3 , 4) ,则AB 2BC = .3.已知:四点 A(5 , 1), B(3, 4), C(1, 3),D(5 , -3), 求证:四边形 ABCD是梯形 .五、小结 (略)六、课后作业 (略)七、板书设计 (略)八、课后记:第 6课时§ 2.3.4 平面向量共线的坐标表示教课目标:( 1)理解平面向量的坐标的看法;( 2)掌握平面向量的坐标运算;( 3)会依据向量的坐标,判断向量能否共线.教课要点: 平面向量的坐标运算教课难点: 向量的坐标表示的理解及运算的正确性讲课种类: 新讲课教 具:多媒体、实物投影仪教课过程 :一、复习引入:1.平面向量的坐标表示分别取与 x 轴、 y轴方向同样的两个单位向量 i、 j.a ,由平面作为基底 任作一个向量 向量基本定理知,有且只有一对实数x 、 y ,使得 axiyj把 (x, y) 叫做向量 a 的(直角)坐标,记作 a ( x, y)此中 x 叫做 a 在 x 轴上的坐标,y 叫做 a 在 y 轴上的坐标,特别地,i (1,0) , j (0,1) , 0(0,0) .2.平面向量的坐标运算若 a ( x 1 , y 1 ) , b ( x 2 , y 2 ) ,则 a b(x1x , y1y ) ,a b(x1x , yy ) ,a ( x, y).22212若 A( x 1 , y 1 ) , B(x 2 , y 2 ) ,则 AB x 2 x 1 , y 2 y 1二、讲解新课:a ∥b ( b 0 )的充要条件是 x 1y 2-x 2y 1=0设a =(x 1,y ), b=(x 2,y )此中 b a.12x 1 x 2 由 a =λ b 得, (x 1, y 1) = λ (x 2, y 2)消去λ, x 1y 2-x 2y 1=0y 1y 2研究:( 1)消去λ时不可以两式相除,∵y 1, y 2 有可能为0, ∵ b 0∴ x 2, y 2 中最少有一个不为 0( 2)充要条件不可以写成y 1 y 2 ∵ x 1, x 2 有可能为 0x 1x 2(3) 从而向量共线的充要条件有两种形式:a ∥ b( b 0ab)x 1 y 2 x 2 y 1 0三、讲解模范:例 1 已知 a =(4 ,2) , b =(6 , y),且 a ∥ b ,求 y.例 2 已知 A(-1 , -1) , B(1 ,3) , C(2 , 5),试判断 A , B , C 三点之间的地点关系 .例 3 设点 P 是线段 P1P2上的一点, P1、P2的坐标分别是 (x1, y1), (x2, y2).(1)当点 P 是线段 P1P2的中点时,求点 P 的坐标;(2) 当点 P 是线段 P1P2的一个三均分点时,求点P 的坐标 .例 4 若向量a =(-1 ,x) 与b =(-x , 2)共线且方向同样,求x解:∵ a =(-1,x)与b=(-x,2)共线∴ (-1)×2- x?(-x)=0∴ x=±2∵ a与b方向同样∴ x=2例 5 已知A(-1 , -1), B(1 , 3), C(1, 5) , D(2 , 7) ,向量AB与CD平行吗?直线AB与平行于直线CD吗?解:∵AB =(1-(-1),3-(-1))=(2 ,4),CD=(2-1 , 7-5)=(1 , 2)又∵ 2× 2-4× 1=0∴ AB∥ CD又∵AC =(1-(-1),5-(-1))=(2,6), AB =(2,平行∴A ,B,C 不共线∴AB与CD不重合四、课堂练习:1.若 a=(2 , 3), b=(4, -1+ y) ,且 a∥ b,则 y=()4),2× 4-2× 6 0∴AB ∥ CD∴ AC与AB不2.若A(x, -1) , B(1,3) ,C(2,5)三点共线,则x 的值为()3.若AB=i+2 j ,DC=(3- x)i+(4- y)j(此中i 、j的方向分别与x、y 轴正方向同样且为单位向量). AB与 DC共线,则x、 y的值可能分别为()A.1 , 2, 24.已知 a=(4 , 2),b=(6, y),且5.已知 a=(1 , 2),b=( x, 1),若6.已知□ABCD 四个极点的坐标为, 2 D.2 ,4a∥b,则 y=.a+2b 与 2a-b 平行,则x 的值为.A(5, 7),B(3, x),C(2,3), D(4, x),则x=.五、小结(略)六、课后作业(略)七、板书设计(略)八、课后记:§ 平面向量的数目积第7课时一、 平面向量的数目积的物理背景及其含义教课目标:1.掌握平面向量的数目积及其几何意义;2.掌握平面向量数目积的重要性质及运算律;3.认识用平面向量的数目积可以办理相关长度、角度和垂直的问题;4.掌握向量垂直的条件 .教课要点:平面向量的数目积定义教课难点:平面向量数目积的定义及运算律的理解和平面向量数目积的应用讲课种类:新讲课教具:多媒体、实物投影仪内容解析:本节学习的要点是启示学生理解平面向量数目积的定义,理解定义以后即可指引学生推 导数目积的运算律, 而后经过看法辨析题加深学生对于平面向量数目积的认识 .主要知识点: 平面向量数目积的定义及几何意义; 平面向量数目积的5 个重要性质; 平面向量数目积的运算律 .教课过程:一、复习引入:1. 向量共线定理向量 b 与非零向量 a 共线的充要条件是:有且只有一个非零实数λ, 使b =λ a .2.平面向量基本定理:假如e 1 , e 2 是同一平面内的两个不共线向量,那么对于这一平面内的任一直量 a ,有且只有一对实数λ 1,λ 2 使a =λ 1 e 1 +λ 2 e 23.平面向量的坐标表示分别取与 x 轴、 y 轴方向同样的两个单位向量 i 、 j.a ,由平面向作为基底 任作一个向量 量基本定理知,有且只有一对实数x 、 y ,使得 a xi yj把 (x, y)叫做向量 a 的(直角)坐标,记作 a ( x, y)4.平面向量的坐标运算若 a( x1 , y1 ), b( x2, y2 ) ,则a b(x1x2 , y1y2 ) ,a b( x1x2 , y1y2 ),a (x,y).若 A( x1 , y1 ) , B(x2 , y2 ) ,则AB x2x1 , y2y15.a∥b( b0 )的充要条件是x1y2-x2y1=06.线段的定比分点及λP1,P2是直线l 上的两点,P 是l 上不一样于P1,P2的任一点,存在实数λ,使P1 P= λPP2,λ 叫做点P分P1 P2所成的比,有三种情况:λ>0( 内分 )(外分 ) λ <0 ( λ <-1)( 外分 )λ <0(-1<λ <0)7.定比分点坐标公式:若点P 1 (x1, y1 ) ,P2 (x2, y2) ,λ为实数,且P1P =λPP2,则点P 的坐标为(x1x2 ,y1y2),我们称λ为点P分P1P2所成的比. 118.点 P 的地点与λ的范围的关系:①当λ>0时, P1 P 与 PP2同向共线,这时称点P 为P1P2的内分点 .②当λ<0 (1)时, P1P 与 PP2反向共线,这时称点P 为P1P2的外分点 .9.线段定比分点坐标公式的向量形式:在平面内任取一点O,设OP1=a,OP2=b,a b1b .可得OP=a11110.力做的功:W = |F| |s|cos ,是 F 与 s 的夹角 .二、讲解新课:1.两个非零向量夹角的看法已知非零向量a与b,作 OA =a, OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角 .说明:( 1)当θ=0时,a与b同向;( 2)当θ=π时,a与b反向;( 3)当θ=时,a与b垂直,记a⊥b;2( 4)注意在两向量的夹角定义,两向量一定是同起点的.范围0 ≤ ≤180C2.平面向量数目积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数目|a||b|cos叫a与b的数目积,记作 a b,即有 a b = |a||b|cos,(0≤θ≤π) .并规定0 与任何向量的数目积为0.研究:两个向量的数目积与向量同实数积有很大差别(1)两个向量的数目积是一个实数,不是向量,符号由cos的符号所决定.(2)两个向量的数目积称为内积,写成个向量的数目的积,书写时要严格划分也不可以用“×”取代.a b;今后要学到两个向量的外积a× b,而 ab 是两.符号“·”在向量运算中不是乘号,既不可以省略,(3)在实数中,若b=0.因为此中cosa 0,且有可能为a b=0,则0.b=0;但是在数目积中,若 a 0,且 a b=0,不可以推出(4)已知实数a、 b、 c(b0),则ab=bc a=c .但是 a b = b c a = c如右图: a b = |a||b|cos= |b||OA|, b c = |b||c|cos = |b||OA|a b = b c但a c(5) 在实数中,有( a b)c = a(b c),但是 (a b)c a(b c)明显,这是因为左端是与 c 共线的向量,而右端是与 a 共线的向量,而一般 a 与c 不共线.3.“投影”的看法:作图。
高中数学第二章平面向量本章复习教案苏教版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章平面向量本章复习教案苏教版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章平面向量本章复习教案苏教版必修4的全部内容。
第二章平面向量本章复习错误!知识网络教学分析向量的重要性可与函数相比,函数思想是整个中学数学的最重要的思想之一,它贯穿于整个中学的每一个学习阶段;而向量可作为一种重要的解题方法,渗透于高中数学的许多章节,它与函数、三角、复数、立体几何、解析几何等知识的联系是显而易见的.因此复习时,要特别重视向量概念、向量运算,并善于与物理中、生活中的模型进行模拟和联想,利用直观的教学手段和方法,帮助学生正确理解、掌握向量的有关概念、运算及几何意义.变抽象为形象,变被动接受为主动运用向量的知识分析问题、解决问题,从而提高本章复习的教学质量.数与形的紧密结合是本章的显著特点,向量与几何之间存在着对应关系;向量又有加减、数乘积及数量积等运算,也有平面向量的坐标运算,因而向量具有几何和代数的双重属性,能沟通几何与代数,从而给了我们一种新的数学方法-—向量法.向量方法宜于把几何从思辩数学化成算法数学,将技巧性解题化成算法解题,因此是一种通法.在教学中引导学生搞清向量是怎样用有向线段表示的,掌握向量运算法则的基本依据,搞清向量运算和实数运算的联系和区别,认识向量平移是平面向量坐标运算的基础.将一个实际问题转化为向量之间的关系问题,用向量建立一个数学模型是一个难点问题.在复习课教学中应注意多举例,引导学生思考并及时总结,逐步培养学生用向量工具解题的思维方向.学习本章应注意类比,如向量的运算法则及运算律可与实数相应的运算法则及运算律进行横向类比.而一维情形下向量的共线条件,到二维情形下的平面向量基本定理,进而今后推广到三维情形下的空间向量基本定理,又可进行纵向类比.向量是数形结合的载体,在本章学习中,一方面通过数形结合来研究向量的概念和运算;另一方面,我们又以向量为工具,数形结合地解决数学和物理的有关问题.同时,向量的坐标表示为我们用代数方法研究几何问题提供了可能,丰富了我们研究问题的范围和手段.充分发挥多媒体的作用,向量是建立在平面上的,平移是向量的常见现象,而给学生直观、动态的演示能使学生理解、掌握问题.在复习完本章内容后,还要引导学生反思,重新概括研究思路,这样可以使学生体会数学中研究问题的思想方法,提升学生的数学思维水平.三维目标1.通过展示本章知识网络结构,列出复习提纲,引导学生补充相关内容,加深理解向量概念,平面向量的基本定理,两向量平行与垂直的条件,平面向量的坐标表示及其坐标运算,向量的数量积及其性质,向量的实际应用等知识.提高分析问题、解决问题的能力.2.通过本节对向量有关内容的复习,使学生进一步认识事物之间的相互转化.培养学生的数学应用意识.深刻领悟数形结合思想,转化与化归思想.3.通过一题多解的活动,培养学生的发散性思维能力,同时通过多种方法间的沟通,让学生体验数学的统一美、内在美,逐渐学会用美的心态来看待数学.重点难点教学重点:向量的运算,向量平行、垂直的条件,平面向量的坐标表示及其运算、数量积的理解运用.教学难点:向量的概念、运算法则的理解和利用向量解决物理问题和几何问题.对于本章内容的学习,要注意体会数形结合的数学思想方法的应用.课时安排2课时错误!第1课时导入新课思路1.(直接导入)前面一段,我们一起探究学习了向量的有关知识,并掌握了一定的分析问题与解决问题的方法,提高了我们的思维能力.这一节,我们一起对本章进行小结与复习,进一步巩固本章所学的知识,强化向量的综合应用.思路2.(问题导入)由于向量具有几何形式和代数形式的双重身份,与代数、几何都有着密切的关系,因而成为中学数学知识网络的一个交汇点.在中学数学教材中的地位也越来越重要,也成为近几年全国及各省高考命题的重点和热点,根据你所学的本章知识解释一下,它是怎样具有代数、几何双重身份的?向量是怎样进行代数运算的?又是怎样进行几何运算的?你对向量的哪种运算掌握得最好?由此展开全章的复习.推进新课错误!向量的概念、运算及其综合应用.活动:本章概念较多,学生可能不知如何进行复习,从头到尾重新翻看教材,学生兴趣不大,效果也不好.教师要点拨学生不仅要善于学习知识,而且还要善于归纳整理所学的知识.首先教师引导学生回忆从前所学,指导学生归类比较.比较是最好的学习方法,如向量的表示法有:几何表示法为错误!,a(手写时为错误!),坐标表示法为a=x i+y j=(x,y).有哪些特殊的向量:a =0 ⇔|a|=0。
2.3 向量的坐标表示 2.3.1 平面向量基本定理[学习目标] 1.通过研究一向量与两不共线向量之间的关系体会平面向量基本定理的含义,了解基底的含义.2.理解并掌握平面向量基本定理.[知识链接]1.如图所示,e 1,e 2是两个不共线的向量,试用e 1,e 2表示向量AB →,CD →,EF →,GH →,HG →,a .答 通过观察,可得: AB →=2e 1+3e 2,CD →=-e 1+4e 2,EF →=4e 1-4e 2, GH →=-2e 1+5e 2,HG →=2e 1-5e 2,a =-2e 1.2.0能不能作为基底?答 由于0与任何向量都是共线的,因此0不能作为基底. 3.平面向量的基底唯一吗?答 不唯一,只要两个向量不共线,都可以作为平面内所有向量的一组基底. [预习导引]1.平面向量基本定理 (1)定理:如果e 1,e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.2.正交分解:一个平面向量用一组基底e 1,e 2表示成a =λ1e 1+λ2e 2的形式,我们称它为向量a 的分解.当e 1,e 2所在直线互相垂直时,这种分解也称为向量a 的正交分解.要点一 平面向量基本定理的理解 例1 下列说法:①一个平面内只有一对不共线的向量可作为表示该平面所有向量的基底; ②一个平面内有无数多对不共线的向量可作为该平面所有向量的基底; ③零向量不可作为基底中的向量;④e 1,e 2是平面内所有向量的一组基底,若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0; ⑤e 1与e 2是一组基底,则λ1e 1+λ2e 2不一定在平面内. 其中正确的是________.(写出正确的所有序号) 答案 ②③④解析 平面向量的基底不唯一,在同一平面内任何一组不共线向量都可以作为平面向量的一组基底.零向量可看成与任何向量平行,故零向量不能作为基底中的向量,故②③正确;④正确;⑤错,因为在平面内任一向量都可以表示为λ1e 1+λ2e 2的形式,故λ1e 1+λ2e 2表示的向量在平面内.规律方法 对平面向量基本定理的理解是解题的关键,因为零向量与任意向量共线,故不能作基底,λ1e 1+λ2e 2=0,在e 1与e 2不共线时,有λ1=λ2=0. 跟踪演练1 给出下面四个命题:①若a ∥b ,则必存在唯一的实数λ,使b =λa ; ②若λa =μ a ,则λ=μ(λ,μ∈R );③若e 1和e 2是表示平面内所有向量的一组基底,那么向量e 1+e 2和e 1-e 2也能作为一组基底; ④若λ1e 1+λ2e 2=μ1e 1+μ2e 2(λ1,λ2,μ1,μ2∈R ),则λ1=μ1,λ2=μ2. 写出其中所有正确命题的序号________. 答案 ③解析 ①若a 为零向量,满足a ∥b (b ≠0),但不存在实数λ,使b =λa ;②若a 为零向量满足3a =2a ,但3≠2;③假设e 1+e 2与e 1-e 2共线,则存在实数λ,使e 1+e 2=λ(e 1-e 2).即(1-λ)e 1=-(1+λ)e 2,所以e 1和e 2共线,与e 1和e 2不共线矛盾.从而e 1+e 2与e 1-e 2不共线,故它们可以作为一组基底;④当e 1与e 2共线时,结论不一定成立. 要点二 用基底表示向量例2 如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解 NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).规律方法 (1)用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则,结合数乘定义,解题时要注意解题途径的优化与组合.(2)将向量c 用a ,b 表示,常采用待定系数法,其基本思路是设c =x a +y b ,其中x ,y ∈R ,然后得到关于x ,y 的方程组求解.跟踪演练2 已知梯形ABCD 中,AB ∥DC ,且AB =2CD ,E 、F 分别是DC 、AB 的中点,设AD →=a ,AB →=b ,试以a 、b 为基底表示DC →、BC →、EF →.解 如图,连结FD .∵DC ∥AB ,AB =2CD ,E 、F 分别是DC 、AB 的中点, ∴DC ∥FB 且DC =FB , ∴四边形DCBF 为平行四边形. ∴DC →=FB →=12AB →=12b ,BC →=FD →=AD →-AF →=AD →-12AB →=a -12b ,EF →=DF →-DE →=-FD →-DE →=-BC →-12DC →=-⎝ ⎛⎭⎪⎫a -12b -12×12b =14b -a .要点三 平面向量基本定理的应用例3 如图,在△ABC 中,点M 是边BC 的中点,点N 在边AC 上,且AN =2NC .AM 与BN 相交于点P ,求AP ∶PM 的值.解 设BM →=e 1,CN →=e 2, 则AM →=AC →+CM →=-3e 2-e 1, BN →=BC →+CN →=2e 1+e 2.∵A ,P ,M 和B ,P ,N 分别共线,∴存在实数λ,μ,使得AP →=λAM →=-λe 1-3λe 2,BP →=μBN →=2μe 1+μe 2.故BA →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨⎪⎧λ=45,μ=35.∴AP →=45AM →,∴AP ∶PM =4∶1.规律方法 (1)充分挖掘题目中的有利条件,本题中两次使用三点共线.注意方程思想的应用.(2)用基底表示向量也是用向量解决问题的基础,应根据条件灵活应用,熟练掌握. 跟踪演练3 如图,在△OAB 中,延长BA 到C ,使AB =AC ,D 是将OB →分成2∶1的一个分点,DC 和OA 交于点E ,设OA →=a ,OB →=b .(1)用a ,b 表示向量OC →,DC →; (2)若OE →=λOA →,求实数λ的值. 解 (1)∵A 为BC 中点, ∴OA →=12(OB →+OC →),∴OC →=2a -b .DC →=OC →-OD →=OC →-23OB →=2a -b -23b =2a -53b .(2)∵OE →=λOA →,∴CE →=OE →-OC →=λOA →-OC →=λa -2a +b =(λ-2)a +b .∵CE →与CD →共线,∴存在实数m ,使得CE →=mCD →, 即(λ-2)a +b =m ⎝⎛⎭⎪⎫-2a +53b , 即(λ+2m -2)a +⎝ ⎛⎭⎪⎫1-53m b =0.∵a ,b 不共线,∴⎩⎪⎨⎪⎧λ+2m -2=0,1-53m =0,解得λ=45.1.若e 1,e 2是平面内所有向量的一组基底,则下面的四组向量中不能作为一组基底的是________.①e 1-2e 2和e 1+2e 2;②e 1与3e 2;③2e 1+3e 2和-4e 1-6e 2;④e 1+e 2与e 1. 答案 ③解析 2e 1+3e 2与-4e 1-6e 2共线不能作为基底.2.若e 1,e 2是表示平面所有向量的一组基底,且a =3e 1-4e 2,b =6e 1+k e 2不能作为一组基底,则k 的值为_______________________________________________________________.答案 -8解析 当a ∥b 时,a ,b 不能作为一组基底,故存在λ,使得a =λb ,即3e 1-4e 2=λ(6e 1+k e 2),∴6λ=3,且kλ=-4.解得λ=12,k =-8.3.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=________.答案 14a +34b解析 AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b .4.已知G 为△ABC 的重心,设AB →=a ,AC →=b .试用a 、b 表示向量AG →. 解 如图,连结AG 并延长,交BC 于点D ,则D 为BC 的中点,AG →=23AD →=23(AB →+BD →)=23×⎝⎛⎭⎪⎫AB →+12BC →=23AB →+13BC →=23AB →+13(AC →-AB →) =13AB →+13AC →=13a +13b .1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)零向量与任一向量共线,故不能作为基底. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.一、基础达标1.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是________. ①e 1-e 2,e 2-e 1;②2e 1+e 2,e 1+2e 2;③2e 2-3e 1,6e 1-4e 2;④e 1+e 2,e 1-e 2. 答案 ②④2.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=________. 答案 AD →解析 如图,EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →.3.若OP 1→=a ,OP 2→=b ,P 1P →=λPP 2→(λ≠-1),则OP →=________________________________________________________________________. 答案11+λa +λ1+λb 解析 ∵P 1P →=λPP 2→,∴OP →-OP 1→=λ(OP 2→-OP →), ∴(1+λ)OP →=OP 1→+λOP 2→,∴OP →=11+λOP 1→+λ1+λOP 2→=11+λa +λ1+λb .4.如图所示,平面内的两条直线OP 1和OP 2将平面分割成四个部分Ⅰ,Ⅱ,Ⅲ,Ⅳ(不包括边界),若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅰ部分,则实数a ,b 满足________.①a >0,b >0;②a >0,b <0;③a <0,b >0;④a <0,b <0. 答案 ③解析 当点P 落在第Ⅰ部分时,OP →按向量OP 1→与OP 2→分解时,一个与OP 1→反向,一个与OP 2→同向,故a <0,b >0.5.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,若用m ,n 表示p ,则p =________. 答案 -74m +138n解析 设p =x m +y n ,则3a +2b =x (2a -3b )+y (4a -2b )=(2x +4y )a +(-3x -2y )b ,得⎩⎪⎨⎪⎧2x +4y =3-3x -2y =2⇒⎩⎪⎨⎪⎧x =-74,y =138.所以p =-74m +138n .6.在△ABC 中,AB →=c ,AC →=b .若点D 满足BD →=2DC →,则AD →=____________. 答案 23b +13c解析 AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →=23b +13c .7.如图,在▱ABCD 中,AB →=a ,AD →=b ,E 、F 分别是AB 、BC 的中点,G 点使DG →=13DC →,试以a ,b 为基底表示向量AF →与EG →.解 AF →=AB →+BF →=AB →+12BC →=AB →+12AD →=a +12b .EG →=EA →+AD →+DG →=-12AB →+AD →+13DC →=-12a +b +13a =-16a +b .二、能力提升8.如图,在△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,且AF FD =15,连结CF 并延长交AB 于E ,则AEEB=________.答案110解析 设AB →=a ,AC →=b ,AE EB=λ.∵AF FD =15,∴CF →=CA →+AF →=CA →+16AD →=112(AB →+AC →)-AC →=112AB →-1112AC →=112a -1112b . CE →=CA →+AE →=CA →+λ1+λAB →=λ1+λAB →-AC →=λ1+λa -b .∵CF →∥CE →,∴λ1+λ112=11112.∴λ=110. 9.如图,已知△ABC 中,AD →=2DB →,BE →=2EC →,若F 为DE 的中点,AF →=λAB →+μAC →,则λ=________,μ=________.答案 12 13解析 AF →=AD →+DF →=23AB →+12DE →=23AB →+12(DB →+BE →)=23AB →+12(13AB →+23BC →)=23AB →+16AB →+13(AC →-AB →)=12AB →+13AC →, ∴λ=12,μ=13.10.如图,△ABC 中,CD DA =AE EB =12,若BC →=a ,CA →=b ,DE →=λa +μb ,则λ+μ=________.答案 0解析 ∵DE →=AE →-AD →=13AB →-23AC →=13(AC →+CB →)+23CA →=-13b -13a +23b =13b -13a ,∴λ+μ=-13+13=0.11.在平行四边形ABCD 中,AB →=a ,AD →=b ,(1)如图1,如果E ,F 分别是BC ,DC 的中点,试用a ,b 分别表示BF →,DE →. (2)如图2,如果O 是AC 与BD 的交点,G 是DO 的中点,试用a ,b 表示AG →.解 (1)BF →=BC →+CF →=AD →+12CD →=AD →-12AB →=-12a +b .DE →=DC →+CE →=AB →-12AD →=a -12b .(2)BD →=AD →-AB →=b -a ,∵O 是BD 的中点,G 是DO 的中点,∴BG →=34BD →=34(b -a ),∴AG →=AB →+BG →=a +34(b -a )=14a +34b .12.如图所示,在△ABC 中,点M 为AB 的中点,且AN →=12NC →,BN →与CM →相交于点E ,设AB →=a ,AC→=b ,试以a ,b 为基底表示AE →.解 ∵AN →=13AC →=13b ,AM →=12AB →=12a ,由N ,E ,B 三点共线知存在实数λ满足AE →=λAN →+(1-λ)AB →=13λb +(1-λ)a .由C ,E ,M 三点共线知存在实数μ满足 AE →=μAM →+(1-μ)AC →=μ2a +(1-μ)b .∴⎩⎪⎨⎪⎧ 1-λ=μ2,1-μ=λ3,解得⎩⎪⎨⎪⎧ λ=35,μ=45.∴AE →=25a +15b . 三、探究与创新13.如图,在△ABC 中,AD 为三角形BC 边上的中线且AE =2EC ,BE 交AD 于G ,求AG GD 及BG GE的值.解 设AG GD =λ,BG GE=μ.∵BD →=DC →,即AD →-AB →=AC →-AD →,∴AD →=12(AB →+AC →). 又∵AG →=λGD →=λ(AD →-AG →), ∴AG →=λ1+λAD →=λ21+λAB →+λ21+λAC →. 又∵BG →=μGE →,即AG →-AB →=μ(AE →-AG →),∴(1+μ)AG →=AB →+μAE →,AG →=11+μAB →+μ1+μAE →. 又AE →=23AC →,∴AG →=11+μAB →+2μ31+μAC →. ∵AB →,AC →不共线, ∴⎩⎪⎨⎪⎧ λ21+λ=11+μ,λ21+λ=2μ31+μ.解得⎩⎪⎨⎪⎧ λ=4,μ=32.∴AG GD =4,BG GE =32.。
第二章平面向量1.平面向量的基本概念主要应掌握向量的概念、零向量、单位向量、平行向量、相等向量、共线向量等概念,这些概念是考试的热点,一般都是以填空题出现,尤其是单位向量常与向量的平行与垂直的坐标形式结合考查.2.向量的线性运算主要应掌握向量加法的三角形法则与平行四边形法则,甚至推广到向量加法的多边形法则;掌握向量减法的三角形法则;数乘向量运算的性质和法则及运算律.同时要灵活运用这些知识解决三点共线、两线段相等及两直线平行等问题.3.向量的坐标运算主要应掌握向量坐标运算的法则、公式进行向量加、减与数乘运算;能用向量共线的坐标表示证明两向量平行或证明三点共线;能用平面向量基本定理和基底表示平面内任意一个向量.4.平面向量的数量积平面向量的数量积是向量的核心内容,主要应掌握向量的数量积的定义、法则和公式进行相关运算,特别是向量的模、夹角、平行与垂直等运算;能用向量数量积的坐标形式求向量的模、夹角,证明向量平行或垂直,能解答有关综合问题. 5.平面向量的应用一是要掌握平面几何中的向量方法,能用向量证明一些平面几何问题、能用向量求解一些解析几何问题;二是能用向量解决一些物理问题,如力、位移、速度等问题.题型一 向量的共线问题运用向量平行(共线)证明常用的结论有:(1)向量a 、b (a ≠0)共线⇔存在唯一实数λ,使b =λa ;(2)向量a =(x 1,y 1),b =(x 2,y 2)共线⇔x 1y 2-x 2y 1=0;(3)向量a 与b 共线⇔|a ·b |=|a ||b |;(4)向量a 与b 共线⇔存在不全为零的实数λ1,λ2,使λ1a +λ2b =0. 判断两向量所在的直线共线时,除满足定理的要求外,还应说明此两直线有公共点. 例1 设坐标平面上有三点A 、B 、C ,i 、j 分别是坐标平面上x 轴,y 轴正方向的单位向量,若向量AB →=i -2j ,BC →=i +m j ,那么是否存在实数m ,使A 、B 、C 三点共线. 解 方法一 假设满足条件的m 存在, 由A 、B 、C 三点共线,即AB →∥BC →,∴存在实数λ,使AB →=λBC →,∴i -2j =λ(i +m j ),即⎩⎪⎨⎪⎧λ=1,λm =-2,∴m =-2,∴当m =-2时,A 、B 、C 三点共线.方法二 假设满足条件的m 存在,根据题意可知i =(1,0),j =(0,1),∴AB →=(1,0)-2(0,1)=(1,-2),BC →=(1,0)+m (0,1)=(1,m ),由A 、B 、C 三点共线,即AB →∥BC →, 故1·m -1·(-2)=0,解得m =-2, ∴当m =-2时,A 、B 、C 三点共线.跟踪演练1 如图所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案311解析 设BP →=λBN →,则BP →=BA →+AP →=-AB →+mAB →+211AC →=(m -1)AB →+211AC →.BN →=BA →+AN →=-AB →+14AC →.∵BP →与BN →共线,∴14(m -1)+211=0,∴m =311.题型二 向量的夹角及垂直问题1.求两个向量的夹角主要利用两个公式:(1)cos θ=a ·b|a ||b |,求解的前提是:求出这两个向量的数量积和模.(2)cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22,求解的前提是:可以求出两个向量的坐标. 2.解决垂直问题,其关键在于将问题转化为它们的数量积为零,与求夹角一样,若向量能用坐标表示,将它转化为“x 1x 2+y 1y 2=0”较为简单.3.用向量方法解决平面几何中的夹角与垂直问题的关键在于选用适当向量为基底,把所要研究的问题转化为两向量的夹角与垂直问题,再利用向量知识求角. 例2 已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)若四边形ABCD 为矩形,求点C 的坐标以及矩形ABCD 两对角线所夹锐角的余弦值. (1)证明 ∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3). ∵AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD .(2)解 ∵AB →⊥AD →,四边形ABCD 为矩形, ∴AB →=DC →.设C 点坐标为(x ,y ),则DC →=(x +1,y -4), ∴⎩⎪⎨⎪⎧x +1=1,y -4=1.解得⎩⎪⎨⎪⎧x =0,y =5.∴点C 坐标为(0,5).从而AC →=(-2,4),BD →=(-4,2),且|AC →|=25,|BD →|=25,AC →·BD →=8+8=16,设AC →与BD →的夹角为θ, 则cos θ=AC →·BD →|AC →|·|BD →|=1620=45.∴矩形ABCD 的两条对角线所夹锐角的余弦值为45.跟踪演练2 已知向量OB →=(2,0),OC →=(2,2),CA →=(2cos α,2sin α),则OA →与OB →夹角的范围是________.答案 ⎣⎢⎡⎦⎥⎤π12,5π12 解析 建立如图所示的直角坐标系.∵OC →=(2,2),OB →=(2,0), CA →=(2cos α,2sin α),∴点A 的轨迹是以C (2,2)为圆心,2为半径的圆.过原点O 作此圆的切线,切点分别为M ,N ,连结CM 、CN ,如图所示,则向量OA →与OB →的夹角范围是∠MOB ≤〈OA →,OB →〉≤∠NOB . ∵|OC →|=22,∴|CM →|=|CN →|=12|OC →|,知∠COM =∠CON =π6,又∠COB =π4.∴∠MOB =π12,∠NOB =5π12,故π12≤〈OA →,OB →〉≤5π12. 题型三 向量的长度(模)与距离的问题向量的模不仅是研究向量的一个重要量,而且是利用向量的方法解决几何问题的一个交汇点.一般地,求向量的模主要利用公式|a |2=a 2,将它转化为向量的数量积问题,再利用数量积的运算律和运算性质进行展开、合并,使问题得以解决,或利用公式|a |=x 2+y 2,将它转化为实数问题,使问题得以解决.例3 设|a |=|b |=1,|3a -2b |=3,求|3a +b |的值. 解 方法一 ∵|3a -2b |=3,∴9a 2-12a ·b +4b 2=9. 又∵|a |=|b |=1, ∴a ·b =13.∴|3a +b |2=(3a +b )2=9a 2+6a ·b +b 2=9+6×13+1=12.∴|3a +b |=2 3.方法二 设a =(x 1,y 1),b =(x 2,y 2). ∵|a |=|b |=1,∴x 21+y 21=x 22+y 22=1. ∵3a -2b =(3x 1-2x 2,3y 1-2y 2), ∴|3a -2b |=3x 1-2x 22+3y 1-2y 22=3.∴x 1x 2+y 1y 2=13.∴|3a +b |=3x 1+x 22+3y 1+y 22=9+1+6×13=2 3.跟踪演练3 设0<|a |≤2,f (x )=cos 2x -|a |sin x -|b |的最大值为0,最小值为-4,且a 与b 的夹角为45°,求|a +b |. 解 f (x )=1-sin 2x -|a |sin x -|b | =-⎝ ⎛⎭⎪⎫sin x +|a |22+|a |24-|b |+1. ∵0<|a|≤2,∴当sin x =-|a |2时,|a |24-|b |+1=0;当sin x =1时,-|a |-|b |=-4. 由⎩⎪⎨⎪⎧|a |24-|b |+1=0,-|a |-|b |=-4得⎩⎪⎨⎪⎧|a |=2,|b |=2.∴|a +b |2=(a +b )2=a 2+2a ·b +b 2=22+2×2×2cos 45°+22=8+42, ∴|a +b |=8+42=22+ 2.1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径,即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题.2.向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断求解,这是研究平面向量最重要的方法与技巧.。
(完整)高中数学必修4第二章平面向量教案完整版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修4第二章平面向量教案完整版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修4第二章平面向量教案完整版的全部内容。
§2.1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。
2。
向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ;④向量AB 的大小――长度称为向量的模,记作|AB |。
3。
有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度。
向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0。
0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小。
5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行。
A(起点) B(终点)a说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c。
6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的......起点无关....。
第4课时 §2.2 向量的数乘【教学目标】一、知识与技能(1)向量数乘定义。
(2)向量数乘的运算律。
二、过程与方法在对有关数乘问题的解决中理解数乘概念和实际意义.三、情感、态度与价值观联系生活实际学习向量的数乘让学生感受数学美【教学重点难点】向量的数乘的定义和运算律一、复习:已知非零向量a ,求作a a +和()()a a -+-.如图:OB a a =+2a =,()()CE a a =-+-二、讲解新课:1.实数与向量的积的定义:一般地,实数λ与向量a 的积是一个向量,记作a λ,它的长度与方向规定如下: (1)||||||a a λλ=;(2)当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ= 时,0a λ=.2.实数与向量的积的运算律:(1)()()a a λμλμ=(结合律);a - E a a a O B A CD a -(2)()a a a λμλμ+=+(第一分配律);(3)a b λλλ+(a+b )=(第二分配律). 3.向量共线定理:内容:三、例题分析:例1、计算:(1)(3)4a -⨯;(2)3()2()a b a b a +---;(3)(23)(32)a b c a b c +---+例2、 如图,已知3AD AB =,3DE BC =.试判断AC 与AE 是否共线.例3、 判断下列各题中的向量是否共线:(1)21245a e e =-,12110b e e =-; (2)12a e e =+,1222b e e =-,且1e ,2e 共线.A B C D E(3)当1e ,2e 中至少有一个为零向量时,显然b 与a 共线.例4、设12,e e 是两个不共线的向量,已知122AB e ke =+,123CB e e =+,122CD e e =-,若A ,B ,D 三点共线,求k 的值.五、课时小结:1.掌握实数与向量的积的定义;2.掌握实数与向量的积的运算律,并进行有关的计算;3.理解向量共线定理,并会判断两个向量是否共线。
第8课时 §2.4 向量的数量积(1)【教学目标】一、知识与技能(1)掌握向量的数量积及其几何意义;(2)掌握向量数量积的重要性质及运算律;(3)了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;(4)掌握向量垂直的条件.二、过程与方法从问题的探究和解决中感受什么是向量的数量积三、情感、态度与价值观通过师生互动,自主探究,交流与学习培养学生探求新知识以及合作交流【教学重点难点】平面向量数量积的定义及运算律的理解和平面向量数量积的应用【教学过程】一、创设情景:向量的运算有向量的加法、减法、数乘,那么向量与向量能否“相乘”呢? 二、新课讲解 引入:物理学中,物体所做的功的计算方法:||||cos W F s θ=(其中θ是F 与s 的夹角). 1.向量的夹角:已知两个向量a 和b (如图2),作OA a =,OB b = AOB θ∠=(0180θ≤≤)叫做向量a 与b 当0θ=时,a 与b 同向;当180θ=时,a 与b 反向; 当90θ=时,a 与b 的夹角是90,我们说a 与b 垂直,记作a ⊥b .2.向量数量积的定义:Aa b (图)已知两个非零向量a 和b ,它们的夹角为θ,则数量||||cos a b θ⋅⋅叫做a 与b 的数量积(或内积),记作a b ⋅,即||||cos a b a b θ⋅=⋅⋅.说明:①两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角有关;②实数与向量的积与向量数量积的本质区别:两个向量的数量积是一个数量;实 数与向量的积是一个向量;③规定,零向量与任一向量的数量积是0 .3、数量积的性质:设a 、b 都是非零向量,θ是a 与b 的夹角,则 ①cos ||||a b a b θ⋅=; ②当a 与b 同向时,||||a b a b ⋅=;当a 与b 反向时,||||a b a b ⋅=-;特别地:2||a a a ⋅=或||a a a =⋅; ③||||||a b a b ⋅≤; ④a b ⊥0a b ⇔⋅=;若e 是与b 方向相同的单位向量,则⑤||cos e a a e a θ⋅=⋅=. 4.数量积的几何意义:(1)投影的概念:如图,OA a =,,过点B 作1BB 垂直于直线OA ,垂足为1B ,则1||cos OB bθ=.B b1B O 1 1()B||cos b θ叫做向量b 在a 方向上的投影,当θ为锐角时,它是正值;当θ为钝角时,它是一负值;当90θ=时,它是0;当0θ=时,它是||b ;当180θ=时,它是||b -.(2)a b ⋅的几何意义:数量积a b ⋅等于a 的长度||a 与b 在a 的方向上的投影||cos b θ的乘积。
第2课时 §2.2 向量的加法【教学目标】一、知识与技能(1)理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作两个向量的和;(2)掌握两个向量加法的交换律和结合律,并会用它们进行向量运算二、过程与方法从物体位移变化规律的探知中总结出向量加法规律三、情感、态度与价值观感受数学和生活的联系,增强学习数学的兴趣【教学重点难点】::1.如何作两向量的和向量;2.向量加法定义的理解。
【教学过程】一、复习:1.向量的概念、表示法。
2.平行向量、相等向量的概念。
3.已知O 点是正六边形ABCDEF 的中心,则下列向量组中含有相等向量的是( ) (A )OB 、CD 、FE 、CB (B )AB 、CD 、FA 、DE(C )FE 、AB 、CB 、OF (D )AF 、AB 、OC 、OD二、创设情景 利用向量的表示,从景点O 到景点A 的位移为OA ,从景点A 到景点B 的位移为AB ,那么经过C这两次位移后游艇的合位移是OB ,向量OA ,AB ,OB 三者之间有何关系?OBA三、讲解新课: 1.向量的加法:求两个向量和的运算叫做向量的加法。
表示:AB BC AC +=作法:在平面内任取一点O (如图(2)),作OA a =,AB b =,则OB a b =+ .(1) (2)2.向量加法的法则:(1)三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。
表示:AB BC AC +=.(2)平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作平行四边形ABCD ,则以A 为起点的对角线AC 就是a 与b 的和,这种求向量和的方法称为向量加法的平行四边形法则。
b a O BAba b a A B CD3.向量的运算律:交换律:a b b a +=+.结合律:()()a b c a b c ++=++.说明:多个向量的加法运算可按照任意的次序与任意的组合进行: 例如:()()()()a b c d b d a c +++=+++;[()]()a b c d e d a c b e ++++=++++.四、例题分析:例1、 如图,一艘船从A点出发以/km h 的速度向垂直于对岸的方向行驶,同时河水的流速为2/km h ,求船实际航行速度的大小与方向(用与流速间的夹角表示)。
第二章 平面向量1 向量线性运算的应用平面向量的线性运算包括加法、减法以及数乘运算,在解题中具有广泛的应用.在对向量实施线性运算时,要准确利用对应的运算法则、运算律,注意向量的大小和方向两个方面.一、化简例1 化简下列各式:(1)(2AB →-CD →)-(AC →-2BD →);(2)124[3(2a +8b )-6(4a -2b )]. 解 (1)(2AB →-CD →)-(AC →-2BD →)=2AB →-CD →-AC →+2BD →=2AB →+DC →+CA →+2BD →=2(AB →+BD →)+(DC →+CA →)=2AD →+DA →=AD →.(2)124[3(2a +8b )-6(4a -2b )] =124(6a +24b -24a +12b )=124(-18a +36b )=-34a +32b . 点评 向量的基本运算主要有两个途径:一是基于“形”,通过作出向量,运用平行四边形法则或三角形法则进行化简;二是基于“数”,满足“首尾相接且相加”或“起点相同且相减”的两个向量进行化简,解题时要注意观察是否有这两种形式出现,同时注意向量加法法则、减法法则的逆向应用.数乘运算,可类比实数积的运算方法进行,将向量a ,b ,c 等看成一般字母符号,其中向量数乘之间的和差运算,相当于合并同类项或提取公因式,这里的“同类项”与“公因式”指的是向量.二、求参数例2 如图,已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析 如图,因为MA →+MB →+MC →=0,即MA →=-(MB →+MC →),即AM →=MB →+MC →,延长AM ,交BC 于D 点,所以D 是BC 边的中点,所以AM →=2MD →,所以AD →=32AM →,所以AB →+AC →=2AD →=3AM →, 所以m =3.答案 3点评 求解含参数的向量线性运算问题,只需把参数当作已知条件,根据向量的加法、减法及数乘运算将问题中所涉及的向量用两个不共线的向量表示,列出向量方程,对比系数求参数的值.三、表示向量例3 如图所示,在△ABC 中,AD →=23AB →,DE ∥BC 交AC 于点E ,BC 边上的中线AM 交DE 于点N ,设AB →=a ,AC →=b ,用向量a ,b 表示AE →、BC →、DE →、DN →、AM →.解 因为DE ∥BC ,AD →=23AB →, 所以AE →=23AC →=23b ,BC →=AC →-AB →=b -a , 由△ADE ∽△ABC ,得DE →=23BC →=23(b -a ), 又M 是△ABC 底边BC 的中点,DE ∥BC ,所以DN →=12DE →=13(b -a ), AM →=AB →+BM →=a +12BC →=a +12(b -a )=12(a +b ). 点评 用已知向量表示另外一些向量,应尽量将所求向量转化到平行四边形或三角形中,利用向量共线条件和平面几何知识的一些定理、性质,如三角形中位线性质,相似三角形对应边成比例等,再利用向量加法、减法法则,即可用已知向量表示所求向量.2 走出平面向量的误区平面向量的基本定理与坐标表示是向量问题的基础,试题的特点是概念较多,应用也多,不少同学由于概念、性质掌握不清,在解题时经常出现错误,本文将常见的错误进行简单的总结,希望帮助同学们走出平面向量的误区.一、理解失误例1 已知e 1、e 2是平面α内的一组基底,那么下列命题中正确的有______.(只填序号) ①e 1、e 2两个向量可以共线,也可以是零向量;②λe 1+μe 2可以表示平面α内的所有向量;③对于平面α内的任意向量a ,使a =λe 1+μe 2的实数λ、μ有无数对.错解 ①②③正解 由平面向量的基本定理知,只有不共线的两个向量才能作为平面向量的一组基底,所以①错误;任一平面向量都可以用一组基底线性表示,且基底确定,其表示是唯一的,所以②正确,③错误;故正确答案为②.答案 ②点评 对平面向量基本定理的学习要把握以下几点:①e 1、e 2是同一平面内的两个不共线向量;②该平面内的任意向量a 都可用e 1、e 2线性表示,且这种表示是唯一的;③对基底的选取不唯一,只要是同一平面内的两个不共线向量都可以作为一组基底.二、考虑不全例2 与模长为13的向量d =(12,5)平行的单位向量为________.错解 由题意得|d |=13,则与d =(12,5)平行的单位向量为(1213,513). 正解 与d =(12,5)平行的单位向量为(1213,513)或(-1213,-513). 答案 (1213,513)或(-1213,-513) 点评 与d 平行的单位向量有同向和反向两种情况,错解忽略了反向的情况.三、概念混淆例3 已知A (-2,4),B (3,-1),C (-3,-4).设CM →=3CA →,CN →=2CB →,试求点M ,N 和向量MN →的坐标.错解 A (-2,4),B (3,-1),C (-3,-4),所以CA →=(-2+3,4+4)=(1,8),CB →=(3+3,-1+4)=(6,3), CM →=3CA →=(3,24),CN →=2CB →=(12,6),所以点M (3,24),点N (12,6),MN →=(9,-18).正解 已知A (-2,4),B (3,-1),C (-3,-4).所以CA →=(-2+3,4+4)=(1,8),CB →=(3+3,-1+4)=(6,3), CM →=3CA →=(3,24),CN →=2CB →=(12,6),又C (-3,-4),所以点M (0,20),点N 的坐标为(9,2);所以MN →=(9-0,2-20)=(9,-18).点评 向量的坐标与点的坐标是两个不同的概念,向量的坐标等于终点坐标减去起点坐标,只有当向量的起点在坐标原点处时,向量的坐标才与终点坐标相等.3 平面向量的基本定理应用三技巧技巧一 构造某一向量在同一基底下的两种不同的表达形式,用“若e 1,e 2为基底,且a =x 1e 1+y 1e 2=x 2e 1+y 2e 2,则用⎩⎪⎨⎪⎧ x 1=x 2y 1=y 2来求解.例1 在△OAB 的边OA ,OB 上分别取点M ,N ,使|OM →|∶|OA →|=1∶3,|ON →|∶|OB →|=1∶4,设线段AN 与BM 交于点P ,记OA →=a ,OB →=b ,用a ,b 表示向量OP →.解 ∵B ,P ,M 共线,∴存在常数s ,使BP →=sPM →,即OP →-OB →=s (OM →-OP →),∴OP →=11+s OB →+s 1+sOM →. 即OP →=11+s OB →+s +s OA →=s+s a +11+s b . ①同理,存在常数t ,使AP →=tPN →,则OP →=11+t a +t +t b .② ∵a ,b 不共线,∴⎩⎪⎨⎪⎧ 11+t =s +s ,11+s =t+t ,解之得⎩⎪⎨⎪⎧ s =92t =83,∴OP →=311a +211b . 点评 这里选取OA →,OB →作为基底,构造OP →在此基底下的两种不同的表达形式,再根据相同基底的系数对应相等得到实数方程组,最后进行求解.技巧二 构造两个共线向量在同一基底下的表达形式,用“若e 1,e 2为基底,a =x 1e 1+y 1e 2,b =x 2e 1+y 2e 2,且a ∥b ,则x 1y 2-x 2y 1=0”来求解.例2 如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b.(1)用a 、b 表示OM →;(2)已知在线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过M 点,设OE →=pOA →,OF →=qOB →,求证:17p +37q=1. (1)解 设OM →=m a +n b ,则AM →=(m -1)a +n b ,AD →=-a +12b .∵点A 、M 、D 共线,∴AM →与AD →共线,∴12(m -1)-(-1)×n =0, ∴m +2n =1. ① 而CM →=OM →-OC →=(m -14)a +n b ,CB →=-14a +b . ∵点C 、M 、B 共线,∴CM →与CB →共线,∴-14n -(m -14)=0.∴4m +n =1. ②联立①②可得m =17,n =37, ∴OM →=17a +37b .(2)证明 ∵EM →=(17-p )a +37b ,EF →=-p a +q b ,且EF →与EM →共线, ∴(17-p )q -37×(-p )=0. ∴17q +37p =pq ,即17p +37q=1. 点评 这里多次运用构造一组共线向量的表达形式,再根据共线向量基底的系数关系建立方程组求解.技巧三 将题目中的已知条件转化成λ1e 1+λ2e 2=0的形式(e 1,e 2不共线),根据λ1=λ2=0来求解.例3 如图,已知P 是△ABC 内一点,且满足条件AP →+2BP →+3CP →=0,设Q 为CP 的延长线与AB 的交点,令CP →=p ,试用向量p 表示CQ →.解 ∵AP →=AQ →+QP →,BP →=BQ →+QP →,∴(AQ →+QP →)+2(BQ →+QP →)+3CP →=0,∴AQ →+3QP →+2BQ →+3CP →=0,又∵A ,B ,Q 三点共线,C ,P ,Q 三点共线,可设AQ →=λBQ →,CP →=μQP →,∴λBQ →+3QP →+2BQ →+3μQP →=0,∴(λ+2)BQ →+(3+3μ)QP →=0.而BQ →,QP →为不共线向量,∴⎩⎪⎨⎪⎧ λ+2=0,3+3μ=0.∴λ=-2,μ=-1.∴CP →=-QP →=PQ →.故CQ →=CP →+PQ →=2CP →=2p .点评 这里选取BQ →,QP →两个不共线的向量作为基底,运用化归与转化思想,最终变成λ1e 1+λ2e 2=0的形式来求解.。