(完整版)最新北师大版九年级上期数学教案
- 格式:doc
- 大小:26.18 MB
- 文档页数:316
第一章特殊的平行四边形本章在学习了平行四边形的基础上研究特殊的平行四边形.通过平行四边形角、边的特殊化, 研究菱形、矩形和正方形等特殊的平行四边形, 认识这些概念之间的联系与区别, 明确它们的内涵与外延;探索并证明平行四边形、矩形、菱形、正方形的有关性质定理和判定定理, 进一步明确命题及其逆命题的关系, 不断发展学生的合情推理和演绎推理能力.本章研究特殊的平行四边形, 图形比较多, 而且图形的性质定理和判定定理也比较多.教科书呈现这些内容时, 注意突出图形性质和判定的探索与发现过程, 由观察度量、实验操作、图形变换等方式, 通过合情推理发现结论, 形成猜想, 运用演绎推理证明猜想.通过平行四边形的变形——角的变化, 一个角为直角, 探究并发现矩形的四个角都是直角、对角线相等等性质;利用菱形的轴对称性, 探究并发现菱形四条边都相等、对角线互相垂直、对角线平分对角等性质.学生通过观察度量、实验操作、图形变换等, 运用合情推理, 探究并发现结论, 形成猜想, 进而要求学生运用演绎推理对猜想进行证明, 得出图形的性质.把合情推理和演绎推理有机结合起来.菱形、矩形、正方形都是特殊的平行四边形, 它们的性质定理和判定定理的研究方法, 与平行四边形性质定理和判定定理的研究方法一脉相承.§1.1 菱形的性质与判定(第一课时)教学目标:1.经历菱形的概念、性质的发现过程2.掌握菱形的概念3.掌握菱形的性质定理“菱形的四条边都相等”4.掌握菱形的性质定理“菱形的对角线互相垂直,并且每条对角线平分一组对角”5.探索菱形的对称性教学重点、难点重点:菱形的性质.难点:菱形的轴对称需要用折叠和推理相结合的方法,是本节的教学难点.教学过程一. 引入: 用多媒体显示下面的图形观察以下由火柴棒摆成的图形议一议: (1)三个图形都是平行四边形吗?(2) 与图一相比,图二与图三有什么共同的特点?目的是让学生经历菱形的概念,性质的发现过程,并让学生注意以下几点:(1)要使学生明确图二、图三都为平行四边形(2)引导学生找出图二、图三与图一在边方面的差异二. 新课: 把一组邻边相等的平行四边形叫做菱形.再用多媒体教科书中有关菱形的美丽图案,让学生感受菱形具有工整,匀称,美观等许多优点.菱形也是特殊的平行四边形,所以它具有一般平行四边形的性质外还具有一些特殊的性质.定理1:菱形的四条边都相等这个定理要求学生自己完成证明,可以根据菱形的定义推出,课堂上只需让学生说说理由就可以了,不必写证明过程.定理2: 菱形的对角线互相垂直,并且每条对角线平分一组对角.已知:在菱形ABCD中, 对角线AC、BD相交于点O.求证:AC ⊥ BD ,AC平分∠BAD 和∠BCD , BD平分∠ABC和∠ADC分析:由菱形的定义得△ABD是什么三角形? BO与OD有什么关系?根据什么?由此可得AO与BD有何关系?∠BAD有何关系?根据什么?证明:∵四边形ABCD是菱形∴AB=AD(菱形的定义)BO=OD(平行四边形的对角线互相平分)∴AC⊥BD , AC 平分∠BAD(等腰三角形三线合一的性质)同理, AC平分∠BCD , BD平分∠ABC和∠ADC∴对角线AC和BD分别平分一组对角由定理2可以得出菱形是轴对称图形, 它的两条对角线所在的直线都是它的对称轴.另外, 还可以从折叠来说明轴对称性.同时指出以上两个性质只是菱形不同于一般平行四边形的特殊性质.菱形还具有平行四边形的所有共性, 比如:菱形是中心对称图形, 对称中心为两条对角线的交点. 三.应用例1.在菱形ABCD中, 对角线AC、BD相交与点O, ∠BAC= 30°,BD=6 求菱形的边长和对角线AC的长.分析:本题是菱形的性质定理2的应用, 由∠BAC= 30°,得出△ABD为等边三角形, 就抓住了问题解决的关键.解:∵四边形ABCD是菱形∴AB=AD(菱形的定义)AC 平分∠BAD(菱形的每条对角线平分一组对角)又∵∠BAC= 30°∴∠BAD= 60°∴△ABD为等边三角形∴AB=BD=6又∵OB=OD=3(平行四边形的对角线互相平分)AC⊥BD(菱形的对角线互相垂直)由勾股定理得 AO2 + BO2= AB2∴AO= AC=2AO=四.巩固:教科书第141页课那练习1、2ODCBAODCBA五.小结:1、通过本节课的学习, 你有什么收获?还有哪些困惑?2、本节课的主要内容是:一个定义(菱形的定义), 二条定理(菱形的性质定理), 二个结论(菱形是轴对称图形, 又是中心对称图形). 六.作业:教学反思:§1.1 菱形的性质与判定(第二课时)教学目标1.经历菱形的判定定理的发现过程.2.掌握菱形的判定定理“四条边相等的四边形是菱形”.3.掌握菱形的判定定理“对角线互相垂直的平行四边形是菱形”.4.通过运用菱形知识解决具体问题, 提高分析能力和观察能力.并根据平行四边形、矩形、菱形的从属关系, 向学生渗透集合思想.教学重点、难点重点:菱形的判定定理.难点:菱形判定方法的综合应用.课本“合作学习”既需要一定的空间想象力, 又要有较强的逻辑思维能力.教学过程(一)、复习引入1、提问菱形的定义和性质.定义:一组邻边对应相等的平行四边形叫做菱形.性质:除具备一般平行四边形的性质外, 还具备四条边相等,对角线互相垂直, 并且每条对角线平分一组对角判定一个四边形是不是菱形可根据什么来判定?定义, 此外还有两种判定方法, 今天我们就要学习菱形的判定.(板书课题)(二)、创设情境, 引入新课1、合作学习:学生拿出准备好的长方形纸片, 按大屏幕展示的方法对折两次, 并沿(3)中的斜线剪开, 展开剪下的部分, 猜想这个图形是哪一种四边形?一定是菱形吗?为什么?剪出的图形四条边都相等, 根据这个条件首先证它是平行四边形, 再证一组邻边相等, 依定义即知为菱形.结论:菱形判定定理1:四边都相等的四边形是菱形(板书)(三)、交流互动, 探求新知1、已知:如图, 在ABCD中, BD⊥AC, O为垂足.求证:ABCD是菱形证明:∵四边形ABCD是平行四边形,∴AO=CO(平行四边形的对角线互相平分).∵BD⊥AC,∴AD=CD∴ABCD是菱形(菱形的定义).结论:菱形判定定理2:对角线互相垂直的平行四边形是菱形.2、猜想:对角线互相垂直平分的四边形是不是菱形?启发:通过四个直角三角形的全等得到四条边相等.结论:对角线互相垂直平分的四边形是菱形.(四)、应用新知, 巩固练习1、课本“课内练习”2、思考题:如图, △ABC中, ∠A=90°, ∠B的平分线交AC于D, AH、DF 都垂直于BC, H、F为垂足, 求证:四边形AEFD为菱形.AB CDEFH(五)、课堂小结, 布置作业1、本节的主要内容是:菱形常用的判定方法1).一组邻边相等的平行四边形.2).四条边相等的四边形.3).对角线互相垂直的平行四边形. 4).对角线互相垂直平分的四边形2、作业:教学反思补充练习:一、选择题.1、已知菱形两个邻角的比是1:5, 高是8cm, 则菱形的周长是().A. 16cmB. 32cmC. 64cmD. 128cm2、已知菱形的周长为40 cm, 两对角线长的比是3:4, 则两对角线的长分别是().A. 6cm、8cmB. 3cm、4cmC. 12cm、16cmD. 24cm、32cm3、如图:在菱形ABCD中, AE⊥BC, AF⊥CD, 且E、F分别为BC、CD的中点,那么∠EAF等于().A. 75°B. 60°C. 45°D. 30°4、棱形的周长为8.4cm, 相邻两角之比为5:1, 那么菱形一组对边之间的距离为()A、1.05cmB、0.525cmC、4.2cmD、2.1cm5、菱形具有而矩形不具有的性质是 ( )A.对角相等 B.四边相等 C.对角线互相平分 D.四角相等6、ABCD的对角线AC、BD相交于点O, 下列条件中, 不能判定ABCD是菱形的是().A. AB=ADB. AC⊥BDC. ∠A=∠DD.CA平分∠BCD7、下列命题中, 真命题是().A. 对角线相等且互相垂直的四边形是菱形.B. 有一条对角线平分一组对角的四边形是平行四边形.C. 对角线互相垂直的矩形是菱形.D. 菱形的对角线相等.8、菱形是轴对称图形, 对称轴有().A.1条 B.2条 C.3条 D.4条9、已知菱形的两条对角线长为10cm和24cm, 那么这个菱形的周长为_______, 面积为______.10、将两张长10cm宽3cm的长方形纸条叠放在一起, 使之成60度角, 那么重叠部分的面积的最大值为________________.11、一个菱形面积为80, 周长为40, 那么两条对角线长度之和为__________.GA12、已知:如图, 在菱形ABCD中, E、F分别是BC、CD上的点, 且CE=CF.过点C作CG∥EA交AF于H, 交AD于G, 若∠BAE=25°, ∠BCD=130°, 求∠AHC的度数.13、如图所示, 已知菱形ABCD中E在BC上, 且AB=AE, ∠BAE=21∠EAD, AE 交BD于M, 试说明BE=AM.14、如图, 在△ABC中, AB=BC, D、E、F分别是BC、AC、AB上的中点, (1)求证四边形BDEF是菱形.(2)若AB=12cm, 求菱形BDEF的周长?15、已知:如图, △ABC中, ∠BAC的平分线交BC于点D, E是AB上一点, 且AE=AC, EF∥BC交AD于点F, 求证:四边形CDEF是菱形.16. 如图, 平行四边形ABCD的对角线AC的垂直平分线与AD、BC、AC分别交于点E、F、O, 求证:四边形AFCE是菱形.17、已知:如图, C是线段BD上一点, △ABC和△ECD都是等边三角形, R、F、G、H分别是四边形ABDE各边的中点, 求证:四边形RFGH是菱形.18、如图, 已知在△ABC中, AB=AC, ∠B, ∠C的平分线BD、CE相交于点M, DF∥CE, EG∥BD, DF与EG交于N, 求证:四边形MDNE是菱形.19.已知:如图, 四边形ABCD是菱形, E是BD延长线上一点, F是DB延长线上一点, 且DE=BF.请你以F为一个端点, 和图中已标明字母的某一点连成RHGFEDCBA一条新的线段, 猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接AF ;(2)猜想: AF = AE ;(3)证明:(说明:写出证明过程的重要依据)分析:观察图形应该是连接AF, 可通过证△AFB和△ADE全等来实现AF=AE.20.如图, 在菱形ABCD中, P是AB上的一个动点(不与A、B重合), 连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°, 试问P点运动到什么位置时, △ADP的面积等于菱形ABCD面积的, 为什么?21、如图, 四边形ABCD是菱形, BE⊥AD、BF⊥CD, 垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8, BD=6时, 求BE的长.22.如图, 在菱形ABCD中, ∠A=60°, AB=4, O为对角线BD的中点, 过O点作OE⊥AB, 垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.点评:本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解, 需要熟练掌握.23、如图所示, 在菱形ABCD中, ∠ABC=60°, DE∥AC交BC的延长线于点E.求证:DE=BE点评:此题考查了菱形的性质, 直角三角形的性质等知识.此题难度不大, 注意数形结合思想的应用.24、在矩形ABCD中, O是对角线AC的中点, EF是线段AC的中垂线, 交AD、BC于E、F.求证:四边形AECF是菱形25、四边形ABCD是矩形, 四边形AECF是菱形, 若AB=2cm, BC=4cm, 求四边形AECF 的面积.§1.2 矩形的性质与判定(第一课时)一、教学目标1、能用综合法来证明矩形的性质定理和判定定理以及相关结论. 2 、能运用矩形的性质进行简单的证明与计算.二、教学重难点:矩形的性质的证明以及它与平行四边形的从属关系. 三、概念:1.矩形的定义:有一个角是直角的平行四边形是矩形(矩形是特殊的平行四边形).2.矩形的性质:矩形具有平行四边形的所有性质. (1)角:四个角都是直角. (2)对角线:互相平分且相等. 3.矩形的判定:(1)有一个角是直角的平行四边形. (2)对角线相等的平行四边形. (3)有三个角是直角的四边形.4.矩形的对称性:矩形是中心对称图形, 对角线的交点是它的对称中心;矩形是轴对称图形, 对称轴有2条, 是经过对角线的交点且垂直于矩形一边的直线.5.矩形的周长和面积:矩形的周长=)(2b a + 矩形的面积=长⨯宽=ab (b a ,为矩形的长与宽)★注意:(1)矩形被两条对角线分成的四个小三角形都是等腰三角形且面积相等.(2)矩形是轴对称图形, 两组对边的中垂线是它的对称轴.四边形平行四边形矩形菱形为一角90°一组邻边相等正方形平两组对边行只有一组对边平行一角为直角且一组邻边相等邻边相等一9角为0°等腰梯形两腰相等四、讲课过程:【经典例题:】例1:已知:O是矩形ABCD对角线的交点, E、F、G、H分别是OA、OB、OC、OD上的点, AE=BF=CG=DH, 求证:四边形EFGH为矩形.分析:利用对角线互相平分且相等的四边形是矩形可以证明例2:判断(1)两条对角线相等四边形是矩形()(2)两条对角线相等且互相平分的四边形是矩形()(3)有一个角是直角的四边形是矩形()(4)在矩形内部没有和四个顶点距离相等的点()分析及解答:(1)如图四边形ABCD中, AC=BD, 但ABCD不为矩形, ∴×(2)对角线互相平分的四边形即平行四边形, ∴对角线相等的平行四边形为矩形∴√(3)如图,四边形ABCD中, ∠B=90°, 但ABCD不为矩形∴×(4)矩形对角线的交点O到四个顶点距离相等∴×,如图,【课堂练习题:】1.判断一个四边形是矩形, 下列条件正确的是()A.对角线相等 B.对角线垂直C.对角线互相平分且相等 D.对角线互相垂直且相等.2.矩形的两边长分别为10cm和15cm, 其中一个内角平分线分长边为两部分, 这两部分分别为()A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm 和8cm3.在下列图形性质中, 矩形不一定具有的是()A.对角线互相平分且相等 B.四个角相等C .是轴对称图形D .对角线互相垂直平分 4在矩形ABCD 中, 对角线交于O 点, AB=0.6, BC=0.8, 那么△AOB 的面积为 ; 周长为 .5一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为 .6.若一个直角三角形的两条直角边分别为5和12, 则斜边上的中线等于 .7.矩形的两条对角线的夹角是60°, 一条对角线与矩形短边的和为15, 那么矩形对角线的长为 , 短边长为 .8.矩形的两邻边分别为4㎝和3㎝, 则其对角线为 ㎝, 矩形面积为 cm 2.9.若矩形的一条对角线与一边的夹角是40°, 则两条对角线相交所成的锐角是 .10.矩形的对角线相交所成的钝角为120°, 矩形的短边长为5 cm, 则对角线之长为 cm.11.矩形ABCD 的两对角线AC 与BD 相交于O 点, ∠AOB=2∠BOC, 若对角线AC 的长为18 cm, 则AD= cm.12、已知:如图所示, 矩形ABCD 中, E 是BC 上的一点, 且AE=BC,︒=∠15EDC .求证:AD=2AB .教学反思:§1.2 矩形的性质与判定(第二课时)教学目标知识与技能:通过探索与交流, 逐渐得出矩形的判定定理, 使学生亲身经历知识的发生过程, 并会运用定理解决相关问题.通过开放式命题, 尝试从不同角度寻求解决问题的方法.过程与方法: 通过动手实践、合作探索、小组交流, 培养学生的的逻辑推理、动手实践等能力.情感态度与价值观:在良好的师生关系下, 创设轻松的学习氛围, 使学生在数学活动中获得成功的体验, 增强自信心, 在合作学习中增强集体责任感. 教学重点与难点重点:探索矩形判定定理的过程及应用 难点:矩形判定定理的应用ABECD教学过程环节一:创设情境、导入新课通过上节课对矩形的学习, 谁能回答以下问题1、判定四边形是矩形的方法是什么?(用定义)(1)是不是平行四边形, (2)再看它有无直角.2、矩形是特殊的平行四边形它具有哪些性质?(通过对矩形定义及性质的回顾, 引出判定矩形除了定义外, 还有哪些方法, 导入新课.)环节二:尝试发现, 探索新知活动一:1、先请同学仅用手中量角器量一下图形(甲)(乙)中的四边形的角(有几个直角).甲乙2、然后通过同桌同学交流用有几个直角才能构成矩形, 并说明理由.(此问题的解决以动手实践, 合作交流的形式进行, 学生在探究过程中根据已有的知识积累——矩形的定义, 得出矩形的判定定理一.教师以合作者的身份深入学生中, 了解学生的探究进程并适当给予点拨.)最后教师进行适当板书进行推证、讲解.在此过程中, 全体同学可互相补充、互相评价, 培养学生的语言表达能力、推理能力.活动二:教师提问:矩形的对角线相等,相反对角线相等的四边形是什么图形?在学生回答是或不是的情况下, 让学生下例步骤进行探索.1、画任意两条长度相等的相交线段, 并把它们的四个顶点顺次连结, 看是不是矩形?2、画两条长度相等并且一条并分另一条的线段, 并把它们的四个顶点顺次连结, 看是不是矩形?3、画两条长度相等并且互相平分的线段, 并把它们的四个顶点顺次连结, 看是不是矩形?4、然后通过同桌同学交流用怎样的两条长度相等才能构成矩形, 并说明理由.最后通过教师演示动画, 师生进行适当交流、归纳、讲解, 得出矩形的判定定理二.(此问题的解决仍以分组合作交流的形式进行, 通过此种互动过程, 让全体学生参与其中, 获得不同程度的收获, 体验成功的喜悦)活动三:矩形的判定定理二的证明.已知:在平行四边形ABCD中, AC=BD,求证:平行四边形ABCD是矩形.对于判定定理二的证明教师从以下几个方面进行与学生交流.(1)条件与结论各是什么?(引出条件与结论的关系)(2)使一个平行四边形是矩形, 已学过什么方法?(引出矩形的定义证明)(3)要证明一个角是直角, 根据平行四边形相邻两个角互补, 只需证明什么?(引出证明两个三角形全等)(4)如何选择要证明两个三角形全等, 它们的条件是否满足?最后由学生说出整个证明的过程, 教师进行适当的点评与板书.当判定定理一、定理二得出后, 让学生总结矩形的三种判定方法(定义, 定理一与定理二), 并对题设进行比较、区分, 使学生进一步明确定理应用的条件.环节三:应用辨析, 巩固定理为了帮助学生巩固定理, 应用如下:应用一、工人师傅为了检验两组对边相等的四边形是否成矩形, 你有没有方法帮助工人师傅解决这个问题?(这一题是由引入判定定理二改编而成的, 主要考查学生的判定矩形的多种解决方法的实际问题.)应用二、例题讲解一张四边形纸板ABCD形状如图, 它的对角线互相垂直.若要从这张纸板中剪出一个矩形, 并且使它的四个顶点分别落在四边形ABCD的四条边上, 可怎么剪?对于这个问题的解决教师引导学生回顾过去证明“依次连结四边形各边中点所得的四边形是平行四边形的经验, 使学生联想到连结四边形ABCD的两条对角线, 然然后运用中位线定理, 这样就解决了这个问题.应用三、练习一、判断题:1、内角都相等的四边形是矩形.2、对角线相等的四边形是矩形.3、对角线互相平分且相等的四边形是矩形.4、一组邻角相等的平行四边形是矩形.5、对角互补的平行四边形是矩形.练习二:如图AC, BD是矩形ABCD的两条结角线,AE=CG=BF=DH.求证:四边形EFGH是矩形.教学反思:§1.2 矩形的性质与判定(第三课时)教学目标1.进一步掌握矩形的性质及判定的应用2.理解定理”直角三角形斜边上的中线等于斜边的一半”的证明3.会利用矩形的性质和判定解决简单几何问题.教学重点、难点重点:本节教学的重点是进一步掌握矩形的性质及判定的应用.难点:定理”直角三角形斜边上的中线等于斜边的一半”的证明要添加教DOCB AH EGFC OBA D多的辅助线,综合应用知识的能力要求教高,是本节教学的难点. 教学过程】 一. 复习旧知:1. 矩形的定义.2. 矩形的两个性质定理.3. 矩形的两个判定定理.4. 师生一起回答:有一句话既是矩形的性质,又是矩形的判定,那就是矩形的定义.5. 师生共同回忆:”直角三角形斜边上的中线等于斜边的一半”. 二. 新课讲授:1. 下面谈谈第5点”直角三角形斜边上的中线等于斜边的一半”的证明过程.启发引导如下:1.帮助学生根据题意,画出图形. 2. 根据图形,写出已知和求证.(上游生回答).3. 回顾证明一条线段是另一条线段的一半,可以转换成怎样的一个等价命题. (上游生回答).4. 如何在图中画出2倍的CD. (中游生回答).5. 延长CD 到E,使DE=CD,问题就化归为证明哪两条线段线段相等. (中游生回答).6. 现在我们证明两条线段相等有哪些新的方法. (上游生回答). 已知:如图,在RT ⊿ABC 中,∠ACB=RT ∠,CD 是斜边AB 上的中线,求证:CD=21AB 证明:延长CD 到E,使DE=CD,连接AE,BE.CD 是斜边AB 上的中线.∴ AD=DB又 CD=DE∴四边形AEBC 是平行四边形.∠ACB=RT ∠, ∴四边形AEBC 是矩形(矩形的定义). ∴CE=AB(矩形的对角线相等), ∴ CD=21AB 三 .巩固练习1.矩形具有而一般的平行四边形不一定具有的特征是( ).A .对角相等 B. 对边相等 C .对角线相等 D. 对角线互相平分 2.如图, 在矩形ABCD 中, 对角线AC 与BD 相交于点O,AB=5, AC=13, 则矩形ABCD 的面积__.B D E A ABCDEMFPH DCBA 3.已知, 矩形的一条边上的中点与对边的两个端点的连线互相垂直, 且该矩形的周长为24 cm, 则矩形的面积为 cm 2.4.如图所示, 在矩形ABCD 中, AB=2BC, 在CD 上取一点E, 使AE=AB, 则∠EBC= .5.如图, 已知△ABC 中, AB=AC, D 为BC 上一点, DE ⊥AB, DF ⊥AC, BM 为高, 求证:DE+DF=BM.6.如图, ABCD 是矩形纸片, 翻折∠B 、∠D , 使BC 、AD 恰好落在AC 上.设F 、H 分别是B 、D 落在AC 上的两点, E 、G 分别是折痕CE 、AG 与AB 、CD 的交点.(1)求证:四边形AECG 是平行四边形; (2)若AB =4cm , BC =3cm , 求线段EF 的长.7、已知:如图, 在△ABC 中, AB=AC, AD ⊥BC, 垂足为点D, AN 是△ABC 的外角∠CAM 的平分线, CE ⊥AN, 垂足为点E, 求证:四边形ADCE 为矩形.8、如图, 在矩形ABCD 中, AP=DC, PH=PC, 求证: PB 平分 CBH.9、如图, 矩形ABCD 中, E 为AD 上一点, EF ⊥CE 交AB 于F, 若DE=2, 矩形ABCD 的周长为16, 且CE=EF, 求AE 的长.10、已知:如图, 平行四边形ABCD 的四个内角的平分线分别相交于点E, F, G, H, 求证:四边形EFGH 是矩形.11、已知:如图, 四边形ABCD 是由两个全等的正三角形ABD 和BCD 组成的, M 、N•分别为BC 、AD 的中点.求证:四边形BMDN 是矩形.BAC D N M12、如图, 已知在四边形ABCD中, AC DB交于O, E、F、G、H分别是四边的中点,求证:四边形EFGH是矩形.四.小结:1.通过这节课的学习,你有什么收获?(请各个层次的同学回答).2.还有什么困惑需要我们共同解决?教学反思:§1.3 正方形的性质与判定教学目标1、掌握正方形的概念2、经历探索正方形有关性质和判别条件的过程, 了解正方形与矩形、菱形的关系3、掌握正方形的性质4、掌握正方形的判定5、进一步加深对特殊与一般的认识教学重点、难点重点:正方形的性质与判定.难点:正方形与矩形、菱形、平行四边形的概念之间的联系.教学过程一、情景引入出示一块方巾, 它是什么几何图形?(正方形)中国人对正方形有特殊的感情, 如“坦荡方正”, “天圆地方”等词语, 还有许多实物都是正方形的形状(教师可以多媒体演示), 今天我们就来研究正方形二、探索新知这块方巾是否也可以说是平行四边形?矩形?菱形?与一般的平行四边形相比, 它有何特殊性?与一般的矩形相比, 它有何特殊性?与一般的菱形相比, 它又有何特殊性?三、梳理新知结合学生的发现, 师生共同归纳出以下几点:有一组邻边相等, 并且有一个角是直角的平行四边形叫做正方形正方形既是特殊的矩形, 又是特殊的菱形, 故正方形具有矩形、菱形的性质性质:四个角都是直角, 四条边相等对角线相等, 并且互相垂直平分, 每条对角线平分一组对角判定:一组邻边相等的矩形是正方形有一个角是直角的菱形是正方形四、巩固新知1、例题例1:如图:△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F求证:四边形CFDE是正方形.HGOFEDCBA解∵CD平分∠ACB,DE⊥BC,DF⊥AC∴DE=DF(角平分线上的点到角的两边的距离相等)∴∠ DEC=∠ECF=∠CFD=90°,∴四边形 CFDE是矩形(有三个角是直角的四边形是矩形),又∵ DE=DF(已证)∴四边形 CFDE是正方形(有一组邻边相等的矩形是正方形).例2:已知:如图点A'、B'、C'、D'分别是正方形ABCD四条边上的点, 并且AA'=BB'=CC'=DD'求证:四边形A'B'C'D'是正方形分析:法一:①先证明四边形A′B′C′D′是菱形②再证明四边形A′B′C′D′有一个角是直角法二:①先证明四边形A′B′C′D′是矩形②再证明四边形A′B′C′D′有一组邻边相等.证明:∵四边形ABCD是正方形∴AB=BC=CD=DA又∵A`A=B`B=C`C=D`D∴D`A=A`B=B`C=C`D∵∠A=∠B=∠C=∠D=90°∴△AA`D`≌△BB`A`≌△CC`B`≌△DD`C`AD`=AB`=BC`=CD`∴四边形A`B`C`D`是菱形又∵∠AD`A`=∠BA`B`, ∠ AA`D`+∠AD`A`=90°∴∠AA`D`+∠BA`B`=90 °∵∠D`A`B`=180°—(∠AA`D`+∠BA`B`)=90°∴四边形A`B`C`D`是正方形例3:如图:EG 、FH过正方形ABCD的对角线的交点O,EG⊥FH,求证四边形EFGH 为正方形解答: ∵正方形ABCD EG⊥FH∴∠OAH=∠OBE=45º, DB=AC OA=OB, ∠AOH=90º-∠AOE=∠BOE,∴⊿AOH≌⊿BOE﹙ASA﹚.∴ OH=OE.同理OE=OF=OG = OH,∴四边形EFGH是平行四边形∴ FH=EG∵EG⊥FH ∴四边形EFGH为正方形.2、巩固练习1、如图, 分别延长等腰直角△OAB的两条直角边AO和BO, 使AO=OC, BO=OD求证:四边形ABCD是正方形。
最新北师大版九年级上期数学教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章特殊平行四边形1.菱形的性质与判定(一)一、学生知识状况分析“菱形的性质与判定”是继八年级下册“第三章图形的平移与旋转”和“第六章平行四边形”之后的一个学习内容。
九年级的学生在学习菱形之前,已经掌握了简单图形平移旋转和平行四边形的性质和判定,学生完全能够借助图形的旋转平移和轴对称直观的理解菱形的定义和性质。
其次,经历了七年级下册“第二章相交线与平行线”、“第三章三角形”和八年级下册“第六章平行四边形”的学习,通过推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。
再次,在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析教科书基于学生在平行四边形相关知识的基础上,提出了本课的具体学习任务:①掌握菱形的定义;②探索并掌握菱形是轴对称图形;③探索并证明菱形“四条边相等”、“对角线互相垂直”等性质,并能应用这些性质计算线段的长度。
在教学过程中,要利用学生对图形的直观感知、已掌握的平行四边形的相关知识和已有的逻辑推理能力为基础,探索菱形的定义和性质,又要尝试利用它们解题。
所以在本节课的教学中,要帮助学生学会运用观察,分析,比较,归纳,概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的乐趣,体会到成功的喜悦。
综上所述,本节的教学目标为:1.经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系;2.体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力;3.在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力三、教学过程设计本节课设计了六个教学环节:第一环节:课前准备;第二环节:设置情境,提出课题;第三环节:猜想、探究与证明;第四环节:性质应用与巩固;第五环节:课堂小结;第六环节:布置作业。
九年级数学上册教案(北师大版)一、教学目标1. 知识与技能:使学生掌握九年级数学上册的基本概念、公式、定理,提高学生的数学运算能力和解决问题的能力。
2. 过程与方法:通过自主学习、合作探究、实践操作等活动,培养学生独立思考、创新能力和团队协作精神。
3. 情感态度与价值观:激发学生对数学的兴趣,培养积极的学习态度,提高学生的自主学习能力。
二、教学内容1. 第一章:实数与方程1.1 实数的概念与性质1.2 一元一次方程1.3 不等式与不等式组2. 第二章:多边形的计算2.1 三角形的面积计算2.2 四边形的面积计算2.3 多边形的面积计算3. 第三章:数据的整理与分析3.1 数据的收集与整理3.2 数据的描述与分析3.3 数据的处理与展示4. 第四章:函数的初步认识4.1 函数的概念与性质4.2 一次函数的图象与性质4.3 二次函数的图象与性质5. 第五章:几何图形的证明5.1 平行线的性质与判定5.2 三角形的性质与判定5.3 四边形的性质与判定三、教学方法1. 启发式教学:通过问题引导,激发学生的思考,培养学生的创新能力和解决问题的能力。
2. 合作学习:组织学生进行小组讨论、探究,培养学生的团队协作精神和沟通能力。
3. 实践操作:引导学生动手操作,提高学生的实践能力和数学运算能力。
4. 信息技术辅助教学:利用多媒体课件、网络资源等,丰富教学手段,提高教学效果。
四、教学评价1. 过程性评价:关注学生在学习过程中的表现,如态度、参与度、合作能力等。
2. 终结性评价:通过考试、测验等方式,检测学生对知识与技能的掌握程度。
3. 自我评价:鼓励学生进行自我反思,提高学生的自主学习能力。
五、教学资源1. 教材:九年级数学上册(北师大版)2. 教辅资料:习题集、解析、教学课件等。
3. 网络资源:相关数学教学网站、视频、论坛等。
4. 教学仪器:黑板、粉笔、多媒体设备等。
六、教学计划1. 第六章:概率初步6.1 随机事件与概率6.2 排列组合6.3 概率的计算与应用2. 第七章:初中数学综合应用7.1 数学与生活7.2 数学与科学7.3 数学与社会科学3. 第八章:数学阅读与写作8.1 数学阅读8.2 数学写作8.3 数学语言表达4. 第九章:数学思想方法9.1 化归思想9.2 数形结合思想9.3 分类讨论思想5. 第十章:总复习10.1 复习要点与方法10.2 中考数学考试大纲解析10.3 模拟测试与真题演练七、教学策略1. 第六章:概率初步运用实例引入概率的概念,通过实践活动让学生体验概率的计算过程,培养学生的实际应用能力。
九年级数学上册教案北师大版第一章:第一节多项式教学目标:1. 理解多项式的概念,掌握多项式的系数、次数等基本性质。
2. 学会用代数式表示多项式,并能进行简单的运算。
教学内容:1. 多项式的定义及基本性质。
2. 多项式的运算规则。
教学步骤:1. 引入多项式的概念,通过实例让学生理解多项式的定义。
2. 引导学生探究多项式的系数、次数等基本性质。
3. 讲解多项式的运算规则,并进行示范。
4. 让学生进行多项式的运算练习。
教学评价:1. 检查学生对多项式概念的理解程度。
2. 评估学生在多项式运算中的掌握情况。
第二章:第二节单项式与多项式教学目标:1. 理解单项式与多项式的关系,掌握它们的性质。
2. 学会将单项式与多项式进行运算。
教学内容:1. 单项式与多项式的概念及关系。
2. 单项式与多项式的运算规则。
教学步骤:1. 通过实例引入单项式与多项式的概念,引导学生理解它们的关系。
2. 讲解单项式与多项式的运算规则,并进行示范。
3. 让学生进行单项式与多项式的运算练习。
教学评价:1. 检查学生对单项式与多项式概念的理解程度。
2. 评估学生在单项式与多项式运算中的掌握情况。
第三章:第三节函数的初步概念教学目标:1. 理解函数的基本概念,掌握函数的表示方法。
2. 学会用函数的解析式表示实际问题中的函数关系。
教学内容:1. 函数的定义及表示方法。
2. 实际问题中函数关系的表示。
教学步骤:1. 引入函数的概念,通过实例让学生理解函数的定义。
2. 讲解函数的表示方法,如解析式、表格法等。
3. 引导学生将实际问题中的关系表示为函数关系。
4. 让学生进行函数关系表示的练习。
教学评价:1. 检查学生对函数概念的理解程度。
2. 评估学生在函数关系表示中的掌握情况。
第四章:第四节一次函数教学目标:1. 理解一次函数的概念,掌握一次函数的性质。
2. 学会用一次函数的解析式表示实际问题中的线性关系。
教学内容:1. 一次函数的定义及性质。
第一章特殊平行四边形1 菱形的性质与判定第1课时菱形的性质【知识与技能】理解菱形的概念,掌握菱形的性质.【过程与方法】经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法.【情感态度】培养学生主动探究的习惯、严密的思维意识和审美意识.【教学重点】理解并掌握菱形的性质.【教学难点】形成推理的能力.一、情境导入,初步认识四人为一小组先在组内交流自己收集的有关菱形的图片,实物等,然后进行全班性交流.引入定义:有一组邻边相等的平行四边形叫做菱形.【教学说明】认识菱形,感受菱形的生活价值.二、思考探究,获取新知教师拿出平行四边形木框(可活动的),操作给学生看,让学生体会到:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形,说明菱形也是平行四边形的特例,因此,菱形也具有平行四边形的所有性质.【教学说明】通过教师的教具操作感受菱形的定义.如图:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开.思考:1.这是一个什么样的图形呢?2.有几条对称轴?3.对称轴之间有什么位置关系?4.菱形中有哪些相等的线段?【教学说明】充分地利用学具的制作,发现菱形所具有的性质,激发课堂学习的热情.【归纳结论】菱形具有平行四边形的一切性质,另外,菱形的四条边相等、对角线互相垂直.三、运用新知,深化理解1.见教材P3第1题.2.见教材P3例1 .3.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为(A)A.15B.153 2C.7.5D.153【教学说明】本题考查有一个角是60°的菱形的一条对角线等于菱形的边长.4.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC且交BC的延长线于点E.求证:DE=12 BE.分析:由四边形ABCD是菱形,∠ABC=60°,易得BD⊥AC,∠DBC=30°,又由DE∥AC,即可证得DE⊥BD,由30°所对的直角边等于斜边的一半,即可证得DE=12 BE.证明:方法一:如图,连接BD,∵四边形ABCD是菱形,∠ABC=60°,∴BD⊥AC,∠DBC=30°,∵DE∥AC,∴DE⊥BD,即∠BDE=90°,∴DE=12 BE.方法二:∵四边形ABCD是菱形,∠ABC=60°,∴AD∥BC,AC=AD,∵AC∥DE,∴四边形ACED是菱形,∴DE=CE=AC=AD,又四边形ABCD是菱形,∴AD=AB=BC=CD,∴BC=EC=DE,即C为BE的中点,∴DE=BC=12 BE.【教学说明】此题考查了菱形的性质,直角三角形的性质等知识.此题难度不大,注意数形结合思想的应用.5.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2,又∵OE⊥AB,∠ABD=60°,∴∠BOE=30°,∴BE=1.【教学说明】本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.学生自主完成,如有一定难度可相互交流,最后由教师总结.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作补充.1.布置作业:教材“习题1.1”中第1、2 题.2.完成练习册中相应练习.本节课中,重在探索菱形性质的过程,在操作活动和观察分析过程中发展学生的审美意识,进一步体会和理解说理的基本步骤,了解菱形的现实应用.第2课时菱形的判定【知识与技能】1.理解并掌握菱形的定义及两个判定方法;2.会用这些判定方法进行有关的论证和计算.【过程与方法】经历探索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的基本方法.【情感态度】培养良好的思维意识以及推理的能力,感悟其应用价值及培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】菱形的两个判定方法.【教学难点】判定方法的证明及运用.一、情境导入,初步认识回顾:(1)菱形的定义:一组邻边相等的平行四边形.(2)菱形的性质:性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角.(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)【教学说明】通过对菱形的性质复习回顾,让学生养成勤复习的习惯.用以温故而知新.二、思考探究,获取新知活动1按下列步骤画出一个平行四边形:(1)画一条线段长AC=6cm;(2)取AC的中点O,再以点O为中点画另一条线段BD=8cm,且使BD⊥AC;(3)顺次连接A、B、C、D四点,得到平行四边形ABCD.猜猜你画的是什么四边形?【归纳结论】菱形的判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.【教学说明】首先教师活动让学生观察,然后让学生自己动手亲自体验活动从而猜想出结论来.已知:在□ABCD中,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形,AC ⊥BD,∴□ABCD是菱形.活动2画一画:作一条线段AC,分别以A、C为圆心,以大于AC的一半为半径画弧,两弧分别交于B、D两点,依次连接A、B、C、D.思考:四边形ABCD是什么四边形?你能证明吗?【归纳结论】菱形的判定方法2:四条边相等的四边形是菱形.【教学说明】让学生亲自动手体验活动,猜想出结论来并进行证明.从而加深印象.三、运用新知,深化理解1.见教材P6例2 .2.如图,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG 与FH交点于O,则图中的菱形共有(B)A.4个B.5个C.6个D.7个3.下列说法正确的是(B)A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形4.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.求证:AD=CE;证明:∵MN是AC的垂直平分线.∴OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO,∴AD=CE.5.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形;证明:∵CE平分∠ACB,EA⊥CA,EF⊥BC,∴AE=FE,∵∠ACE=∠ECF,∴△AEC≌△FEC,∴AC=FC,∵CG=CG,∴△ACG≌△FCG,∴∠CAG =∠CFG =∠B,∴GF∥AE,∵AD⊥BC,EF⊥BC,∴AG∥EF,故四边形AGFE是平行四边形又∵AG=GF(或AE=EF),∴平行四边形AGFE是菱形(一组邻边相等的平行四边形是菱形).【教学说明】让学生先独立完成,然后将不会的问题各小组交流讨论得出结果.让学生从题目中找解题信息,从图形中找解决问题的突破口.四、师生互动、课堂小结1.师生共同回顾判定一个四边形是菱形的方法:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.2”中第2、3题.2.完成练习册中相应练习.本节课让学生动手操作,不仅可以调动学生的积极性,而且通过动手做一做,然后再说一说的过程,巩固了菱形的判定.只有这样,才能使学生在今后的学习中有更严密的思维,使他们的抽象概括能力有更好的提升.第3课时菱形的性质与判定的运用【知识与技能】能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.【过程与方法】经历菱形性质定理及判定定理的应用过程,体会数形结合、转化的思想.【情感态度】培养良好的探究意识以及推理能力,感悟其应用价值;培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】利用菱形性质定理与判定定理解决一些相关问题.【教学难点】菱形性质的探究.一、情境导入,初步认识活动:如图,你能用一张锐角三角形纸片ABC折出一个菱形,使∠A成为菱形的一个内角吗?【教学说明】通过折纸活动激发学生的兴趣,同时对于菱形的相关判定方法也进行了巩固.二、思考探究,获取新知如图,两张等宽的纸条交叉重叠在一起,重叠部分ABCD是菱形吗?为什么?拓展:若纸条的宽度是4cm ,∠ABC=60°,你会求菱形的面积吗?你有几种不同的方法?与同学交流.【归纳结论】菱形面积的计算公式:①如图,S 菱形ABCD =AB ·DE ,即菱形的面积等于底乘高;②S 菱形ABCD =12AC ·BD ,即菱形的面积等于两条对角线乘积的一半.【教学说明】对菱形性质的归纳是学生对菱形特征的认识、是知识的一次升华,有助于培养学生的概括能力,突出教学重点.三、运用新知,深化理解如图,在△ABC 中,AB=BC ,D 、E 、F 分别是BC 、AC 、AB 的重点.(1)求证:四边形BDEF 是菱形;(2)若AB=10cm ,求菱形BDEF 的周长.解:(1)证明:∵E 、F 分别是AC 、AB 的中点,∴EF=12BC ,EF ∥CB. 又∵D 、E 分别是BC 、AC 的中点,∴DE=12AB ,DE ∥AB, ∴四边形BDEF 是平行四边形.又∵AB=BC ,∴EF=DE ,∴四边形BDEF 是菱形.(2)∵F 是AB 的中点,∴BF=12AB.又∵AB=10cm,∴BF=5cm.∵四边形BDEF是菱形,∴BD=DE=EF=BF,∴四边形BDEF的周长为4×5=20(cm).【教学说明】菱形的性质与判定的综合应用,一般先证明四边形是菱形,再利用菱形的性质进行求解或证明,要注意两者的区别与联系.四、师生互动、课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.3”中第2、3、4题.2.完成练习册中相应练习.通过复习回顾菱形的性质和判定,唤醒学生的记忆,然后给学生设置好一个个有梯度的问题,调动学生的求知欲,树立勇于战胜自我的信念.2 矩形的性质与判定第1课时矩形的性质【知识与技能】了解矩形的有关概念,理解并掌握矩形的有关性质.【过程与方法】经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.【情感态度】培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.【教学重点】掌握矩形的性质,并学会应用.【教学难点】理解矩形的特殊性.一、情境导入,初步认识将收集来的有关长方形的图片给学生观察,让学生进行感性认识,引入新课——矩形.【教学说明】让学生体会到数学来源于生活,找到数学的价值.二、思考探究,获取新知1.拿一个活动的平行四边形教具,轻轻拉动一个点并观察,它还是一个平行四边形吗?为什么?(演示拉动过程如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?【归纳结论】矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).让学生观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形所有性质.思考:矩形还具有哪些特殊的性质?为什么?【教学说明】采用观察、操作、交流、演绎的手法来解决重点突破难点.【归纳结论】矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.3.矩形是轴对称图形吗?如果是,它有几条对称轴?4.如图,在矩形ABCD中,AC、BD相交于点O,求AO与BD的数量关系.【归纳结论】直角三角形斜边上的中线等于斜边的一半.【教学说明】引导学生尽可能多地发现结论,养成善于观察的好习惯.三、运用新知,深化理解1.已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知条件,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD = 2OA=2×4=8(cm).2.已知:如图,矩形ABCD,AB长8cm ,对角线比AD长4cm.求AD的长及点A到BD的距离AE的长.分析:因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:(1)设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x2+82=(x+4)2,解得x=6. 则AD=6cm.(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE·DB=AD·AB,解得AE =4.8cm.3.已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.【教学说明】给予学生足够的时间,让学生独立思考,小组合作,由不同学生表述自己的不同思路,展示不同的方法.使学生能做一题会一类,熟知矩形中的基本图形.4.若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为22或20 cm.解:本题需分两种情况解答.即矩形的一个角的平分线分一边为4cm和3cm,或者矩形的角平分线分一边为3cm和4cm.当矩形的一个角的平分线分一边为4cm和3cm时,矩形的周长为2×(3+4)+2×4=22cm;当矩形的角平分线分一边为3cm和4cm时,矩形的周长为2×(3+4)+2×3=20cm.【教学说明】本题考查的是矩形的基本性质,学生需要注意的是分两种情况作答即可.四、师生互动,课堂小结1.师生共同回顾矩形的性质.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.4”中第2、3题.2.完成练习册中相应练习.本节课以“平行四边形变形为矩形的过程”的演示引入课题,将学生的视线集中在数学图形上,思维集中在数学思考上,更好地突出了观察的对象,使学生更容易把握问题的本质,真实、自然、和谐,体现了数学学习的内在需要,加强了学生对知识之间的理解和把握.第2课时矩形的判定【知识与技能】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【过程与方法】经历探索矩形判定的过程,发展学生实验探索的意识;形成几何分析思路和方法.【情感态度】培养推理能力,会根据需要选择有关的结论证明,体会来自于实践的需要.【教学重点】理解并掌握矩形的判定方法及其证明,掌握判定的应用.【教学难点】定理的证明方法及运用.一、情境导入,初步认识事例引入:小华想做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?【教学说明】事例引入,激发学生的兴趣.二、思考探究,获取新知动手操作,拿一个活动的平行四边形教具,轻轻拉动一个点.思考:1.随着∠α的变化,两条对角线的长度将发生怎样的变化?2.当两条对角线的长度相等时,平行四边形有什么特征?你能证明吗?【教学说明】让学生动脑思考,动手操作.为下面的学习做准备.【归纳结论】对角线相等的平行四边形是矩形.证明:(见教材P14例题)矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论,并与同伴交流.【归纳结论】有三个角是直角的四边形是矩形.【教学说明】培养学生的归纳总结能力,同时也训练了学生的语言表达能力和分析问题的能力.三、运用新知,深化理解1. 对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.解析:矩形的判定定理有:(1)对角线相等的平行四边形是矩形;(2)有三个角是直角的四边形是矩形.2.下列说法正确的是(D )A.一组对边平行且相等的四边形是矩形B.一组对边平行且有一个角是直角的四边形是矩形C.对角线互相垂直的平行四边形是矩形D.一个角是直角且对角线互相平分的四边形是矩形解析:A、一组对边平行且相等的四边形是平行四边形,故A错误;B、一组对边平行且相等并有一个角是直角的四边形是矩形,故B错误;C、对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”),故C 错误;D、对角线互相平分且相等的四边形是矩形,故D正确.【教学说明】让学生口答第1、2道题,训练学生的语言表达能力.3.如图所示,□ABCD的四个内角的平分线分别相交于E、F、G、H,试说明四边形EFGH是矩形.解:∵∠HAB+∠HBA=90°.∴∠H=90°.同理可求得∠HEF=∠F=∠FGH=90°∴四边形EFGH是矩形.【教学说明】在黑板上展示第3题,有多种证明方法的题目学生口答展示,教师予以总结.既训练了学生的语言表达能力,也训练了学生的书写能力和分析问题的能力.四、师生互动,课堂小结1.师生共同回顾矩形有哪些判定定理?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.5”中第2、3题.2.完成练习册中相应练习.本节课用逻辑推理的方法对以前曾用直观感知、操作说明得到的矩形判定进行的重新研究,让学生充分感受到逻辑推理是研究几何的重要方法.尽可能地提供多种机会让学生自己去理解、感悟、体验,从而提高学生的数学认识,激发学生的数学情感,促进学生数学水平的提高.第3课时矩形的性质与判定的运用【知识与技能】熟练运用矩形的性质和判定定理进行相关的计算和证明.【过程与方法】经历从性质到判定的转化过程,合理、准确地运用已有的知识进行推导、证明,体会数学知识之间的联系和区别.【情感态度】通过严谨的推理,强化学生的规范意识.【教学重点】灵活运用矩形的性质和判定定理进行相关的计算和证明.【教学难点】利用矩形的相关性质构造新的图形,进而对知识进行转化.一、情境导入,初步认识如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE.求AE的长.【教学说明】通过例题感受知识的应用的同时体会知识之间的联系及转化,并通过规范的步骤强调教学推理的严谨性.二、思考探究,获取新知已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN为△ABC的外角∠CAM的平分线,CE⊥AN,垂足为E.求证:四边形ADCE是矩形.【思考】在上例中,连接DE,交AC于点F.(1)试判断四边形ABDE的形状,并证明你的结论;(2)线段DF与AB有怎样的关系?请证明你的结论.【教学说明】让学生感受矩形与等腰三角形之间的联系,感受知识转化在解决问题中的作用.三、运用新知,深化理解1.见教材P16~P17例3.2.如图,O是矩形ABCD的对角线的交点,过点O的直线EF分别交AB、CD于点E、F,那么阴影部分的面积是矩形ABCD的面积的(B )3.(一题多解)如图所示,△ABC为等腰三角形,AB=AC,CD⊥AB于D,P为BC上的一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F,则有PE+PF=CD,你能说明为什么吗?解:解法一:能.如图所示,过P点作PH⊥DC,垂足为H.可得四边形PHDE是矩形,∴PE=DH,PH∥BD∴∠HPC=∠B又∵AB=AC∴∠B=∠ACB∴∠HPC=∠FCP.又∵PC=CP,∠PHC=∠CFP=90°∴△PHC≌△CFP∴PF=HC∴DH+HC=PE+PF即:DC=PE+PF.解法二:能.如图,延长EP,过C点作CH⊥EP,垂足为点H,如图所示,可得四边形HEDC是矩形,∴EH=PE+PH=DC,CH∥AB∴∠HCP=∠B.∴△PHC≌△PFC∴PH=PF∴PE+PF=DC.【教学说明】通过应用性的练习,巩固基础知识的同时,感受知识的综合运用在解题过程中的重要性,使所学知识进行深化.四、师生互动,课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.6”中第1、2、3题.2.完成练习册中相应练习.本节课在复习前一节课内容的基础上利用矩形的性质和判定解决具体问题,在例题的选择和设计上,追寻知识向能力的转化,让学生主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,同时训练学生清晰、有条理地表达自己的思考过程,从而培养学生的推理能力和分析问题的能力.3 正方形的性质与判定第1课时正方形的性质【知识与技能】使学生掌握正方形的概念,知道正方形具有矩形和菱形的一切性质,并会用它们进行有关的论证和计算.【过程与方法】学会用正方形的性质解决一些问题,进一步发展学生的推理能力,促进其逐步掌握说理的基本方法.【情感态度】通过分析正方形的概念、性质与矩形、菱形的概念、性质的联系和区别,对学生进行辩证唯物主义教育.【教学重点】正方形的性质.【教学难点】正方形的性质.一、情境导入,初步认识1.在我们的生活中除了平行四边形、矩形、菱形外,还有什么特殊的平行四边形呢?2.展示正方形图片,学生观察它们有什么共同特征?【教学说明】学生回答后,再展示图片,使学生感受到生活中到处存在数学,激发学习热情.【归纳结论】有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.二、思考探究,获取新知1.做一做:用一张长方形的纸片折出一个正方形.2.观察:这个正方形具有哪些性质?【教学说明】让学生在动手操作中对正方形产生感性认识.【归纳结论】正方形的四个角都是直角,四条边相等.正方形的对角线相等且互相垂直平分.3.议一议:平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地说明吗?【教学说明】小组交流,引导学生从角、对角线的角度归纳总结.使学生感受变化过程,更清晰地了解各四边形之间的联系与区别.三、运用新知,深化理解1.见教材P21例1 .2.如图,△ABC是一个等腰直角三角形,DEFG是其内接正方形,H是正方形的对角线交点;那么,由图中的线段所构成的三角形中互相全等的三角形的对数为()A.12B.13C.26D.30解析:根据全等三角形的判定可以确定全等三角形的对数,由于图中全等三角形的对数较多,可以根据斜边长的不同确定对数,可以做到不重不漏.设AB=3,图中所有三角形均为等腰直角三角形,其中,斜边长为1的有5个,它们组成102的有6个,它们组成15对全等三角形;斜边长为2的有2个,它们组成1对全等三角形;共计26对.故选C.3.已知正方形ABCD在直角坐标系内,点A(0,1),点B(0,0),则点C,D坐标分别为(1,0)和(1,1).(只写一组)解析:首先根据正方形ABCD的点A(0,1),点B(0,0),在坐标系内找出这两点,根据正方形各边相等,从而可以确定C,D的坐标.∵正方形ABCD 的点A(0,1),点B(0,0),∴AD∥x轴,CD∥y轴,这样画出正方形,即可得出C与D的坐标,分别为:C(1,0),D(1,1).4.如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,求∠EAF度数.分析:根据角平分线的判定,可得出△ABF≌△AGF,故有∠BAF=∠GAF,再证明△AGE≌△ADE,有∠GAE=∠DAE,所以可得∠EAF=45°.解:在Rt△ABF与Rt△AGF中,∵AB=AG,AF=AF,∠B=∠G=90°,∴△ABF≌△AGF(HL),∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAG+∠FAG=12(∠DAG+ ∠BAG)=12∠DAB=45°,故∠EAF=45°【教学说明】主要考查了正方形的性质和全等三角形的判定.5.如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°.(1)求证:DF+BE=EF;(2)求∠EFC的度数.分析:(1)延长EB至G,使BG=DF,连接AG.利用正方形的性质,证明△AGE≌△AFE,△FAE≌△GAE,得出DF+BE=EF;(2)根据△AGE≌△AFE及角之间的关系从而求得∠EFC的度数;解:(1)延长EB至G,使BG=DF,连接AG,∵四边形ABCD是正方形,∴AB=AD,∠ABG=∠ADF=∠BAD=90°,∵BG=DF,∴△ABG≌△ADF,∴AG=AF,∵∠BAE=30°,∠DAF=15°,∴∠FAE=∠GAE=45°,∵AE=AE,∴△FAE≌△GAE,∴EF=EG=GB+BE=DF+BE;(2)∵△AGE≌△AFE,∴∠AFE=∠AGE=∠DFA=90°-∠DAF=75°,∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°,∴∠EFC=30°.【教学说明】学生独立完成以培养学生的独立意识.四、师生互动,课堂小结1.师生共同回顾正方形有哪些性质?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.7”中第2 、3题.2.完成练习册中相应练习.本课虽然是学习正方形的性质,实际上应起到对平行四边形、矩形、菱形性。
北师大版九年级数学上册全册教案第一章特殊平行四边形 (2)1菱形的性质与判定 (2)第1课时菱形的定义和性质 (2)第2课时菱形的判定 (5)第3课时菱形的性质与判定的应用 (8)2矩形的性质与判定 (11)第1课时矩形的定义和性质 (11)第2课时矩形的判定 (14)第3课时矩形的性质与判定的应用 (16)3正方形的性质与判定 (19)第1课时正方形的定义和性质 (19)第2课时正方形的判定 (22)第二章一元二次方程 (27)1认识一元二次方程 (27)第1课时一元二次方程的定义 (27)第2课时用估算法求一元二次方程的近似解 (29)2用配方法求解一元二次方程 (32)第1课时用配方法求解二次项系数为1的一元二次方程 (32)第2课时用配方法求解二次项系数不为1的一元二次方程 (34)3用公式法求解一元二次方程 (37)第1课时用公式法求解一元二次方程 (37)第2课时用公式法解决一元二次方程的实际问题 (41)4用因式分解法求解一元二次方程 (43)5一元二次方程的根与系数的关系 (46)6应用一元二次方程 (49)第1课时列一元二次方程解决几何与行程问题 (49)第2课时列一元二次方程解决利润问题 (53)第三章概率的进一步认识 (56)1用树状图或表格求概率 (56)2用频率估计概率 (60)第四章图形的相似 (63)1成比例线段 (63)2平行线分线段成比例 (67)3相似多边形 (69)4探索三角形相似的条件 (72)第1课时相似三角形和判定定理1 (72)第2课时相似三角形的判定定理2和3 (74)第3课时黄金分割 (77)5相似三角形判定定理的证明 (80)6利用相似三角形测高 (83)7相似三角形的性质 (86)8图形的位似 (89)第五章投影与视图 (93)1投影 (93)第1课时灯光与影子 (93)第2课时太阳光与影子 (96)2视图 (99)第六章反比例函数 (101)1反比例函数 (101)2反比例函数的图象与性质 (104)3反比例函数的应用 (107)第一章特殊平行四边形1菱形的性质与判定第1课时菱形的定义和性质1.经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系.2.体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理的能力.3.在证明菱形的性质和运用性质定理解决问题的过程中进一步发展学生的逻辑推理能力.重点理解并掌握菱形的概念与性质定理.难点菱形性质定理的证明及运用.一、情境导入课件出示教材第2页情境图,提出问题:你能从这几幅图中发现你熟悉的图形吗?你认为它们有什么样的共同特征呢?学生:图片中有八年级学过的平行四边形.教师:请同学们观察,这些平行四边形与下图的平行四边形ABCD相比较,还有什么不同点吗?学生:这些平行四边形不仅对边相等,而且任意两条邻边也相等.教师:同学们观察得很仔细.像这样,有一组邻边相等的平行四边形叫做菱形.二、探究新知1.菱形的性质教师:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质.你能列举一些这样的性质吗?学生:菱形的对边平行且相等,对角相等,对角线互相平分.教师:同学们,你认为菱形还具有哪些特殊的性质?请你与同伴交流.学生讨论交流后,教师点评.教师:请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?学生分小组进行折纸活动后讨论交流,回答问题,教师点评,并进一步讲解:①菱形是轴对称图形,有两条对称轴.对称轴是菱形对角线所在的直线,两条对角线互相垂直.②菱形的四条边相等.2.证明菱形的性质教师:通过折纸活动,同学们已经对菱形的性质有了初步的理解,下面我们要对菱形的性质进行严格的逻辑证明.课件出示:已知:如图,在菱形ABCD中,AB=AD,对角线AC与BD相交于点O.求证:(1)AB=BC=CD=AD;(2)AC⊥BD.分析:①菱形不仅对边相等,而且邻边相等,这样就可以证明菱形的四条边都相等.②因为菱形是平行四边形,所以点O是对角线AC与BD的中点;又因为在菱形中可以得到等腰三角形,这样就可以利用“三线合一”来证明结论.学生写出证明过程,进行组内交流对比,教师点评.证明:(1)∵四边形ABCD是菱形,∴AB =CD ,AD =BC(菱形的对边相等). 又∵AB=AD , ∴AB =BC =CD =AD. (2)∵AB=AD ,∴△ABD 是等腰三角形. 又∵四边形ABCD 是菱形,∴OB =OD(菱形的对角线互相平分). 在等腰三角形ABD 中, ∵OB =OD , ∴AO ⊥BD , 即AC⊥BD. 三、举例分析例 如图,在菱形ABCD 中,对角线AC 与BD 相交于点O, ∠BAD =60°,BD =6,求菱形的边长AB 和对角线AC 的长.分析:①因为菱形的邻边相等,一个内角是60°,所以可以得到等边△ABD,BD =6,菱形的边长也是6.②由菱形的对角线互相垂直,可以得到直角△AOB;由菱形的对角线互相平分,可以得到OB =3,根据勾股定理可以求出OA 的长度;再一次根据菱形的对角线互相平分,即AC =2OA ,求出AC 的长.解:∵四边形ABCD 是菱形, ∴AB =AD(菱形的四条边相等), AC ⊥BD(菱形的对角线互相垂直),OB =OD =12BD =12×6 =3(菱形的对角线互相平分).在等腰三角形ABD 中, ∵∠BAD =60°, ∴△ABD 是等边三角形. ∴AB =BD =6.在Rt △AOB 中,由勾股定理,得 OA 2+OB 2=AB 2,∴OA =AB 2-OB 2=62-32=3 3.∴AC=2OA=63(菱形的对角线互相平分).四、练习巩固教材第4页“随堂练习”.五、小结1.什么叫做菱形?2.菱形有哪些性质?六、课外作业教材第4~5页习题1.1第1~4题.本节课的主要教学内容为菱形的定义和性质.学生已经学习了平行四边形的性质,这是本节课的知识基础.关于菱形的定义和性质,就是在平行四边形的基础上进一步强化条件得到的.课堂上通过折纸活动,让学生直观地感知图形的特点,激发学生学习的兴趣和积极性,教师要引导学生积极思考,抓住表面现象中的本质.在性质的证明和应用过程中,教师要鼓励学生大胆探索新颖独特的证明思路和方法,提倡证明方法的多样性,并引导学生在与其他同学的交流中进行证明方法的比较,优化证明方法,有利于提高学生的逻辑思维水平.第2课时菱形的判定1.探索证明菱形的判定方法,掌握证明的基本要求、方法及思路.2.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.3.经历实际操作,探索菱形判定定理的证明过程,发展合情推理的能力.4.在具体问题的证明过程中,有意识地渗透试验论证、逆向思维的思想,提高学生解决问题的能力.重点菱形判定定理的证明及应用.难点菱形的判定方法的综合运用.一、复习导入1.菱形的定义是什么?2.菱形有哪些性质?教师:同学们对菱形的性质都掌握得很好,那么怎样判定一个四边形是菱形呢?这就是我们这节课所要研究的内容.二、探究新知1.菱形的判定方法一教师:根据菱形的定义,有一组邻边相等的平行四边形是菱形.这可以作为菱形的第一种判定方法.2.菱形的判定方法二课件出示:用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可动的十字,四周围上一根橡皮筋,做成一个四边形.教师转动木条,提出问题:(1)转动木条,这个四边形总有什么特征?(2)继续转动木条,什么时候橡皮筋围成的四边形变成菱形?引导学生猜想:当木条互相垂直时,平行四边形的一组邻边相等,此时四边形为菱形.教师:你能证明你的猜想吗?学生独立完成,指名板演,教师点评.已知:如图,在▱ABCD中,对角线AC与BD相交于点O,AC⊥BD.求证:▱ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA=BC.∴四边形ABCD是菱形(菱形的定义).3.菱形的判定方法三教师:已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?学生独立尝试作图,教师点评,并进一步讲解用尺规作菱形的方法:如图,分别以A ,C 为圆心,以大于12AC 的长为半径作弧,两条弧分别相交于点B ,D ,依次连接A ,B ,C ,D.教师:你能说明得到的四边形为什么是菱形吗? 学生小组讨论交流,找到原因:该四边形四边相等. 教师:你能证明四边相等的四边形是菱形吗? 学生独立完成,指名板演,教师点评.已知:如图,在四边形ABCD 中,AB =BC =CD =DA. 求证: 四边形ABCD 是菱形.证明:∵AB=CD ,AD =BC , ∴四边形ABCD 是平行四边形. 又∵AB=BC ,∴四边形ABCD 是菱形(菱形的定义). 教师:你能用折纸等办法得到一个菱形吗? 学生动手操作,教师巡视指导. 三、举例分析例 已知:如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,AB =5,OA =2,OB =1. 求证:▱ABCD 是菱形.思考:(1)观察题目中的数据,AB ,OA ,OB 有什么数量关系? (2)利用勾股定理的逆定理能否判定△ABO 是直角三角形?(3)如果可以得到直角三角形,那么利用菱形的哪一个判定定理进行判断? 四、练习巩固1.教材第7页“随堂练习”.2.教材第7页习题1.2第1题.五、小结1.怎样判定一个四边形是菱形?2.通过本节课的学习,你还学到了哪些知识?六、课外作业教材第7页习题1.2第2,3题.在本节课中,课前复习为本节课的探究作了有效的铺垫.学生资源的灵活运用提高了学生参与探究的兴趣,证明思路的分析过程让学生体会了逆向思维、一题多解等数学思想.另外,学生通过经历试验—猜想—证明—应用的探索过程提高了自身的科学素养.第3课时菱形的性质与判定的应用1.能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.2.经历菱形的性质定理及判定定理的应用过程,体会数形结合、转化等思想方法.重点菱形的性质定理与判定定理的综合应用及菱形面积的求法.难点等宽纸条交叉部分为菱形的证明及菱形面积的综合应用.一、复习导入1.如图①,在菱形ABCD中,AB=6.(1)求AD,DC,BC的长.(2)对角线AC与BD有什么位置关系?(3)若∠ADC=120°,求AC的长.图①图②2.如图②,在▱ABCD 中添加一个条件使其成为菱形. 添加方式1:________________________________________________________________________.添加方式2:________________________________________________________________________.二、探究新知 1.课件出示:如图,四边形ABCD 是边长为13 cm 的菱形,其中对角线BD 长10 cm .求: (1)对角线AC 的长度; (2)菱形ABCD 的面积.解:(1)∵四边形ABCD 是菱形,∴∠AED =90°(菱形的对角线互相垂直), DE =12BD =12×10=5(cm )(菱形的对角线互相平分).∴在Rt △ADE 中,由勾股定理可得: AE =AD 2-DE 2=132-52=12(cm ).∴AC =2AE =2×12=24(cm )(菱形的对角线互相平分). (2)S 菱形ABCD = S △ABD + S △CBD =2×S △ABD =2×12×BD×AE=BD×AE =10×12 =120( cm 2).注意:学生对于第一个问题的解决比较容易,但是学生的书写过程不规范;对于第二个问题,学生很容易求一边上的高,经过讨论、交流、点拨后学生能接受这种方法.在实际过程中教师应追问学生菱形的面积和对角线有什么关系,引起学生的思考,进而突破这一教学难点.2.课件出示教材第87页图1-7,提出问题:两张等宽的纸条交叉重叠在一起,重叠的部分ABCD是菱形吗?为什么?分析:由图可知,重叠部分为平行四边形,且相邻的两边对应的高相等,由平行四边形的面积,可证平行四边形ABCD为菱形.三、举例分析例(变式训练)如上图,四边形ABCD是菱形,其中对角线BD长12 cm,AC长16 cm.求:(1)菱形的边长;(2)菱形一条边上的高.分析:灵活运用菱形的面积等于对角线乘积的一半求出面积进而求出一边上的高.教师:同学们,在我们刚才完成的例题及变式训练中你有什么感悟或经验?教师引导学生总结经验,帮助学生形成解题思路.四、练习巩固1.教材第9页“随堂练习”第1,2题.2.教材第10页习题1.3第5题.五、小结通过本节课的学习,你有哪些收获?还有什么疑问?六、课外作业1.教材第9页习题1.3第1~4题.2.如图,在四边形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED 相交于点F.当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.本节课的教学内容是菱形的性质定理与判定定理的综合运用.通过课前复习,加深学生对菱形的性质定理及判定定理的记忆.在教学中,通过例题讲解,帮助学生总结经验并形成解题思路.学生对于几何题的规范答题是在课堂上需要重点强调的,这是培养学生严谨细致的数学素养的一个手段.同时,在教学中应注意学生解题的反思过程,例如由例题及变式训练完成反思过程后,学生的思维得到了升华,同时对于同类题目的突破方式有了初步的框架,能促进以后的学习,从本质上讲学习就是在学生不断反思中完成的.2矩形的性质与判定第1课时矩形的定义和性质1.了解矩形的概念,理解并掌握矩形的性质定理.2.经历探索矩形的概念和性质定理的过程,发展学生合情推理的意识.3.培养学生严谨的推理能力,掌握几何思维方法,体会逻辑推理的思维价值.重点矩形的性质定理的理解及应用.难点矩形的性质定理的应用.一、情境导入课件出示教材第11页情境图,提出问题:这三幅图片中都含有一些特殊的平行四边形.观察这些特殊的平行四边形,你能发现它们有什么样的共同特征?学生讨论交流后汇报,教师点评,并进一步讲解:有一个角是直角的平行四边形叫做矩形.教师:你还能举出一些生活中矩形的例子吗?二、探究新知1.探究矩形的性质定理教师出示一个平行四边形活动框架,完成以下探究.(1)改变平行四边形活动框架,将框架夹角∠α变为90°,平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?学生:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形所有的性质.(2)用橡皮筋做出两条对角线,这两条对角线有什么关系?学生:橡皮筋的长度相等,因此矩形的两条对角线相等.(3)矩形是轴对称图形吗?如果是,它有几条对称轴?学生:矩形是轴对称图形,它有2条对称轴. (4)你认为矩形还具有哪些特殊性质? 学生:矩形的四个角都是直角,对角线相等. 教师:你能证明这些结论吗?学生独立完成,指名板演,教师点评,得到如下定理: 矩形的四个角都是直角. 矩形的对角线相等.2.探究直角三角形的性质定理课件出示教材第12页图1-9,提出问题:如图,矩形ABCD 的对角线AC 与BD 交于点E ,那么BE 是Rt △ABC 中一条怎样的特殊线段?它与AC 有什么大小关系?由此你能得到怎样的结论?学生观察、思考后发现:AE =12AC ,BE =12BD ,BE 是Rt △ABC 的中线.由此归纳直角三角形的一个性质定理: 直角三角形斜边上的中线等于斜边的一半. 三、举例分析例1 如图,在矩形ABCD 中,两条对角线相交于点O ,∠AOB =60°,AB =4 cm ,求这个矩形对角线的长.分析:利用矩形对角线相等且平分得到OA =OB ,由于∠AOB=60°,∴△AOB 为等边三角形,则OA =AB =4 cm ,∴AC =BD =2OA =8 cm .例2 如图,在△ABC 中,∠A =2∠B,CD 是△ABC 的高,E 是AB 的中点,求证:DE =12AC.分析:本题可从E 是AB 的中点切入,考虑应用三角形中位线定理.应用三角形中位线必需找到另一个中点.可以取BC 的中点F ,也可以取AC 的中点G.学生分四人小组,合作探究不同的证法. 证法一:取BC 的中点F ,连接EF ,DF ,如图①. ∵E 为AB 中点,∴EF ∥AC.∴∠FEB =∠A.∵∠A =2∠B,∴∠FEB =2∠B.∵DF=12BC =BF ,∴∠1=∠B.∴∠FEB=2∠B=2∠1=∠1+∠2.∴∠1=∠2.∴DE=EF =12AC.证法二:取AC 的中点G ,连接DG ,EG ,如图②. ∵CD 是△ABC 的高,∴在Rt △ADC 中,DG =12AC =AG.∵E 是AB 的中点,∴GE ∥BC.∴∠1=∠B. ∴∠GDA =∠A=2∠B=2∠1.又∠GDA=∠1+∠2,∴∠1+∠2=2∠1. ∴∠2=∠1.∴DE=DG =12AC.四、练习巩固1.教材第13页“随堂练习”.2.如图,从矩形ABCD 的顶点C 作对角线BD 的垂线与∠BAD 的平分线相交于点E.求证:AC =CE.分析:要证AC =CE ,可以考虑证明∠E=∠CAE.∵AE 平分∠BAD,∴∠DAE =∠BAE,且∠CAE=∠DAE-∠DAC.另外一个条件是CE⊥BD,过点A 作AF⊥BD 于点F ,则AF∥CE,可以将∠E 转化为∠FAE,∠FAE =∠BAE-∠FAB.现在只要证明∠BAF=∠DAC 即可,而实际上,∠BAF =∠BDA=∠DAC,问题迎刃而解.五、小结 1.什么叫矩形?2.矩形有哪些性质?3.矩形有几条对称轴?六、课外作业教材第13~14页习题1.4第1~4题.本节课依据新课标的要求,设计的每个环节都是以学生为主体,在学生已有的知识经验的基础上,让学生自己动手探究完成,提高学生的探索创新思维和创造能力.首先,从矩形的定义和平行四边形的性质引入,提出问题,让学生猜想矩形应具有的性质,调动学生的思维积极性,激发探究欲望.教学过程中,先利用平行四边形活动框架,让学生通过观察、测量、思考、讨论等活动,得出矩形的性质.在解决问题的过程中发展了学生的合情推理意识.再引导学生进行推理证明及应用,通过探索证明,发展了学生的思维能力,帮助他们在自主探索与合作交流过程中真正理解和掌握矩形的性质定理,体验数学学习过程中的探索性、挑战性以及推理的严谨性.第2课时矩形的判定1.理解和掌握矩形的判定定理.2.经历探索、猜测、证明的过程,发展学生的推理论证能力.3.通过对比已学的知识,体会证明过程中所运用的归纳、概括以及转化等数学思想方法.重点理解和掌握矩形的判定定理.难点矩形的判定定理的应用.一、情境导入课前准备小木板和橡皮筋,制作一个如图所示的平行四边形活动框架.用两根橡皮筋分别套在两个相对的顶点上,拉动一对不相邻的顶点时,平行四边形的形状会发生什么变化?二、探究新知1.矩形的判定定理1根据上面的实践活动提出问题:(1)随着∠α的变化,两条对角线的长度将发生怎样的变化?(2)当两条对角线的长度相等时,平行四边形有什么特征?由此你能得到一个怎样的猜想?学生讨论交流后回答,教师点评,并归纳:矩形的判定定理1:对角线相等的平行四边形是矩形.矩形的判定定理1的证明过程:(1)学生独立画出图形,在教师引导下写出已知、求证;(2)对比平行四边形和菱形的判定定理的证明,对已知、求证进行分析;(3)请学生交流大体思路;(4)用规范的数学语言写出证明过程;(5)同学之间进行交流,找出自己还存在的问题.2.矩形的判定定理2教师:我们知道,矩形的四个角都是直角.反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论,并与同伴交流.学生讨论交流后回答,教师点评,并引导学生归纳:矩形的判定定理2:有三个角是直角的四边形是矩形.矩形的判定定理2的证明过程:(1)学生独立画出图形,在教师引导下写出已知、求证;(2)对比平行四边形和菱形的判定定理的证明,对已知、求证进行分析;(3)请学生交流大体思路;(4)用规范的数学语言写出证明过程;(5)同学之间进行交流,找出自己还存在的问题.三、举例分析例1 实际问题:(1)如果仅有一根足够长的绳子,如何判断一个四边形是平行四边形?(2)如果仅有一根足够长的绳子,如何判断一个四边形是菱形?(3)如果仅有一根足够长的绳子,如何判断一个四边形是矩形?学生分小组讨论后回答,教师点评,并总结:先利用“两组对边分别相等的四边形是平行四边形”证明是平行四边形,再由“对角线相等的平行四边形是矩形”得证.例2 如图,在▱ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求▱ABCD的面积.学生独立完成,指名板演,教师点评.四、练习巩固1.教材第16页“随堂练习”.2. 已知:如图,在菱形ABCD中,对角线AC与BD相交于点O, CM∥BD,DM∥AC.求证:四边形OCMD是矩形.五、小结1.通过本节课的学习,你有什么收获?2.矩形的判定定理有哪些?六、课外作业教材第16页习题1.5第1~3题.对于本节课的知识,不能机械地照搬教材内容,而应该对教材内容进行再加工,灵活运用,使教材内容得到升华.课堂是学生展示自己的一个舞台,在课堂教学中,给予学生充分的时间和空间展示自己,不仅有利于提高学生学习的积极性,更有利于教师发现学生的独到见解和新思维、新想法,同时还能发现学生存在的问题,这对于课堂教学是非常有利的.几何教学对学生想象能力要求比较高,有些学生在这方面很有优势,而有些学生可能要差一点,课堂教学不能过急.此外,几何教学中要合理把握学生的课堂兴奋点,合理安排时间,力图让学生在注意力最集中时完成最重要的知识内容,掌握本节课重要的学习方法.还要注意的是,不要让思维活跃的学生的回答掩盖了其他学生的疑问,应该争取关注每一个学生.第3课时矩形的性质与判定的应用1.能够运用矩形的性质定理和判定定理解决问题.2.经历矩形的性质与判定的应用过程,发展学生的推理论证能力. 3.通过学生独立完成证明的过程,让学生体会数学的严谨性.重点矩形的性质定理与判定定理的应用. 难点灵活地运用矩形的性质定理与判定定理解决问题.一、复习导入1.如图①,矩形ABCD 的两条对角线相交于点O ,已知∠AOD= 120°,AB =2.5 cm ,则∠DAO=__________,AC =__________ cm ,S 矩形ABCD =__________ cm 2.2. 如图②,四边形ABCD 是平行四边形,添加一个条件________________,可使它成为矩形.二、探究新知课件出示:如图,在矩形ABCD 中,AD =6,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E ,ED =3BE.求AE 的长.学生小组合作完成本题的求解,教师点评并板书: 解:∵ 四边形ABCD 是矩形,∴AO =BO =DO =12BD(矩形的对角线相等且互相平分),∠BAD =90°(矩形的四个角都是直角). ∵ED =3BE , ∴BE =OE. 又∵ AE⊥BD, ∴AB =AO.∴AB =AO =BO.即 △ABO 是等边三角形. ∴∠ABO =60°.∴∠ADB=90°-∠ABO=30°. 在Rt △AED 中, ∵∠ADE =30°, ∴AE =12AD =12×6=3.注意:本题的解法不唯一,采取小组合作时,应当鼓励学生提出自己不同的意见. 三、举例分析例 如图,在△ABC 中,AB =AC ,AD 为∠BAC 的平分线,AN 为△ABC 的外角∠CAM 的平分线,CE ⊥AN ,垂足为E.求证:四边形ADCE 是矩形.证明:∵AD 平分∠BAC,AN 平分∠CAM, ∴∠CAD =12∠BAC,∠CAN =12∠CAM.∴∠DAE =∠CAD+∠CAN =12(∠BAC+∠CAM)=12×180°=90°. 在△ABC 中,∵AB =AC ,AD 为∠BAC 的平分线, ∴AD ⊥BC. ∴∠ADC =90°. 又∵CE⊥AN, ∴∠CEA =90°.∴四边形ADCE 为矩形(有三个角是直角的四边形是矩形). 四、练习巩固1.在上一题中,条件不变,连接DE ,交AC 于点F(如图①). (1)试判断四边形ABDE 的形状,并证明你的结论. (2)线段DF 与AB 有怎样的关系?请证明你的结论.图①图②2.如图②,四边形ABCD是由两个全等的等边△ABD和△CBD组成,点M,N分别是BC 和AD的中点.求证:四边形BMDN是矩形.五、小结通过本节课的学习,你有什么收获?还有哪些疑问?六、课外作业教材第18~19页习题1.6第1~5题.本课时,是综合运用矩形的性质定理和判定定理,应给予学生充分的时间和空间展示自己,不仅有利于提高学生学习的积极性,更有利于教师发现学生的独到见解和新思维、新想法,同时还能发现学生存在的问题,这对于课堂教学是非常有利的.在教学过程中,不应加大习题量,题目在精不在多,扎实地讲解和学习比大量练习要有效果得多.把关注学生能力的培养提到首位,达到本节课所要完成的真正目标.3正方形的性质与判定第1课时正方形的定义和性质1.理解正方形的概念和性质定理,通过由一般到特殊的研究方法,分析平行四边形、矩形、菱形、正方形的概念及性质之间的区别与联系.2.在探索正方形的性质定理的过程中,发展学生的合情推理能力.3.培养学生勇于探索、团结协作交流的精神,激发学生学习的积极性与主动性.。
第一章特殊平行四边形1。
掌握菱形、矩形、正方形的概念,以及它们之间的关系。
2.理解菱形、矩形、正方形的性质定理与判定定理,并能证明其他相关结论。
3。
掌握直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.1.经历探索菱形、矩形、正方形的概念、性质与判定的猜想与证明的过程,丰富数学活动经验,进一步发展合情推理和演绎推理的能力。
2。
理解菱形、矩形、正方形的概念,了解它们与平行四边形之间的关系,进一步体会从一般到特殊的思考问题的方法,提高发现问题和解决问题的能力.3.在参与观察、试验、猜想、证明等数学活动中,有意识地渗透试验论证、逆向思维的思想,提高学生的能力。
1.积极参与数学学习活动,对数学有好奇心和求知欲.2。
经历图形的分类、性质探讨的过程,掌握图形与几何的基础知识和基本技能。
通过“猜想—-总结——证明-—应用”的数学活动提升科学素养.3.提高自主探究的能力和增强与他人合作交流的意识、方法。
四边形是人们日常生活中应用较为广泛的一种几何图形,尤其是平行四边形、菱形、矩形、正方形等特殊四边形的用处更多。
因此,四边形既是几何中的基本图形,也是“空间与图形”领域中主要研究对象之一。
本章是在已经学过的多边形、平行线、三角形、平行四边形的基础上对菱形、矩形、正方形的有关性质与常用的判定方法的证明与扩充。
它们的探索方法也都与平行四边形的性质和判定的探索方法一脉相承.本章的学习有助于深化对平行四边形的理解,以及对识图、画图等操作技能的掌握,丰富学生的数学活动经验和体验,促进其良好数学观的形成.本章主要渗透归纳、类比、转化等数学思想,注重通过引导探索过程来渗透与展现证明的思路.此外还要注意引导学生探索证明的不同思路与方法,并进行适当的比较和讨论,提高分析、寻求证明思路的能力.【重点】菱形、矩形、正方形的定义、性质与判定。
【难点】平行四边形与菱形、矩形、正方形之间的联系与区别.1.本章对菱形、矩形的性质与判定的研究,都需要先探索、猜想得到结论后再证明.教学中,可以利用教科书上的素材,也可以根据实际情况构建更现实、更贴近学生的问题情境,引导学生进行相关的探索、猜想活动。
北师大版九年级数学上全册精品教案第一章证明(二) (课时安排)1.你能证明它们吗? 3课时2.直角三角形 2课时3.线段的垂直平分线 2课时4.角平分线 1课时1.你能证明它们吗?(一)教学目标:知识与技能目标:1.了解作为证明基础的几条公理的内容。
2.掌握证明的基本步骤和书写格式.过程与方法1.经历“探索——发现——猜想——证明”的过程。
2.能够用综合法证明等区三角形的有关性质定理。
情感态度与价值观1.启发、引导学生体会探索结论和证明结论,即合情推理与演绎推理的相互依赖和相互补充的辩证关系.2.培养学生合作交流、独立思考的良好学习习惯.重点、难点、关键1.重点:探索证明的思路与方法。
能运用综合法证明问题.2.难点:探究问题的证明思路及方法.3.关键:结合实际事例,采用综合分析的方法寻找证明的思路.教学过程:一、议一议:1.还记得我们探索过的等腰三角形的性质吗?2.你能利用已有的公理和定理证明这些结论吗?给出公理和定理:1.等腰三角形两腰相等,两个底角相等。
2.等边三角形三边相等,三个角都相等,并且每个角都等于 60 延伸.二、回忆上学期学过的公理本套教材选用如下命题作为公理 :1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等; (SAS )4.两角及其夹边对应相等的两个三角形全等; (ASA )5.三边对应相等的两个三角形全等; (SSS )6.全等三角形的对应边相等,对应角相等.三、推论 两角及其中一角的对边对应相等的两个三角形全等。
(AAS )证明过程:已知:∠A=∠D,∠B=∠E,BC=EF 求证:△ABC ≌△DEF 证明:∵∠A+∠B+∠C=180°, ∠D+∠E+∠F=180°B CF E(三角形内角和等于180°)∴∠C=180°-(∠A+∠B)∠F=180°-(∠D+∠E)又∵∠A=∠D,∠B=∠E(已知)∴∠C=∠F又∵BC=EF(已知)∴△ABC≌△DEF(ASA)推论等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
2021北师大版九年级上册数学教案5篇2021北师大版九年级上册数学教案1配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1用配方法解下列关于x的方程:(1)x2-8x+1=0(2)x2-2x-12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略.三、巩固练习教材第9页练习1,2.(1)(2).四、课堂小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置2021北师大版九年级上册数学教案2函数教学目标:1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;2、使学生分清常量与变量,并能确定自变量的取值范围.3、会求函数值,并体会自变量与函数值间的对应关系.4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法.5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.教学重点:了解函数的意义,会求自变量的取值范围及求函数值.教学难点:函数概念的抽象性.教学过程:(一)引入新课:上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有的值与它对应,那么就说x是自变量,y是x 的函数.生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.解:1、y=30ny是函数,n是自变量2、 n是函数,a是自变量.(二)讲授新课刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.例1、求下列函数中自变量x的取值范围.分析:在(1)、(2)中,x取任意实数,与都有意义.(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求 .同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且 .第(5)小题,是二次根式,二次根式成立的条件是被开方数大于、等于零. 的被开方数是 .同理,第(6)小题也是二次根式, 是被开方数解:(1)全体实数(2)全体实数(3)且2021北师大版九年级上册数学教案3学习目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题学习过程一、温故知新:(学生活动)同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?二、自主学习:自学教材P90---P93,思考下列问题:1、什么叫圆周角?圆周角的两个特征: 。
第一章特殊平行四边形1.菱形的性质与判定(一)一、学生知识状况分析“菱形的性质与判定”是继八年级下册“第三章图形的平移与旋转”和“第六章平行四边形”之后的一个学习内容。
九年级的学生在学习菱形之前,已经掌握了简单图形平移旋转和平行四边形的性质和判定,学生完全能够借助图形的旋转平移和轴对称直观的理解菱形的定义和性质。
其次,经历了七年级下册“第二章相交线与平行线”、“第三章三角形”和八年级下册“第六章平行四边形”的学习,通过推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。
再次,在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析教科书基于学生在平行四边形相关知识的基础上,提出了本课的具体学习任务:①掌握菱形的定义;②探索并掌握菱形是轴对称图形;③探索并证明菱形“四条边相等”、“对角线互相垂直”等性质,并能应用这些性质计算线段的长度。
在教学过程中,要利用学生对图形的直观感知、已掌握的平行四边形的相关知识和已有的逻辑推理能力为基础,探索菱形的定义和性质,又要尝试利用它们解题。
所以在本节课的教学中,要帮助学生学会运用观察,分析,比较,归纳,概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的乐趣,体会到成功的喜悦。
综上所述,本节的教学目标为:1.经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系;2.体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力;3.在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力三、教学过程设计本节课设计了六个教学环节:第一环节:课前准备;第二环节:设置情境,提出课题;第三环节:猜想、探究与证明;第四环节:性质应用与巩固;第五环节:课堂小结;第六环节:布置作业。
第一环节课前准备1、教师在课前布置学生复习平行四边形的性质,搜集菱形的相关图片。
2、教师准备菱形纸片,上课前发给学生上课时使用。
第二环节设置情境,提出课题【教学内容】学生:观察衣服、衣帽架和窗户等实物图片。
教师:同学们,在观察图片后,你能从中发现你熟悉的图形吗?你认为它们有什么样的共同特征呢?学生1:图片中有八年级学过的平行四边形。
教师:请同学们观察,彩图中的平行四边形与 ABCD相比较,还有不同点吗?学生2:彩图中的平行四边形不仅对边相等,而且任意两条邻边也相等。
教师:同学们观察的很仔细,像这样,“一组邻边相等的平行四边形叫做菱形”。
【教学目的】通过这个环节,培养了学生的观察和对比分析能力。
上课时让学生观察图形,从直观上把握菱形的特点,从而给出菱形的定义,让学生明确菱形不但是平行四边形,而且有其特点“一组邻边相等”。
同时,要让学生体会数学来源于生活,让学生去发现生活中因为有了数学而变得更精彩,从而提高学生学习数学的兴趣。
【注意事项】学生在通过观察对比得到菱形定义的过程中,会提出菱形的许多性质,如四条边相等、对角相等和对边平行等等,教师要对学生的答案进行积极的有鼓励性的评价,激发学生的学习积极性,同时又要强调菱形不仅是平行四边形,而且有其自身特点“一组邻边相等”,这样强化了菱形的定义,又为下面的教学内容做好了铺垫。
第三环节猜想、探究与证明【教学内容】1、想一想①教师:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。
你能列举一些这样的性质吗?学生:菱形的对边平行且相等,对角相等,对角线互相平分。
②教师:同学们,你认为菱形还具有哪些特殊的性质?请你与同伴交流。
学生活动:分小组讨论菱形的性质,组长组织组员讨论,让尽可能多的组员发言,并汇总结果。
教师活动:教师巡视,并参与到学生的讨论中,启发同学们类比平行四边形,从图形的边、角和对角线三个方面探讨菱形的性质。
对学生的结论,教师要及时评价,积极引导,激励学生。
2、做一做教师:请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?学生活动:分小组折纸探索教师的问题答案。
组长组织,并汇总结果。
教师活动:教师巡视并参与学生活动,引导学生分析怎样折纸才能得到正确的结论。
学生研讨完毕,教师要展示汇总学生的折纸方法以及相应的结论,以便于后面的教学。
师生结论:①菱形是周对称图形,有两条对称轴,是菱形对角线所在的直线,两条对角线互相垂直。
②菱形的四条边相等。
3、证明菱形性质教师:通过折纸活动,同学们已经对菱形的性质有了初步的理解,下面我们要对菱形的性质进行严格的逻辑证明。
教师活动:展示题目已知:如图1-1,在菱形ABCD中,AB=AD,对角线AC与BD相交于点O.求证:(1)AB=BC=CD=AD;(2)AC⊥BD.师生共析:①菱形不仅对边相等,而且邻边相等,这样就可以证明菱形的四条边都相等了。
②因为菱形是平行四边形,所以点O是对角线AC与BD中点;又因为在菱形中可以得到等腰三角形,这样就可以利用“三线合一”来证明结论了。
学生活动:写出证明过程,进行组内交流对比,优化证明方法,掌握相关定理。
证明:(1)∵四边形ABCD是菱形,∴AB = CD, AD= BC (菱形的对边相等).又∵AB=AD∴AB=BC=CD=AD(2)∵AB=AD∴△ABD是等腰三角形又∵四边形ABCD是菱形∴OB=OD(菱形的对角线互相平分)在等腰三角形ABD中,∵OB=OD∴AO⊥BD即AC⊥BD教师活动:展示学生的证明过程,进行恰当的点评和鼓励,优化学生的证明方法,提高学生的逻辑证明能力,最后强调“菱形的四条边都相等”“菱形的对角线互相垂直”,让学生形成牢固记忆,留下深刻印象。
【教学目的】学生通过折纸可以猜想到菱形的相关性质,教师在参与学生的活动过程中,应该关注学生的口述论证过程,并根据学生的认知水平加以引导,尽量减少学生推理论证过程中的困难。
学生经过了折纸这一操作活动后,再经过逻辑证明,把操作层面的感知上升到了理性认识,充分了解了菱形的本质特征。
本环节让学生进行猜想探究和证明,符合学生的认知规律。
同时,操作活动得到的结论与逻辑推理相结合,是对数学知识进行探索活动的自然延续,实现了从感性认识到理性认识的升华。
【注意事项】在折纸过程中,教师要与学生探讨折纸的方法,明确折叠过程中的对应点及相应的对称轴,对称轴是菱形对角线所在的直线,而不是菱形的对角线,以便于学生正确迅速找出菱形中的对称关系。
掌握数学知识,离不开“实践→认识→再实践→认识”这个重要的数学学习方法,通过说理论证可以使学生充分理解菱形的本质,对这样的过程学生也可以很好的掌握,在这个过程中,教师要充分关注学生使用几何语言的规范性和严谨性。
第四环节性质应用与巩固【教学内容】教师:通过刚才的严格论证,我们已经认识了菱形的特殊性质,下面我们利用这些性质来解决一些问题。
教师活动:展示题目1、例1 如图1-2,在菱形ABCD中,对角线AC与BD相交于点O, ∠BAD=60°,BD=6,求菱形的边长AB和对角线AC的长。
师生共析:①因为菱形的邻边相等,一个内角是60°,这样就可以得到等边△ABD ,BD=6,菱形的边长也是6。
②菱形的对角线互相垂直,可以得到直角△AOB;菱形的对角线互相平分,可以得到OB=3,根据勾股定理就可以求出OA的长度;再一次根据菱形的对角线互相平分,即AC=2OA,求出AC。
解:∵四边形ABCD是菱形∴AB=AD(菱形的四条边都相等)AC⊥BD(菱形的对角线互相垂直)OB=OD= BD = ×6 =3(菱形的对角线互相平分)在等腰三角形ABC中,∵∠BAD=60°∴△ABD是等边三角形∴AB=BD=6 在Rt△AOB中,由勾股定理,得OA2+OB2=AB22、随堂练习如图,在菱形ABCD中,对角线AC与BD 相交于点O.已知AB=5cm,AO=4cm 求 BD的长.师生共析:从图中可以知道AC与BD互相垂直,可以构成直角△AOB,因为AB=5cm,AO=4cm,这样就可以运用勾股定理求出OB;又因为菱形的对角线互相平分,BD为OB 的两倍,这样就可以很方便的求出BD的数值了。
解:∵四边形ABCD是菱形∴AC⊥BD(菱形的对角线互相垂直)在Rt△AOB中,由勾股定理,得AO2+BO2=AB2∴∵四边形ABCD是菱形∴BD=2BO=2×3=6(菱形的对角线互相平分)所以,BD的长是6cm.【教学目的】学生通过本环节的学习,进一步理解和掌握了菱形的性质,对前面所学知识进行了更加深入的认识,同时提高了学生的逻辑推理能力,培养了学生的主动探索能力,激发了学生学习的兴趣。
【注意事项】在此活动中,教师应重点关注以下方面:(1)学生是否提出了不同的解题方法,这种方法的优点和缺点分别是什么;(2)学生的几何语言是否准确、规范、严谨;(3)给学生充分的独立思考时间和交流时间,让学生在合作交流的过程中完成题目,理解所学的知识。
第五环节课堂小结【教学内容】本节课我们探讨了菱形的定义、性质,我们来共同总结一下:1、菱形的定义:一组邻边相等的平行四边形是菱形.2、菱形的性质:①菱形是轴对称图形,对称轴是两条对角线所在的直线;②菱形的四条边都相等;③菱形的对角线互相垂直平分。
3、菱形具有平行四边形的所有,应用菱形的性质可以进行计算和推理。
【教学目的】教师鼓励学生交流课堂实践的经历、感受和收获;培养学生的归纳能力,使学生形成完整的知识结构,培养学生的自我评价能力、反思意识及总结能力。
【注意事项】学生们畅所欲言自己的收获,老师对学生的回答给予充分的肯定和鼓励,及时引导学生归纳总结本节的知识。
第六环节布置作业:课本习题1.1 知识技能 1、2、3 数学理解 4四、教学设计反思1、本节课的主要教学内容为菱形的定义和性质。
学生已经学习了平行四边形的性质,这是本节的知识基础。
关于菱形的定义和性质,就是在平行四边形的基础上,进一步强化条件得到的。
2、本节授课思路为“创设情境——猜想归纳——逻辑证明——知识运用”。
课堂上的折纸活动,可以让学生直观感知图形的特点,还可以激发学生的兴趣和积极性,教师要引导学生积极思考,抓住表面现象中的本质。
在性质的证明和应用过程中,教师要鼓励学生大胆探索新颖独特的证明思路和证明方法,提倡证明方法的多样性,并引导学生在与其他同学的交流中进行证明方法比较,优化证明方法,有利于提高学生的逻辑思维水平。
3、教师应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。
第一章特殊平行四边形1. 菱形的性质与判定(二)一、学生知识状况分析上节课,学生已经经历了独立探索发现菱形性质的过程,通过折纸等活动学生体会了“实验—猜想—证明—应用”的科学探索过程,认识了菱形与平行四边形的关系,这些都为本节课进一步探索发现相关定理提供了较好的知识基础和活动经验基础。