2019届中考数学课时总复习测评检测20
- 格式:doc
- 大小:208.50 KB
- 文档页数:7
2019届中考人教版初中数学总复习资料完整版一有理数知识要点1、有理数的基本概念(1)正数和负数定义:大于0的数叫做正数。
在正数前加上符号“-”(负)的数叫做负数。
0既不是正数,也不是负数。
(2)有理数正整数、0、负整数统称整数。
正分数、负分数统称分数。
整数和分数统称为有理数。
2、数轴规定了原点、正方向和单位长度的直线叫做数轴。
3、相反数代数定义:只有符号不同的两个数叫做互为相反数。
几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。
一般地,a和-a互为相反数。
0的相反数是0。
a =-a所表示的意义是:一个数和它的相反数相等。
很显然,a =0。
4、绝对值定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
即:如果a >0,那么|a|=a;如果a =0,那么|a|=0;如果a <0,那么|a|=-a。
a =|a|所表示的意义是:一个数和它的绝对值相等。
很显然,a≥0。
5、倒数定义:乘积是1的两个数互为倒数。
1a a=所表示的意义是:一个数和它的倒数相等。
很显然,a =±1。
6、数的比较大小法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
7、乘方定义:求n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂。
如: an na a a a 个∙∙∙=读作a 的n 次方(幂),在a n 中,a 叫做底数,n 叫做指数。
性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。
8、科学记数法定义:把一个大于10的数表示成a ×10n 的形式(其中a 大于或等于1且小于10,n 是正整数),这种记数方法叫做科学记数法。
小于-10的数也可以类似表示。
用科学记数法表示一个绝对值大于10的数时,n 是原数的整数数位减1得到的正整数。
考纲要求命题趋势1.了解梯形的有关概念与分类,掌握梯形的性质,会进行梯形的有关计算.2.掌握等腰梯形的性质与判定.3.能灵活添加辅助线,把梯形问题转化为三角形、平行四边形的问题来解决.等腰梯形的性质和判定是中考考查的内容,实际问题中往往和特殊三角形、特殊四边形的知识结合在一起综合运用.知识梳理一、梯形的有关概念及分类1.一组对边平行,另一组对边不平行的________叫做梯形.平行的两边叫做______,两底间的________叫做梯形的高.2.________相等的梯形叫做等腰梯形,有一个角是直角的梯形叫做直角梯形.3.梯形的分类:梯形⎩⎨⎧一般梯形特殊梯形⎩⎪⎨⎪⎧直角梯形等腰梯形4.梯形的面积=12(上底+下底)×高=中位线×高.二、等腰梯形的性质与判定1.性质:(1)等腰梯形的两腰相等,两底平行.(2)等腰梯形同一底上的两个角________.(3)等腰梯形的对角线________.(4)等腰梯形是轴对称图形,过两底中点的直线是它的对称轴.2.判定:(1)两腰相等的梯形是等腰梯形.(2)同一底上的两个角相等的________是等腰梯形.(3)对角线相等的________是等腰梯形.三、梯形的中位线1.定义:连接梯形两腰________的线段叫做梯形的中位线.2.性质:梯形的中位线平行于两底,且等于________的一半.四、梯形问题的解决方法梯形问题常通过――→转化辅助线三角形问题或平行四边形问题来解答,转化时常用的辅助线有:1.平移一腰,即从梯形的一个顶点作另一腰的平行线,把梯形分成一个平行四边形和一个三角形.2.过顶点作高,即从同一底的两端作另一底所在直线的垂线,把梯形转化成一个矩形和两个直角三角形.3.平移一条对角线,即从梯形的一个顶点作一条对角线的平行线,把梯形转化成平行四边形和三角形.4.延长梯形两腰使它们相交于一点,把梯形转化成三角形.5.过一腰中点作辅助线.(1)过此中点作另一腰的平行线,把梯形转化成平行四边形;(2)连接一底的端点与一腰中点,并延长与另一底的延长线相交,把梯形转化成三角形.自主测试1.若等腰梯形ABCD的上底长AD=2,下底长BC=4,高为2,那么梯形的腰DC的长为( )A.2 B. 3 C.3 D. 52.如图,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M,N分别是AB,CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )A.7米 B.6米 C.5米 D.4米3.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论中,错误的是( )A.∠ADE=∠CDEB.DE⊥ECC.AD·BC=BE·DED.CD=AD+BC4.已知梯形的上底长为2,下底长为5,一腰长为4,则另一腰长x的取值范围是__________.考点一、一般梯形的性质【例1】如图,在梯形ABCD中,AD∥BC,BD=CD,∠BDC=90°,AD=3,BC=8,求AB的长.解:如图,作AE⊥BC于点E,DF⊥BC于点F.∴AE∥DF,∠AEF=90°.∵AD∥BC,∴四边形AEFD是矩形.∴EF=AD=3,AE=DF.∵BD =CD ,DF ⊥BC ,∴DF 是△BDC 边BC 上的中线.∵∠BDC =90°,∴DF =12BC =BF =4.∴AE =4,BE =BF -EF =4-3=1.在Rt △ABE 中,AB 2=AE 2+BE 2,∴AB =42+12=17.方法总结 遇到梯形问题,一般情况下通过作腰或对角线的平行线、高线、连对角线、延长两腰转化为三角形、平行四边形、直角三角形、矩形等问题来解决.触类旁通1 如图,在梯形ABCD 中,AD ∥BC ,AB ∥DE ,AF ∥DC ,E ,F 两点在边BC 上,且四边形AEFD 是平行四边形.(1)AD 与BC 有何等量关系?请说明理由.(2)当AB =DC 时,求证:四边形AEFD 是矩形. 考点二、等腰梯形的性质与判定【例2】如图,在等腰△ABC 中,点D ,E 分别是两腰AC ,BC 上的点,连接AE ,BD 相交于点O ,∠1=∠2.(1)求证:OD =OE ;(2)求证:四边形ABED 是等腰梯形.分析:(1)根据已知条件可知利用全等三角形证明BD =AE ,根据∠1=∠2可以证明OA =OB ,根据等式性质可知OD =OE ;(2)先证明四边形ABED 是梯形,然后证明两腰相等即可.证明:(1)∵△ABC 是等腰三角形,∴AC =BC . ∴∠BAD =∠ABE .又∵AB =BA ,∠2=∠1,∴△ABD ≌△BAE ,∴BD =AE . 又∵∠1=∠2,∴OA =OB .∴BD -OB =AE -OA ,即OD =OE .(2)由(1)知,OD =OE ,∴∠OED =∠ODE .∴∠OED =12(180°-∠DOE ).同理,∠1=12(180°-∠AOB ).∵∠DOE =∠AOB ,∴∠1=∠OED ,∴DE ∥AB . ∵AD 不平行于BE ,∴四边形ABED 是梯形, ∵AE =BD ,∴梯形ABED 是等腰梯形.方法总结 在证明一个四边形是等腰梯形时,必须先证明它是梯形,然后再通过两腰相等或同一底上的两个角相等,或者是对角线相等来证明梯形是等腰梯形.触类旁通2 如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,M ,N 分别为AO ,DO 的中点,四边形BCNM是等腰梯形吗?为什么?考点三、有关梯形的计算【例3】如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=2,BC=42,求DC的长.分析:由于△ABC是等腰直角三角形,且BC=42,可得出BC边上的高.只要通过平移腰CD,就可与BC边上的高构成直角三角形,从而求出CD.解:过点A作AE∥DC交BC于点E,过点A作AF⊥BC于点F,如图所示.∵AD∥BC,AE∥DC,∴四边形AECD为平行四边形.∴AE=DC,AD=EC= 2.又∵AB⊥AC,∠B=45°,BC=42,∴AB=AC=4.∴AF=BF=2 2.∴EF=BC-BF-EC= 2.在Rt△AFE中,AE=AF2+EF2=222+22=10,即DC=10.方法总结解决梯形问题作辅助线的方法要结合题目的条件和要证结论的需要灵活运用.若题中已知两对角线的条件,可考虑平移对角线,使两对角线在同一个三角形中;若已知两腰的某些条件,可考虑平移一腰;若已知两底角互余,可平移一腰或延长两腰构成直角三角形;若要求梯形的面积,常作出梯形的高.触类旁通3 如图所示,在等腰梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,∠B=60°,BC=2 cm,则上底DC的长是__________cm.1.(2012山东临沂)如图,在等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,下列结论不一定正确的是( )A.AC=BDB.OB=OCC.∠BCD=∠BDCD.∠ABD=∠ACD2.(2012湖南长沙)下列四边形中,对角线一定不相等的是( )A.正方形 B.矩形C.等腰梯形 D.直角梯形3.(2012安徽)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2,4,3,则原直角三角形纸片的斜边长是( )A.10 B.4 5C.10或4 5 D.10或2174.(2012湖南长沙)如图,等腰梯形ABCD中,AD∥BC,AB=AD=2,∠B=60°,则BC 的长为__________.5.(2012四川内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD=____________.6.(2012四川南充)如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD.求证:∠B=∠E.1.梯形的上底长为5,下底长为9,则梯形的中位线长等于( )A.6 B.7C.8 D.102.在等腰梯形ABCD中,AB∥CD,对角线AC平分∠BAD,∠B=60°,CD=2 cm,则梯形ABCD的面积为( )A.33cm2 B.6 cm2C.63cm2 D.12 cm23.如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是( )A .4B .3C .2D .14.如图,在等腰梯形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于O ,∠ABD =30°,AC ⊥BC ,AB =8 cm ,则△COD 的面积为( )A .433cm 2B .43cm 2C .233cm 2D .23cm 25.如图,等腰梯形ABCD 中,AD ∥BC ,AB ∥DE ,梯形ABCD 的周长为26,BE =4,则△DEC 的周长为__________.(第5题图)6.如图,在梯形ABCD 中,AB ∥DC ,∠ADC 的平分线与∠BCD 的平分线的交点E 恰在AB 上.若AD =7 cm ,BC =8 cm ,则AB 的长度是__________ cm.(第6题图)7.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,AB =3,BC =4,则梯形ABCD 的面积是__________.(第7题图)8.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,AD =4,BC =8,则AE +EF =__________.(第8题图)9.如图,在菱形ABCD 中,∠DAB =60°,过点C 作CE ⊥AC 且与AB 的延长线交于点E ,求证:四边形AECD 是等腰梯形.参考答案导学必备知识 自主测试1.D 2.B 3.C 4.1<x <7 探究考点方法触类旁通1.解:(1)AD =13BC .理由如下:∵AD ∥BC ,AB ∥DE ,AF ∥DC ,∴四边形ABED 和四边形AFCD 都是平行四边形, ∴AD =BE ,AD =FC .又∵四边形AEFD 是平行四边形, ∴AD =EF ,∴AD =BE =EF =FC ,∴AD =13BC .(2)证明:∵四边形ABED 和四边形AFCD 都是平行四边形,∴DE =AB ,AF =DC . ∵AB =DC ,∴DE =AF .又∵四边形AEFD 是平行四边形, ∴四边形AEFD 是矩形.触类旁通2.解:是等腰梯形.根据三角形中位线定理有,MN ∥AD ∥BC ,且MN ≠BC ,∴四边形BCNM 为梯形.在矩形ABCD 中,AO =DO ,又M ,N 分别是AO ,DO 的中点,∴OM =ON ,∴CM =BN ,∴四边形BCNM 是等腰梯形.触类旁通3.2 ∠CAB =90°-60°=30°,∵等腰梯形ABCD 中,∠BAD =∠B =60°, ∴∠CAD =∠BAD -∠BAC =30°.又∵CD ∥AB ,∴∠DCA =∠CAB =30°=∠DAC . ∴CD =AD =BC =2 cm. 品鉴经典考题1.C 对于A ,∵四边形ABCD 是等腰梯形,∴AC =BD ,故本选项正确;对于B ,∵四边形ABCD 是等腰梯形,∴AB =DC ,∠ABC =∠DCB ,在△ABC 和△DCB 中,∵⎩⎪⎨⎪⎧AB =DC ,∠ABC =∠DCB ,BC =CB ,∴△ABC ≌△DCB (SAS),∴∠ACB =∠DBC ,∴OB =OC ,故本选项正确;对于C ,∵无法判定BC =BD ,∴∠BCD 与∠BDC 不一定相等,故本选项错误;对于D,∵∠ABC=∠DCB,∠ACB=∠DBC,∴∠ABD=∠ACD,故本选项正确.故选C.2.D 根据正方形、矩形、等腰梯形的性质,它们的两条对角线一定相等,只有直角梯形的对角线一定不相等.故选D.3.C 考虑两种情况.①如图:因为CD=22+42=25,点D是斜边AB的中点,所以AB=2CD=4 5.②如图:因为CE=32+42=5,点E是斜边AB的中点,所以AB=2CE=10,故原直角三角形纸片的斜边长是10或4 5.4.4 过点A作AE∥CD交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴AE=CD=2,AD=EC=2.∵∠B=60°,∴BE=AB=AE=2,∴BC=BE+CE=2+2=4.5.9 过点B作BE∥AC,交DC的延长线于点E,则AB=CE,BE=AC=BD.∵BD⊥AC,AB=2,CD=4,∴BD⊥BE,DE=6,∴梯形高为3,∴S梯形ABCD=(2+4)×3÷2=9.6.证明:∵CE=CD,∴∠CDE=∠E.∵AD∥BC,∴∠CDE=∠DCB.∴∠E=∠DCB.∵AB=DC,∴∠B=∠DCB.∴∠B=∠E.研习预测试题1.B 2.A 3.C 4.A 5.18 6.15 7.98.10 如图,过点D作DG∥AC,交BC的延长线于点G.易得四边形ACGD 为平行四边形,∴CG =AD =4,BG =BC +CG =8+4=12. ∵AC ⊥BD ,AC ∥DG ,∴BD ⊥DG .∵梯形ABCD 是等腰梯形,∴AC =BD =DG . ∴△BDG 为等腰直角三角形.又∵DF ⊥BC ,∴DF =12BG =6.∴AE +EF =DF +AD =6+4=10.9.证明:∵四边形ABCD 是菱形,∠DAB =60°,∴∠CAE =12∠DAB =30°.又∵CE ⊥AC ,∴∠E =60°=∠CBE .∴CE =BC =AD . ∵CD ∥AE ,AE =AB +BE =DC +BE ≠DC , ∴四边形AECD 是等腰梯形.。
2019届初三数学中考复习矩形、菱形、正方形专项复习练习1.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A.∠BAC=∠DCA B.∠BAC=∠DACC.∠BAC=∠ABD D.∠BAC=∠ADB2. 如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=( )A.5 B.4 C.3.5 D.33. 如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为( )A.2 B.3 C. 3 D.2 34. 如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC5. 下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有( )A.4个 B.3个 C.2个 D.1个6. 如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD的面积为( )A.2 2 B. 2 C.6 2 D.8 27. 如图,矩形ABCD的对角线AC与BD相交于点O,C E∥BD,DE∥AC,AD=23,DE=2,则四边形OCED 的面积( )A.2 3 B.4 C.4 3 D.88. 如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC =23,∠AEO=120°,则FC的长度为( )A.1 B.2 C. 2 D. 39. 如图,矩形纸片ABCD中,AD=4 cm,把纸片沿直线AC折叠,点B落在点E处,AE交DC于点O,若AO=5 cm,则AB的长为( )A.6 cm B.7 cm C.8 cm D.9 cm10. 如图,在△ABC中,点D是边BC上的点,(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形11. 如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折至△AFE,延长EF 交边BC于G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC =3.6.其中正确结论的个数是( )A.2个B.3个C.4个D.5个12. 在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为_______________________.13. 在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是___________.14. 如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为_______.15. 如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是____.16. 如图,在△ABC中,∠ACB=90°,点D,E分别是BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE,AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.参考答案:1---11 CBDCC AAACD D12. 45°或105°13. ①③④14. 3015.2 216. 解:(1)在△ABC中,点D,E分别是边BC,AB上的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=12 AC,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE(2)当∠B=30°时,四边形ACEF为菱形.理由:在△ABC中,∠B=30°,∠ACB=90°,∴∠BAC=60°,AC=12AB=AE,∴△AEC为等边三角形,∴AC=CE,又∵四边形ACEF为平行四边形.∴四边形ACEF为菱形2019-2020学年数学中考模拟试卷一、选择题1.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=2.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B. C. D.3.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①③④B.②④C.①②③D.①②③④4.下列所述图形中,是中心对称图形,但不是轴对称图形的是A.正三角形B.平行四边形C.正五边形D.圆5.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多;C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点.6.下列运算正确的是()A. B. C. D.7.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( )A.75 B.90 C.105 D.1208.估计的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间9.下列形状的地砖中,不能把地面作既无缝隙又不重叠覆盖的地砖是()A.正三角形B.正方形C.正五边形D.长方形10.下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A.0个B.1个C.2个D.4个11.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD中,点E、F分别在边BC、AD上,____,求证:四边形AECF是平行四边形. 你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四边形ABCD是平行四边形.其中A、B、C、D四位同学所填条件符合题目要求的是()A.①②③④B.①②③C.①④D.④12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A .43π-B .83π-C .83π-D .843π- 二、填空题13.在实数范围内分解因式:24x -=______________________.14.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.15.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是__________.16.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____. 17.如图,已知第一象限内的点A 在反比例函数上,第二象限的点B 在反比例函数上,且OA ⊥OB ,,则k 的值为________________ .18.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是________ 三、解答题19.某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y (立方米)与x (时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x之间的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.20.某小区应政府号召,开展节约用水活动,效果显著.为了了解该小区节水情况,随机对小区的100户居民节水情况进行抽样调查,其中3月份较2月份的节水情况如图所示.(1)补全统计图;(2)计算这100户居民3月份较2月份的平均节水量;(3)已知该小区共有5000户居民,根据上面的计算结果,估计该小区居民3月份较2月份共节水多少吨?21.如图,在Rt△ABC中,∠C=90°,D是AC边上一点,tan∠DBC=43,且BC=6,AD=4.求cosA的值.22.已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.23.定义:若一个三角形一条边上的高长为这条边长的一半,则称该三角形为这条边上的“半高”三角形,这条高称为这条边上的“半高”,如图,△ABC是BC边上的“半高”三角形.点P在边AB上,PQ∥BC交AC于点Q,PM⊥BC于点M,QN⊥BC于点N,连接MQ.(1)请证明△APQ为PQ边上的“半高”三角形.(2)请探究BM,PM,CN之间的等量关系,并说明理由;(3)若△ABC的面积等于16,求MQ的最小值24.“全民阅读”活动,是中央宣传部、中央文明办和新闻出版总署贯彻落实关于建设学习型社会要求的一项重要举措.读书必须要讲究方法,只有按照一定的方法去阅读,才能取得事半功倍的效果.常用的阅读方法有:A.圈点批注法;B.摘记法;C.反思法:D.撰写读后感法;E.其他方法.某县某中学张老师为了解本校学生使用不同阅读方法读书的情况,随机抽取部分本校中学生进行了调查,通过数据的收集、整理绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:中学生阅读方法情况统计表(1)请你补全图表中的a,b,c数据:a=,b=,c=;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有人;(3)小明从以上抽样调查所得结果估计全县6000名中学生中有1200人采用“撰写读后感法”读书,你同意小明的观点吗?请说明你的理由.(4)该校决定从本次抽取的“其他方法”4名学生(记为甲,乙,丙,丁)中,随机选择2名成为学校阅读宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.25.(某中学九年级学生共600人,其中男生320人,女生280人.该校对九年级所有学生进行了一次体育模拟测试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成如下的统计表:(1)a=; b=;(2)若将该表绘制成扇形统计图,那么Ⅲ类所对应的圆心角是°;(3)若随机抽取的学生中有64名男生和56名女生,请解释“随机抽取64名男生和56名女生”的合理性;(4)估计该校九年级学生体育测试成绩是40分的人数.【参考答案】*** 一、选择题二、填空题 13.()()22x x +- 14.85° 15.47° 16.3517. 18.14三、解答题19.(1)每小时的进水量为5立方米;(2)当8≤x≤12时,y =3x+1;(3)3792x 剟. 【解析】 【分析】(1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;(2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;(3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻 【详解】解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米 ∴(25﹣5)÷(8﹣4)=5(立方米/时) ∴每小时的进水量为5立方米.(2)设函数y =kx+b 经过点(8,25),(12,37)8251237k b k b +=⎧⎨+=⎩解得:31k b =⎧⎨=⎩∴当8≤x≤12时,y =3x+1 (3)∵8点到12点既进水又出水时,每小时水量上升3立方米 ∴每小时出水量为:5﹣3=2(立方米) 当8≤x≤12时,3x+1≥28,解得:x≥9 当x >14时,37﹣2(x ﹣14)≥28,解得:x≤372∴当水塔中的贮水量不小于28立方米时,x 的取值范围是9≤x≤372【点睛】本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.20.(1)见解析;(2)这100户居民3月份较2月份的平均节水量为1.48 t ;(3)估计该小区5000户居民3月份较2月份共节水7400 t.【解析】【分析】(1)从图中可获得节水量在0.4-0.8t 的有5户,0.8-1.2t 的有20户,1.6-2.0t 的有30户,2.0-2.4t 的有10户,样本共100户,可求得节水1.2-1.6t 的有35户,补全图形即可;(2)运用加权平均数公式把组中值当作每组数据,户数看成权,可求得平均节水量;(3)利用样本估计总体可得结果.【详解】解:(1)100-5-20-30-10=35(户).∴节水1.2~1.6吨的有35户.补全统计图如下.(2)由统计图得每小组中的组中值分别为0.40.82+=0.6,0.8 1.22+=1.0,1.2 1.62+=1.4,1.6 2.02+=1.8,2.0 2.42+=2.2, 所以这100户居民3月份较2月份的平均节水量 =0.65 1.020 1.435 1.830 2.210100⨯+⨯+⨯+⨯+⨯=1.48(t). 答:这100户居民3月份较2月份的平均节水量为1.48 t;(3)由题意可得1.48×5000=7400(t).答:估计该小区5000户居民3月份较2月份共节水7400 t.【点睛】本题考查从统计图表中获取信息的能力,加权平均数的应用和统计中用样本估计总体的思想.21 【解析】【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值.【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8,∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =5. 【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.22.(1)见解析;(2【解析】【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【详解】(1)∵△=[﹣(m+2)]2﹣4×2m=(m ﹣2)2≥0,∴不论m 为何值,该方程总有两个实数根;(2)∵AB 、AC 的长是该方程的两个实数根,∴AB+AC =m+2,AB•AC=2m ,∵△ABC 是直角三角形,∴AB 2+AC 2=BC 2,∴(AB+AC )2﹣2AB•AC=BC 2,即(m+2)2﹣2×2m=32,解得:m ,∴m又∵AB•AC=2m ,m 为正数,∴m【点睛】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.23.(1)见解析;(2)2PM =BM+CN ,理由见解析;(3)5. 【解析】【分析】(1)根据平行相似,证明△APQ ∽△ABC ,利用相似三角形对应边的比等于对应高的比:PQ AK BC AR =,由“半高”三角形的定义可结论;(2)证明四边形PMNQ 是矩形,得PQ =MN ,PM =KR ,代入AR =12BC ,可得结论;(3)先根据△ABC 的面积等于16,计算BC 和AR 的长,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),根据勾股定理表示MQ ,配方可得最小值.【详解】(1)证明:如图,过A 作AR ⊥BC 于R ,交PQ 于K ,∵△ABC 是BC 边上的“半高”三角形,∴AR =12BC , ∵PQ ∥BC ,∴△APQ ∽△ABC , ∴PQ AK BC AR=, ∴AK AR 1PQ BC 2==, ∴AK =12PQ , ∴△APQ 为PQ 边上的“半高”三角形.(2)解:2PM =BM+CN ,理由是:∵PM ⊥BC ,QN ⊥BC ,∴∠PMN =∠MNQ =∠MPQ =90°,∴四边形PMNQ 是矩形,∴PQ =MN ,PM =KR ,∵AK =12PQ ,AR =12BC , ∴AK+RK =12(BM+MN+CN ), 12PQ+PM =12BM+12MN+12CN , ∴2PM =BM+CN ;(3)解:∵△ABC 的面积等于16, ∴12BC AR ⋅=16, ∵AR =12BC , 1122BC BC ⋅⋅=16, BC =8,AR =4,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),∵MQ ==∴当x =85时,MQ 有最小值是5.【点睛】本题是三角形的综合题,考查的是新定义:“半高”三角形,涉及到相似三角形的性质和判定、三角形面积、勾股定理及新定义的理解和运用等知识,解决问题的关键是作辅助线解决问题.24.(1)32,8,10%;(2)96;(3)1200人;(4)16. 【解析】【分析】(1)先根据“摘记法”的频数及其频率求得总人数,再根据频数、频率与总数间的关系可得a 、b 、c 的值;(2)总人数乘以样本中“反思法”学生所占比例可得;(3)利用总人数乘以撰写读后感法的百分比即可解答(4)用树状图表示出四人中随机抽取两人有12种可能,即可解答【详解】解:(1)本次调查的学生有:20÷25%=80,a =80×40%=32,b =80×(100﹣40﹣25﹣20﹣5)%=80×10%=8,c =(100﹣40﹣25﹣20﹣5)%=10%,故答案为:32,8,10%;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有:960×10%=96人,故答案为:96;(3)同意小明的观点;理由如下:全县6000名中学生中采用“撰写读后感法”读书的有:6000×20%=1200人;(4)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能, ∴抽取两人恰好是甲和乙的概率是21=126.【点睛】此题考查树状图法,扇形统计图,解题关键在于看懂图中数据25.(1)a =54;b =0.45; (2)72°;(3)“随机抽取64名男生和56名女生”比较合理;(4)该校九年级学生体育测试成绩是40分的人数约为180人.【解析】【分析】(1)先利用一类的频数除以频率计算出总频数c,再用总频数减去其余三类,即可得到a,再用a的频数除以总频数即可得到b(2)圆周角为360°,第三类占总数的0.2,所以第三类的圆心角=360°×0.2(3)根据九年级学生共600人,其中男生320人,女生280人进行反推即可解答(4)利用总人数乘频率即可解答【详解】(1)总频数=36÷0.3=120,a的频数=总频数-36-24-6=54,b频率=54÷120=0.45,a=54;b=0.45;(2)0.2×360°=72°;(3)∵6432056280== 120600120600,,∴“随机抽取64名男生和56名女生”比较合理;(4)0.3×600=180(人)答:该校九年级学生体育测试成绩是40分的人数约为180人.【点睛】此题考查了频数分布表,圆周角,用样本估计总体,熟练掌握运算法则是解题关键2019-2020学年数学中考模拟试卷一、选择题1.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m2.下列等式一定成立的是()A.2a﹣a=1 B.a2•a3=a5C.(2ab2)3=2a3b6D.x2﹣2x+4=(x﹣2)23.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元4.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣45.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为()A.8B.9.5C.10D.11.56.关于的一元二次方程有两个相等的实数根,那么的值是()A. B. C. D.7.如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=( )A.20°B.25°C.35°D.40°8.如图1,等边△ABD与等边△CBD的边长均为2,将△ABD沿AC方向向右平移k个单位到△A′B′D′的位置,得到图2,则下列说法:①阴影部分的周长为4;②当k=当k;正确的是( )A.①B.①②C.①③D.①②③9.若x是不等于1的实数,我们把11x-称为x的差倒数,如2的差倒数是11x-=﹣1,﹣1的差倒数为11(1) --=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2019的值为()A.﹣13B.﹣2 C.3 D.410.如图,已知直线y=34x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是()A.26 B.24 C.22 D.2011.华为手机Mate X在5G网络下能达的理论下载速度为603 000 000B/s,3秒钟内就能下载好1GB的电影,将603 000 000用科学计数法表示为()A.603×610B.6.03×810C.60.3×710D.0.603×91012.如图,在△ABC中,AC=BC,∠C=90°,折叠△ABC使得点C落在AB边上的E处,连接DE、CE,下列结论:①△DEB是等腰直角三角形;②AB=AC+CD;③BE BDAC AB;④S△CDE=S△BDE.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题13.定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线被称为:“直角抛物线”.如图,直线l:y=15x+b经过点M(0,14),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n) (n为正整数),依次是直线l上的点,第一个抛物线与x轴正半轴的交点A1(x1,0)和A2(x2,0),第二个抛物线与x轴交点A2(x2,0)和A3(x3,0),以此类推,若x1=d(0<d<1),当d为_____时,这组抛物线中存在直角抛物线.14.如图,点为等边内一点,若,,,则的度数是__________.15.如图,正三角形ABC的边长为2,点A,B的圆上,点C在圆内,将正三角形ABC绕点A 逆时针旋转,当边AC第一次与圆相切时,旋转角为_____.16.抛物线 221y x =-的顶点坐标是________.17.命题“若a =b ,则a 3=b 3.”是真命题.它的逆命题“若a 3=b 3,则a =b”是_____(填真或假)命题.18.如图,直线y 1=mx 经过P(2,1)和Q(-4,-2)两点,且与直线y 2=kx +b 交于点P ,则不等式kx +b >mx >-2的解集为_________________.三、解答题19.关于x 的一次函数y =ax+b 与反比例函数y =k x(x >0)的图象交于点A (m ,4)和点B (4,1). (1)求m 的值和反比例函数的解析式;(2)求一次函数的解析式.20.如图1,在平面直角坐标系xOy 中,A (0,4),B (8,0),C (8,4).(1)试说明四边形AOBC 是矩形.(2)在x 轴上取一点D ,将△DCB 绕点C 顺时针旋转90°得到△D'CB'(点D'与点D 对应).①若OD =3,求点D'的坐标.②连接AD'、OD',则AD'+OD'是否存在最小值,若存在,请直接写出最小值及此时点D'的坐标;若不存在,请说明理由.21.抛物线L :y =a (x ﹣x 1)(x ﹣x 2)(常数a≠0)与x 轴交于点A (x 1,0),B (x 2,0),与y 轴交于点C ,且x 1•x 2<0,AB =4,当直线l :y =﹣3x+t+2(常数t >0)同时经过点A ,C 时,t =1.(1)点C 的坐标是 ;(2)求点A ,B 的坐标及L 的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L 的大致图象;(4)将L 向右平移t 个单位长度,平移后y 随x 的增大而增大部分的图象记为G ,若直线l 与G 有公共点,直接写出t 的取值范围.22.从沈阳到大连的火车原来的平均速度是180千米/时,经过两次提速后平均速度为217.8干米/时,这两次提速的百分率相同.(1)求该火车每次提速的百分率;(2)填空:若沈阳到大连的铁路长396千米,则第一次提速后从甲地到乙地所用的时间比提速前少用了小时.23.立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.(1)当10≤x<60时,求y关于x的函数表达式;(2)九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?24.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规作∠ABC的平分线,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在(1)作出的图形中,若∠A=30°,BC,则点D到AB的距离等于.25.设a ,b 是任意两个不等实数,我们规定满足不等式a≤x≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b].对于一个函数,如果它的自变量x 与函数值y 满足:当m≤x≤n 时,有m≤y≤n,我们就称此函数闭区间[m ,n]上的“闭函数”.如函数y =﹣x+4.当x =1时,y =3;当x =3时,y =1,即当1≤x≤3时,有1≤y≤3,所以说函数y =﹣x+4是闭区间[1,3]上的“闭函数”(1)反比例函数2019y x是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由. (2)若二次函数y =x 2﹣2x ﹣k 是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx+b (k≠0)是闭区间[m ,n]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示).【参考答案】***一、选择题二、填空题13.1120、1320、32014.150°15.75°16.(0,-1)17.真18.-4<x <2三、解答题19.(1)m =1,y =4x ;(2)y =﹣x+5; 【解析】【分析】(1)把B 点坐标代入反比例函数解析式,即可求出m 的值,从而求出反比例函数的解析式和m 的值;(2)求得A 点坐标,进而把A 、B 点的坐标代入一次函数y =kx+b 的解析式,就可求出a 、b 的值,从而求得一次函数的解析式.【详解】(1)∵点B (4,1)在反比例函数y =k x (x >0)的图象上, ∴1=4k , ∴k =4. ∴反比例函数的解析式为y =4x∵点A(m,4)在反比例函数y=4x的图象上,∴4=4m,∴m=1.(2)点A(1,4)和点B(4,1)在一次函数y=ax+b的图象上,∴4 41 a ba b+=⎧⎨+=⎩解得15 ab=-⎧⎨=⎩∴一次函数的解析式为y=﹣x+5.【点睛】本题考查了反比例函数和一次函数的交点问题,能够熟练运用待定系数法求得函数的解析式是解题的关键.20.(1)见解析;(2)①D'的坐标为(4,9),②AD'+OD',点D'的坐标是(4,2).【解析】【分析】(1)根据矩形的判定证明即可;(2)①当点D在原点右侧时,根据旋转的性质和矩形的性质解答即可;②当点D在原点左侧时,根据旋转的性质和矩形的性质解答即可.【详解】(1)∵A(0,4),B(8,0),C(8,4).∴OA=4,BC=4,OB=8,AC=8,∴OA=BC,AC=OB,∴四边形AOBC是平行四边形,∵∠AOB=90°,∴▱AOBC是矩形;(2)∵▱AOBC是矩形,∴∠ACB=90°,∠OBC=90°,∵△D'CB'将△DCB绕点C顺时针旋转90°得到(点D'与点D对应),∴∠D'B'C=∠DBC=90°,B'C=BC=4,D'B'=DB,∠BCB'=90°,即点B'在AC边上,∴D'B'⊥AC,①如图1,当点D在原点右侧时:D'B'=DB=8﹣3=5,∴点D'的坐标为(4,9);②如图2,当点D在原点左侧时:D'B'=DB=8+3=11,∴点D'的坐标为(4,15),综上所述:点D'的坐标为(4,9)或(4,15).AD'+OD',点D'的坐标是(4,2).【点睛】此题考查四边形的综合题,关键是根据旋转的性质和矩形的性质解答.21.(1) 点C的坐标是(0,3); (2)A(1,0),B(﹣3,0),L的顶点坐标为(﹣1,4);(3)见解析;(4)t≥1 2【解析】【分析】(1)把t=1代入y=﹣3x+t+2,令x=0,求得相应的y值,即可得到点C的坐标;(2)根据待定系数法,可得函数解析式;(3)根据描点法,可得函数图象;(3)根据平移规律,可得G的解析式,根据函数与不等式的关系,可得答案.【详解】(1)直线的解析式为y=﹣3x+3,当x=0时,y=3,即C点坐标为(0,3),故答案为:(0,3);(2)当y=0时,﹣3x+3=0,解得x1=1,即A(1,0),由点A(x1,0),B(x2,0),且x1•x2<0,AB=4,得1﹣x2=4,解得x2=﹣3,即B(﹣3,0);L:y=a(x﹣1)(x+3),将C(0,3)坐标代入L,得a=﹣1,∴L的解析式为y=﹣(x﹣1)(x+3),即y=﹣(x+1)2+4,∴L的顶点坐标为(﹣1,4);(3)函数图象如图所示:;(4)L向右平移t个单位的解析式为y=﹣(x+1﹣t)2+4,a=﹣1<0,当x≤t﹣1时,y随x的增大而增大.若直线l与G有公共点时,则有当x=﹣1+t时,G在直线l的上方,即﹣(t﹣1+1﹣t)2+4≥﹣3(t﹣1)+t+2,解得t≥12.【点睛】本题考查了二次函数综合题,解(1)的关键是利用自变量与函数值的对应关系;解(2)的关键是待定系数法;解(3)的关键是描点法,解(4)的关键是利用函数值的大小得出不等式,还利用了函数图象平移的规律.22.(1)该火车每次提速的百分率为10%.(2)0.2.【解析】【分析】(1)设该火车每次提速的百分率为x,根据提速前的速度及经两次提速后的速度,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用第一次提速后的速度=提速前的速度×(1+提速的百分率)可求出第一次提速后的速度,再利用少用的时间=两地间铁路长÷提速前的速度﹣两地间铁路长÷第一次提速后的速度,即可求出结论.【详解】(1)设该火车每次提速的百分率为x,依题意,得:180(1+x)2=217.8,解得:x1=0.1=10%,x2=﹣2.1(舍去),答:该火车每次提速的百分率为10%;(2)第一次提速后的速度为180×(1+10%)=198(千米/时),第一次提速后从甲地到乙地所用的时间比提速前少用的时间为396396180198-=0.2(小时),故答案为:0.2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<60),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则60≤100﹣x<75;当40<x<60时,则40<100﹣x<60.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<60)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则60≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<60时,则40<100﹣x<60,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<60,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<60时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.(1)作图见解析;(2)1.【解析】【分析】(1)根据角平分线的尺规作图可得;(2)作DE⊥AB于E,设DE=DC=x,由∠A=30°,BC AD=2DE=2x,AB=2BC=由BC2+AC2=AB2得到关于x的方程,解之可得.【详解】(1)如图所示,BD即为所求;。
2019届中考数学复习单元测试卷:第一单元--有理数(解析版)(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一单元有理数一、填空题(本大题共4小题,每小题5分,共20分)1.现在网购越来越多地成为人们的一种消费方式,在2018年的“双11”网上促销活动中天猫和淘宝的支付交易额突破0000元,将数字0000用科学记数法表示为.2.某商店出售的某种品牌的面粉袋上,标有质量为(50±)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.3.p在数轴上的位置如图所示,化简:|p+1|﹣|p﹣2|=.4.若x与y互为相反数,m是绝对值最小的数,则2019x+2019y+m=.二、选择题(本大题共10小题,每小题4分,共40分)5.﹣2019的相反数是()A.﹣2019 B.﹣C.2019 D.6.在,π,4,2,0,﹣0.中,表示有理数的有()A.3个B.4个C.5个D.6个7.我国是最早使用负数的国家,东汉初,在我国著名的数学书《九章算术》中,明确提出了“正负术”.如果盈利2000元记作“+2000元”,那么亏损3000元记作()A.﹣3000元B.3000元C.5000元D.﹣5000元8.下列计算正确的是()A.﹣(﹣3)=﹣3 B.﹣|﹣3|=﹣3 C.﹣(+3)=3 D.﹣|﹣3|=3 9.如图,在数轴上有A,B,C,D,E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A、E两点表示的数的分别为﹣13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A.﹣1 B.5 C.6 D.810.下列计算正确的是()A.﹣6+4=﹣10 B.0﹣7=7C.﹣﹣(﹣)=D.4﹣(﹣4)=011.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.49!C.2450 D.2!12.若a+b<0且ab<0,那么()A.a<0,b>0B.a<0,b<0C.a>0,b<0D.a,b异号,且负数绝对值较大13.定义一种新运算:a※b=,则2※3﹣4※3的值()A.5 B.8 C.7 D.614.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是63,则m的值是()A.5 B.6 C.7 D.8三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.计算:(1)[(﹣2)×(﹣)+(﹣2)3]﹣34+(﹣27).(2)﹣.16.把下列各数按要求分类.﹣2,5,﹣2,0,﹣,﹣21,π,,,15%;正数集合:{…},负整数集合:{…},分数集合:{…}非正数集合:{…}17.已知a的绝对值是4,|b﹣2|=1,且a>b,求2a﹣b的值.18.请将“2,4,6,7,9,11,12,14,16”共9个数,填入到下面3×3的方格中,使得每行、每列、每条对角线上的三个数之和相等,构成一个三阶幻方.(至少三种不同的填法)19.国庆期间,出租车司机小李在东西方向的公路上接送游客,如果规定向东为正,向西为负,出租车的行程如下(单位:千米)+12,﹣4,+13,﹣14,﹣12,+3,﹣13,﹣5(1)最后一名学生被送到目的地时,小李在出发地的什么位置?(2)若汽车耗油量为升/千米,小李出发前加满了40升油,当他送完最后一名学生后,问他能否开车顺利返回出发地为什么20.小明在网上销售苹果,原计划每天卖100斤,但实际每天的销量与计划销量相比有出入,如表是某周的销售情况(超额记为正,不足记为负.单位:斤):星期一二三四五六日与计划量的差值+4﹣3﹣5+14﹣8+21﹣6(1)根据表中的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(3)本周实际销售总量达到了计划销量没有?(4)若每斤按5元出售,每斤苹果的运费为1元,那么小明本周一共收入多少元?21.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.22.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.23.暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:船型两人船(仅限两人)四人船(仅限四人)六人船(仅限六人)八人船(仅限八人)每船租金(元/小时)100130(1)其中,两人船项目和八人船项目单价模糊不清,通过询问,了解到以下信息:①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元;②租2只两人船,3只八人船,游玩一个小时,共需花费630元.请根据以上信息,求出两人船项目和八人船项目每小时的租金;(2)若该班本次共有18名同学一起来游玩,每人乘船的时间均为1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.参考答案与试题解析一.填空题(共4小题)1.【解答】解:将0000用科学记数法表示为:×1011.故答案为:×1011.2.【解答】解:根据题意得:标有质量为(50±)的字样,∴最大为50+=,最小为50﹣=,故他们的质量最多相差千克.故答案为:.3.【解答】解:由图形可知1<p<2,∴p+1>0,p﹣2<0,∴|p+1|=p+1,|p﹣2|=2﹣p,∴|p+1|﹣|p﹣2|=(p+1)﹣(2﹣p)=p+1﹣2+p=2p﹣1故答案为2p﹣1.4.【解答】解:∵x与y互为相反数,m是绝对值最小的数,∴x+y=0,m=0,原式=2019(x+y)+m=0.故答案为:0.二.选择题(共10小题)5.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:C.6.【解答】解:在,π,4,2,0,﹣0.中,表示有理数的有:,4,2,0,﹣0.共有5个,故选:C.7.【解答】解:如果盈利2000元记作“+2000元”,那么亏损3000元记作“﹣3000元”,故选:A.8.【解答】解:A、﹣(﹣3)=3,错误;B、﹣|﹣3|=﹣3,正确;C、﹣(+3)=﹣3,错误;D、﹣|﹣3|=﹣3,错误;故选:B.9.【解答】解:由题意可设AB=x,由AB=2BC=3CD=4DE有BC=x,CD=x.DE=x∵A、E两点表示的数的分别为﹣13和12,∴AE=25∴x+x+x+x=25,解得x=12∴AB=12,BC=6,CD=4,DE=3∴B、C、D三个点表示的数分别是﹣1、5、9.而A、E两点的中点表示的数应该是﹣,∴上述五个点所表示的整数中,离线段AE的中点最近的整数是﹣1.故选:A.10.【解答】解:A.﹣6+4=﹣2,此选项错误;B.0﹣7=﹣7,此选项错误;C.﹣﹣(﹣)=﹣+=,此选项正确;D.4﹣(﹣4)=4+4=8,此选项错误;故选:C.11.【解答】解:==50×49=2450 故选:C.12.【解答】解:∵a+b<0且ab<0,∴a>0,b<0且|a|<|b|或a<0,b>0且|a|>|b|,即a,b异号,且负数绝对值较大,故选:D.13.【解答】解:2※3﹣4※3=3×3﹣(4﹣3)=9﹣1=8,故选:B.14.【解答】解:根据题意得:83=512=57+59+61+63+65+67+69+71,则m=8,故选:D.三.解答题(共9小题)15.【解答】解:(1)原式=﹣8﹣81﹣27=﹣113;(2)原式=﹣1+8﹣2+4=9.16.【解答】解:正数集合:{5,π,,,15%…},负整数集合:{﹣2,﹣21…},分数集合:{﹣2,﹣,,,15%…}非正数集合:{﹣2,﹣2,0,﹣,﹣21…}故答案为:5,π,,,15%,﹣2,﹣21,﹣2,﹣,,,15%,﹣2,﹣2,0,﹣,﹣21.17.【解答】解:∵a的绝对值是4,∴a=±4,∵|b﹣2|=1,∴b﹣2=1或b﹣2=﹣1,解得b=3或b=1,∵a>b,∴a=4,b=3或b=1,当a=4,b=3时,2a﹣b=2×4﹣3=5;当a=4,b=1时,2a﹣b=2×4﹣1=7;综上,2a﹣b的值为5或7.18.【解答】解:如图所示.19.【解答】解:(1)∵+12﹣4+13﹣14﹣12+3﹣13﹣5=(+12+13+3)+(﹣4﹣14﹣12﹣13﹣5)=28+(﹣48)=﹣20(千米)∴最后一名学生被送到目的地时,小李在出发地向西方向20千米处.(2)12+4+13+14+12+3+13+5=28+48=76(千米)(76+20)×=48 (升)∵48>40,∴不能顺利返回出发地.20.【解答】解:(1)根据题意得:300+4﹣3﹣5=296;(2)根据题意得:321﹣292=29;故答案为:(1)296;(2)29;(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,故本周实际销量达到了计划销量.(4)(17+100×7)×(5﹣1)=717×4=2868(元).答:小明本周一共收入2868元.21.【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”,∵3﹣=,3×+1=,∴3﹣=3×+1,∴(3,)是“共生有理数对”;(2)是.理由:﹣m﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;(3)(4,)或(6,)等;(4)由题意得:a﹣3=3a+1,解得a=﹣2.故答案为:(3,);是;(4,)或(6,).22.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x≤5时,原式=5﹣x+x﹣4=1;当x>5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x≤5时,原式=1;当x>5时,原式=2x﹣9>1.故代数式的最小值是1.23.【解答】解:(1)设两人船每艘x元/小时,则八人船每艘(2x﹣30)元/小时,由题意,可列方程2x+3(2x﹣30)=630,解得:x=90,∴2x﹣30=150,答:两人船每艘90元,则八人船每艘150元;(2)如下表所示:两人船四人船六人船八人船共花费方案一9810方案二3390方案三14490方案四12390…两人船四人船六人船八人船共花费最省钱方案11138011。
2019届浙教版九年级中考数学模拟试卷含解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9C.10 D.113.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45D.475.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣29.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4=.12.(4分)要使分式有意义,则字母x的取值X围是.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m=.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号【分析】根据题意,利用有理数的乘法法则判断即可.【解答】解:a,b,c为非零有理数,它们的积必为正数的是a>0,b与c同号.故选:A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9 C.10 D.11【分析】根据已知中三视图,由正视图和侧视图可判断该楼的层数,进而解答即可.【解答】解:由主视图和左视图发现该楼一共有三层,房子的最多间数见俯视图:2+2+2+3+1=10,故选:C.【点评】此题考查了由三视图判断几何体的知识,解题的关键是根据主视图和左视图中小长方形的层数确定楼的层数.3.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣【分析】首先得出的取值X围,进而分别得出a,b的值进而得出答案.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴5+的整数部分为a=8,5﹣的小数部分为b:5﹣﹣1=4﹣,∴a+b=12﹣.故选:D.【点评】此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45 D.47【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:把这些数从小到大排列为:40,42,43,45,47,47,58,最中间的数是45,故这组数据的中位数是45.故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=【分析】根据切线的性质、切线长定理判断即可.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴∠PAO=∠PBO=90°,OP平分∠APB,PA=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.【点评】本题考查的是切线的性质,掌握切线长定理是解题的关键.6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C. D.【分析】根据非负数的性质列式求出a、b的值,再代入代数式求出,然后根据平方根的定义解答即可.【解答】解:根据题意得,b﹣4=0,a﹣1=0,解得a=1,b=4,所以,=,∵(±)2=,∴的平方根是±.故选:A.【点评】本题考查了平方根的定义,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:D.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣2【分析】根据题意和平移的特点,可以求得点BB随之运动得到的图象的函数表达式,从而可以解答本题.【解答】解:∵半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴,∴当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为:y=(x﹣3﹣1)2﹣1=(x﹣4)2﹣1,故选:A.【点评】本题考查二次函数图象上点的坐标特征、平移的性质,解答本题的关键是明确点B 是点A向右平移一个单位长度的对应点.9.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM ≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB 中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【解答】解:延长AG交CD于M,如图1∵ABCD是正方形∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC∵AD=CD,∠ADB=∠BDC,DG=DG∴△ADG≌△DGC∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC∴△ADM≌△CDF∴FD=DM且AE=DF∴AE=DM且AB=AD,∠ADM=∠BAD=90°∴△ABE≌△ADM∴∠DAM=∠ABE∵∠DAM+∠BAM=90°∴∠BAM+∠ABE=90°,即∠AHB=90°∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD==∵DH≥OD﹣OH∴DH≥﹣1∴DH的最小值为﹣1故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1【分析】如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.只要证明△AOH∽△OCJ,可得=()2,推出=,由此即可解决问题;【解答】解:如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.∵CA=CB,OA=OB,∴CO⊥AB,∵cos∠CAB==,设AO=k,AC=5k,则OC=2k,∴OC=2OA,∵∠AHO=∠CJO=∠AOC=90°,∴∠AOH+∠COJ=90°,∠COJ+∠OCJ=90°,∴∠AOH=∠OCJ,∴△AOH∽△OCJ,∴=()2,∴=,∴k2=﹣4k1,故选:D.【点评】本题考查反比例函数图象上的点的特征,解直角三角形、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4= 4(2m+1)(2m﹣1).【分析】原式提取4,再利用平方差公式分解即可.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)要使分式有意义,则字母x的取值X围是x≠﹣3 .【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3≠0,解得x≠=﹣3,故答案为:x≠﹣3.【点评】本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m= ﹣1 .【分析】根据反比例函数的一般形式,可以得到x的次数是﹣1;根据当x>0时,y随x的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:,解得:m=﹣1.故答案为﹣1【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为(﹣4,3)或(4,﹣3).【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴或,解得:或,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= 3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x 2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为3+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来;(2)根据分式的加减法的法则计算即可.【解答】解:(1)解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:,(2)++=﹣+==.【点评】本题考查的是分式的加减法,解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=【分析】根据平方差公式、完全平方公式和单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:原式=x2﹣y2﹣(x2﹣2xy+y2)﹣xy+2y2=x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2=xy,当x=2018,y=时,原式=2018×=1.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的方法.19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.【分析】(1)根据等腰三角形的定义和正切函数的定义确定点C位置,据此连接三顶点即可得;(2)根据平行四边形的定义作图可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,▱ABCD即为所求,CE==.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握等腰三角形、平行四边形及正切函数的定义、勾股定理.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【解答】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=2AD=6,S△BCD=S△ABC∴BC=2DF=2.又∵∠ABC=90°,∴AB===4.∵平行四边形DBEC是菱形,∴S 四边形DBEC=2S△BCD=S△ABC=AB•BC=×4×2=4.【点评】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题,难度中等.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.【点评】本题考查了条形统计图、全面调查和抽样调查、总体、个体、样本、样本容量、用样本估计总体以及扇形统计图,解题的关键是:(1)用喜欢“转发内容”的人数÷其所占样本容量的比例求出样本容量;(2)用样本容量减去A、C、D、E的数据,求出喜欢给别人评论的人数;(3)根据扇形统计图,列式计算;(4)根据数量关系,列式计算.22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.【分析】应合理应用∠CAQ的度数,CD的长度,所以过点D作CA的平行线得到平行四边形.过点D向对边引垂线,得到直角三角形,进而利用三角函数值求得河宽.【解答】解:过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,(4分)∵PQ∥MN,DH∥CA∴四边形CAHD是平行四边形.∴AH=CD=50,∠DHQ=∠CAQ=30°(5分)在Rt△DBG中,∵∠DBG=∠BDG=45°,∴BG=DG,设BG=DG=x,在Rt△DHG中,得HG=x,(6分)又BH=AB﹣AH=110﹣50=60,∴60+x=x,∴x=30+30≈82.0(米).答:河流的宽为82.0米.(7分)【点评】本题考查解直角三角形的应用.难点是作出辅助线,利用三角函数求解.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.【分析】(1)根据图象坐标求出BC解析式;(2)①根据(1)中函数关系式,求点D坐标;②根据图象求出甲乙两车速度,计算MN距离;(3)由②中乙的速度列出s乙与时间t(h)的函数表达式,并画图象.【解答】解:(1)根据图象,点C表示甲行驶1.5小时时,甲乙两车相遇.设直线BC的函数解析式为:y=kt+b把B(0.5,60),D(1.5,0)解得∴BC解析式为:y=﹣60t+90(2)①把t=2.25代入y=﹣60t+90y=﹣60×2.25+90=45∴点D坐标为(2.25,45)②设甲的速度为akm/h,乙的速度为bkm/h由题意得∴∴MN之间距离为:3.5×20=70km(3)乙离M地的路程为s乙=70﹣40t【点评】本题为一次函数实际应用问题,考查一次函数图象的实际意义,待定系数法求函数关系式和二元一次方程组.。
2019年四川省成都市成华区中考数学二诊试卷一、单选题(每题3分,满分30分)1.﹣3的绝对值是()A.3 B.﹣3 C.D.2.下列运算正确的是()A.﹣(2a)2=﹣2a2B.2(a﹣1)=2a﹣1C.(a+b)2=a2+b2D.3a2﹣2a2=a23.铁路总公司发布数据称,2019年春运期间,全国铁路累计发送旅客达到3.1亿人次,数据3.1亿用科学记数法表示为()A.31×107B.3.1×105C.3.1×108D.3.1×1064.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<16.下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则该日气温的极差是5℃7.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°8.如图,在平面直角坐标系中,已知点A(4,2),过点A作AB⊥x轴,垂足为点B,将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则OC的长度是()A.1 B.2 C.D.9.如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°10.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0二、填空题(每题4分,满分16分)11.若式子有意义,则x的取值范围是.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.13.如图,直线y=x+1与x轴交于点A,与y轴交于点B,以点A为圆心,线段AB的长为半径画弧,交x轴的正半轴于一点C,则点C的坐标是.14.如图,在平行四边形ABCD中,AB=4,BC=7,以点B为圆心,适当长为半径画弧,交BA于点E,交BC于点F,再分别以点E、F为圆心大于EF的长为半径画弧,两弧相交于点G,射线BG交CD的延长线于点H,则DH的长是.三、解答题(54分)15.(12分)计算:(1)()﹣1++()0﹣2cos60°﹣|3﹣π|;(2)解不等式组:16.(6分)先化简,再求值:÷(﹣x﹣2),其中|x|=2.17.(8分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.18.(8分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为32.3°,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,女生楼在男生楼墙面上的影高为DA.已知CD=42m.求楼间距AB的长度为多少米?(参考数据:sin32.3°=0.53,cos32.3°=0.85,tan32.3°=0.63,sin55.7°=0.83,cos55.7°=0.56,tan55.7°=1.47)19.(10分)如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于A(﹣1,﹣4)和点B(4,m)(1)求这两个函数的解析式;(2)已知直线AB交y轴于点C,点P(n,0)在x轴的负半轴上,若△BCP为等腰三角形,求n的值.20.(10分)如图,以△4BC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)探究线段EB,E C,ED之间有何数量关系?写出你的结论,并证明;(3)若BC=,CE=,求⊙O的半径长.一、填空题(20分)21.若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.22.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为.23.如图,AC是⊙O的直径,弦BD⊥AO,垂足为点E,连接BC,过点O作OF⊥BC,垂足为F,若BD=8cm,AE=2cm,则OF的长度是cm.24.已知一个矩形纸片ABCD,AB=12,BC=6,点E在BC边上,将△CDE沿DE折叠,点C 落在C'处;DC',EC'分别交AB于F,G,若GE=GF,则sin∠CDE的值为.25.如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.二、解答题(30分)26.(8分)随着人们生活水平的提高,对饮水品质的需求也越来越高,某商场购进甲、乙两种型号的净水器,每台甲型净水器比每台乙型净水器进价多200元,已知用5万元购进甲型净水器与用4.5万元购进乙型净水器的数量相等.(1)求每台甲型,乙型净水器的进价各是多少元?(2)该商场计划花费不超过9.8万元购进两种型号的净水器共50台进行销售,甲型净水器每台销售2500元,乙型净水器每台售价2200元,商场还将从销售甲型净水器的利润中按每台a元(70<a<80)捐献给贫困地区作为饮水改造扶贫资金.设该公司售完50台净水器并捐献扶贫资金后获得的利润为W元,求W的最大值.27.(10分)正方形ABCD的边长为4,点E在BC上,点F在CD上,且CF=BE,AE与BF 交于G点.(1)如图1,求证:①AE=BF,②AE⊥BF.(2)连接CG并延长交AB于点H,①若点E为BC的中点(如图2),求BH的长;②若点E在BC的边上滑动(不与B、C重合),当CG取得最小值时,求BE的长.28.(12分)如图1,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B ,抛物线y =﹣x 2+bx +c 经过A ,B 两点.(1)求抛物线的函数表达式;(2)点M 是第二象限抛物线上的点,连接OM 交直线AB 于点C ,设点M 的横坐标为m ,MC ,OC 的比值为k ,求k 与m 的函数关系式,并求k 的最大值;(3)若抛物线上有且仅有三个点P 1,P 2,P 3,使得△ABP 1,△ABP 2,△ABP 3的面积均为定值S ,求P 1,P 2,P 3这三个点的坐标,并求出定值S 的值.参考答案一、单选题1.﹣3的绝对值是()A.3 B.﹣3 C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列运算正确的是()A.﹣(2a)2=﹣2a2B.2(a﹣1)=2a﹣1C.(a+b)2=a2+b2D.3a2﹣2a2=a2【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别计算得出答案.【解答】解:A、﹣(2a)2=﹣4a2,故此选项错误;B、2(a﹣1)=2a﹣2,故此选项错误;C、(a+b)2=a2+2ab+b2,故此选项错误;D、3a2﹣2a2=a2,正确.故选:D.【点评】此题主要考查了合并同类项法则以及积的乘方运算、完全平方公式,正确掌握相关运算法则是解题关键.3.铁路总公司发布数据称,2019年春运期间,全国铁路累计发送旅客达到3.1亿人次,数据3.1亿用科学记数法表示为()A.31×107B.3.1×105C.3.1×108D.3.1×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据3.1亿用科学记数法表示为3.1×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.5.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<1【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相同的实数根,∴△=(﹣2)2﹣4m>0,解得:m<1.故选:D.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则该日气温的极差是5℃【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,该日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.【点评】此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.7.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.8.如图,在平面直角坐标系中,已知点A(4,2),过点A作AB⊥x轴,垂足为点B,将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则OC的长度是()A.1 B.2 C.D.【分析】直接利用位似图形的性质以及结合A点坐标直接得出点C的坐标,即可得出答案.【解答】解:∵点A(4,2),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,∴C(2,1),则OC的长度=.故选:C.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.9.如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°【分析】由切线的性质知∠OCB=90°,再根据平行线的性质得∠COD=90°,最后由圆周角定理可得答案.【解答】解:∵直线AB是⊙O的切线,C为切点,∴∠OCB=90°,∵OD∥AB,∴∠COD=90°,∴∠CED=∠COD=45°,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握圆的切线垂直于经过切点的半径及圆周角定理.10.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0 【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x 轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.二、填空题(16分)11.若式子有意义,则x的取值范围是x≥﹣2 .【分析】根据二次根式的性质和,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:x+2≥0,解得:x≥﹣2.故答案是:x≥﹣2.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【分析】由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率.【解答】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.13.如图,直线y=x+1与x轴交于点A,与y轴交于点B,以点A为圆心,线段AB的长为半径画弧,交x轴的正半轴于一点C,则点C的坐标是(﹣2,0).【分析】先根据坐标轴上点的坐标特征得到A(﹣2,0),B(0,1),再利用勾股定理计算出AB=,然后根据圆的半径相等得到AC=AB=,进而解答即可.【解答】解:当y=0时, x+1=0,解得x=﹣2,则A(﹣2,0);当x=0时,y=x+1=1,则B(0,1),所以AB=,因为以点A为圆心,AB为半径画弧,交x轴于点C,所以AC=AB=,所以OC=AC﹣AO=﹣2,所以的C的坐标为(﹣2,0),故答案为(﹣2,0).【点评】本题考查了一次函数图象上点的坐标特征,关键是根据一次函数y=kx+b,(k ≠0,且k,b为常数)的图象是一条直线.14.如图,在平行四边形ABCD中,AB=4,BC=7,以点B为圆心,适当长为半径画弧,交BA于点E,交BC于点F,再分别以点E、F为圆心大于EF的长为半径画弧,两弧相交于点G,射线BG交CD的延长线于点H,则DH的长是 3 .【分析】根据角平分线的作图和平行四边形的性质以及等腰三角形的判定和性质解答即可.【解答】解:由作图可知:BH是∠ABC的角平分线,∴∠ABG=∠GBC,∵平行四边形ABCD,∴AD∥BC,∴∠AGB=∠GBC,∴∠ABG=∠AGB,∴AG=AB=4,∴GD=AD=AG=7﹣4=3,∵平行四边形ABCD,∴AB∥CD,∴∠H=∠ABH=∠AGB,∵∠AGB=∠HGD,∴∠H=∠HGD,∴DH=GD=3,故答案为:3【点评】此题主要考查了角平分线的做法以及平行四边形的性质,熟练根据角平分线的性质得出∠ABG=∠GBC是解题关键.三、解答题(54分)15.(12分)计算:(1)()﹣1++()0﹣2cos60°﹣|3﹣π|;(2)解不等式组:【分析】(1)原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的性质计算,即可得到结果;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)原式=2++1﹣2×+3﹣π=5+﹣π;(2)解不等式①,得x>﹣4,解不等式②,得x≤2,∴不等式组的解集为﹣4<x≤2.【点评】本题考查的是解二元一次方程组与一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.16.(6分)先化简,再求值:÷(﹣x﹣2),其中|x|=2.【分析】根据分式的减法和除法可以化简题目中的式子,然后根据|x|=2即可解答本题.【解答】解:÷(﹣x﹣2)====,∵|x|=2,x﹣2≠0,解得,x=﹣2,∴原式=.【点评】本题考查分式的化简求值、绝对值,解答本题的关键是明确分式化简求值的方法.17.(8分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.【分析】(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;(2)用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(3)画出树状图,由概率公式即可得出答案.【解答】解:(1)调查的总人数是:19÷38%=50(人);(2)A组所占圆心角的度数是:360°×=108°;C组的人数有:50﹣15﹣19﹣4=12(人),补全条形图如图所示:(3)画树状图,共有12个可能的结果,恰好选中甲的结果有6个,∴P(恰好选中甲)==.【点评】本题考查了列表法与树状图法、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(8分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为32.3°,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,女生楼在男生楼墙面上的影高为DA.已知CD=42m.求楼间距AB的长度为多少米?(参考数据:sin32.3°=0.53,cos32.3°=0.85,tan32.3°=0.63,sin55.7°=0.83,cos55.7°=0.56,tan55.7°=1.47)【分析】如图,作CM⊥BE于M,DN⊥BE于N.则四边形CDNM是矩形,设EM=xm,AB=DN=CM=ym.构建方程组即可解决问题.【解答】解:如图,作CM⊥BE于M,DN⊥BE于N.则四边形CDNM是矩形,设EM=xm,AB=DN=CM=ym.在Rt△CEM中,∵tan∠ECM==0.63,∴=0.63 ①,在Rt△DEN中,∵tan∠EDN==1.47,∴=1.47 ②,由①②可得y=50,答:楼间距AB的长度为50m.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程组解决问题,属于中考常考题型.19.(10分)如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于A(﹣1,﹣4)和点B(4,m)(1)求这两个函数的解析式;(2)已知直线AB交y轴于点C,点P(n,0)在x轴的负半轴上,若△BCP为等腰三角形,求n的值.【分析】(1)先将点A坐标代入反比例函数解析式中求出k2,进而求出点B坐标,最后将点A,B坐标代入一次函数解析式中,即可得出结论;(2)利用两点间的距离公式表示出BC2=32,CP2=n2+9,BP2=(n﹣4)2+1,再分三种情况利用两腰相等建立方程求解即可得出结论.【解答】解:(1)∵点A(﹣1,4)在反比例函数y=(k≠0)的图象上,2=﹣1×(﹣4)=4,∴k2∴反比例函数解析式为y=,将点B(4,m)代入反比例函数y=中,得m=1,∴B(4,1),x+b中,得,将点A(﹣1,﹣4),B(4,1)代入一次函数y=k1∴,∴一次函数的解析式为y=x﹣3;(2)由(1)知,直线AB解析式为y=x﹣3,∴C(0,﹣3),∵B(4,1),P(n,0),∴BC2=32,CP2=n2+9,BP2=(n﹣4)2+1,∵△BCP为等腰三角形,∴①当BC=CP时,∴32=n2+9,∴n=(舍)或n=﹣,②当BC=BP时,32=(n﹣4)2+1,∴n=4+(舍)或n=4﹣,③当CP=BP时,n2+9=(n﹣4)2+1,∴n=1(舍),即:满足条件的n为﹣或(4﹣).【点评】此题是反比例函数综合题,主要考查了待定系数法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.20.(10分)如图,以△4BC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)探究线段EB,EC,ED之间有何数量关系?写出你的结论,并证明;(3)若BC=,CE=,求⊙O的半径长.【分析】(1)连接OD,根据圆周角和圆心角的2倍数量关系,可以得到∠DOC=90°,再利用平行推出∠ODE=90°.(2)连接CD,证明△CDE∽△BDE,即可得到DE2=CE•BE.(3)根据(2)的结论可以求出DE的长度,过E作CD的垂线,可得到一个等腰直角三角形,可解边长,再根据勾股定理可得到CD的长度,从而得到半径的长度.【解答】解:(1)如图,连接OD,∵AC为圆O的直径,∴∠ABC=90°,∵BD是∠ABC的角平分线,∴∠ABD=∠DBE=45°,∴∠DOC=90°,∵AC∥DE,∴∠ODE=90°,∴DE为⊙O的切线.(2)如图所示,连接CD,∵∠CDE=∠DCA=∠DBA=45°,∠E=∠DBE,∴△DCE∽△BDE,∴,∴DE2=CE•BE.(3)如图所示,连接OD、CD,过点E作CD的垂线,垂足为H,∵DE2=CE•BE,BC=,CE=,解得DE=4,∵∠HDE=45°,∴DH=HE=4•sin∠HDE=2,在Rt△CHE中,CH==,∴CD=3,∴OD=OC=3•sin∠ODC=3,∴⊙O的半径为3.【点评】此题考查了圆的性质,在同圆或等圆中,同弧所对的圆心角是圆周角的2倍,还考查了相似三角形的性质及其判定.找到相似三角形为解题关键.一、填空题(20分)21.若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12 .【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点评】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.22.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为 1 .【分析】根据题意列出方程,解方程即可.【解答】解:由题意得,(x+1)2﹣(x+1)(x﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为:1.【点评】本题考查的是一元二次方程的解法,根据题意正确得到方程是解题的关键.23.如图,AC是⊙O的直径,弦BD⊥AO,垂足为点E,连接BC,过点O作OF⊥BC,垂足为F,若BD=8cm,AE=2cm,则OF的长度是cm.【分析】根据垂径定理求出BE,根据相交弦定理求出EC,根据勾股定理求出BC,根据垂径定理、勾股定理计算,得到答案.【解答】解:∵BD⊥AO,∴BE=ED=BD=4,由相交弦定理得,EA•EC=EB•ED,即2×EC=4×4,解得,EC=8,∴AC=10,由勾股定理得,BC==4,∵OF⊥BC,∴CF=BC=2,∴OF==(cm),故答案为:.【点评】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分弦是解题的关键.24.已知一个矩形纸片ABCD,AB=12,BC=6,点E在BC边上,将△CDE沿DE折叠,点C 落在C'处;DC',EC'分别交AB于F,G,若GE=GF,则sin∠CDE的值为.【分析】设EC=x,BE=x,根据折叠的对称性可得C′E=CE=x.证明△FC′G≌△EBG,Rt△FC′E≌Rt△EBF,则FC′和BF均可用x表示,所以在Rt△ADF中,DF、AF也可用x 表示出来,再用勾股定理可求x值,最后在Rt△DCE中求解sin∠CDE.【解答】解:设CE=x,则BE=6﹣x.根据折叠的对称性可知DC′=DC=12,C′E=CE=x.在△FC′G和△EBG中,∴△FC′G≌△EBG(AAS).∴FC′=BE=6﹣x.∴DF=12﹣(6﹣x)=6+x.在Rt△FC′E和Rt△EBF中,,∴Rt△FC′E≌Rt△EBF(HL).∴FB=EC′=x.∴AF=12﹣x.在Rt△ADF中,AD2+AF2=DF2,即36+(12﹣x)2=(6+x)2,解得x=4.∴CE=4.在Rt△CDE中,DE2=DC2+CE2,则DE=4.∴sin∠CDE=.故答案为.【点评】本题主要考查折叠的对称性、全等三角形的判定和性质、勾股定理以及解直角三角形,解题的关键是运用对称和全等三角形进行线段的转化,在Rt△中利用勾股定理求解线段长度.25.如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为8 .【分析】由题意A (﹣4,4),B (2,2),可知OA ⊥OB ,建立如图新的坐标系(OB 为x ′轴,OA 为y ′轴,利用方程组求出M 、N 的坐标,根据S △OMN =S △OBM ﹣S △OBN 计算即可.【解答】解:∵A (﹣4,4),B (2,2),∴OA ⊥OB ,建立如图新的坐标系,OB 为x ′轴,OA 为y ′轴.在新的坐标系中,A (0,8),B (4,0),∴直线AB 解析式为y ′=﹣2x ′+8, 由,解得或,∴M (1,6),N (3,2),∴S △OMN =S △OBM ﹣S △OBN =•4•6﹣•4•2=8,故答案为8.【点评】本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.二、解答题(30分)26.(8分)随着人们生活水平的提高,对饮水品质的需求也越来越高,某商场购进甲、乙两种型号的净水器,每台甲型净水器比每台乙型净水器进价多200元,已知用5万元购进甲型净水器与用4.5万元购进乙型净水器的数量相等.(1)求每台甲型,乙型净水器的进价各是多少元?(2)该商场计划花费不超过9.8万元购进两种型号的净水器共50台进行销售,甲型净水器每台销售2500元,乙型净水器每台售价2200元,商场还将从销售甲型净水器的利润中按每台a元(70<a<80)捐献给贫困地区作为饮水改造扶贫资金.设该公司售完50台净水器并捐献扶贫资金后获得的利润为W元,求W的最大值.【分析】(1)设每台乙型净水器的进价是x元,则每台甲型净水器的进价是(x+200)元,根据数量=总价÷单价结合用5万元购进甲型净水器与用4.5万元购进乙型净水器的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进甲型净水器m台,则购进乙型净水器(50﹣m)台,根据总价=单价×数量结合总价不超过9.8万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再由总利润=每台利润×购进数量,即可得出W关于m的一次函数关系式,利用一次函数的性质即可解决最值问题.【解答】解:(1)设每台乙型净水器的进价是x元,则每台甲型净水器的进价是(x+200)元,依题意,得:=,解得:x=1800,经检验,x=1800是原分式方程的解,且符合题意,∴x+200=2000.答:每台甲型净水器的进价是2000元,每台乙型净水器的进价是1800元.(2)设购进甲型净水器m台,则购进乙型净水器(50﹣m)台,依题意,得:2000m+1800(50﹣m)≤98000,解得:m≤20.W=(2500﹣2000﹣a)m+(2200﹣1800)(50﹣m)=(100﹣a)m+20000,∵100﹣a>0,∴W随m值的增大而增大,∴当m=20时,W取得最大值,最大值为(22000﹣20a)元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.27.(10分)正方形ABCD的边长为4,点E在BC上,点F在CD上,且CF=BE,AE与BF 交于G点.(1)如图1,求证:①AE=BF,②AE⊥BF.(2)连接CG并延长交AB于点H,①若点E为BC的中点(如图2),求BH的长;②若点E在BC的边上滑动(不与B、C重合),当CG取得最小值时,求BE的长.【分析】(1)①由正方形的性质得出AB=BC=4,∠ABC=∠BCD=90°,由SAS证明△ABE ≌△BCF,即可得出结论;②由①得:△ABE≌△BCF,得出∠BAE=∠CBF,证出∠AGB=90°,即可得出结论;(2)①由直角三角形的性质得出CF=BE=BC=2,由勾股定理得出BF=2,由(1)得:AE⊥BF,则∠BGE=∠ABE=90°,证明△BEG∽△AEB,得出==,设GE=x,则BG=2x,在Rt△BEG中,由勾股定理得出方程,解方程得出BG=2×=,由平行线得出=,即可得出BH的长;②由(1)得:∠AGB=90°,得出点G在以AB为直径的圆上,设AB的中点为M,当C、G、M在同一直线上时,CG为最小值,求出GM=AB=BM=2,由平行线得出==1,证出CF=CG=BE,设CF=CG=BE=a,则CM=a+2,在Rt△BCM中,由勾股定理得出方程,解方程即可.【解答】(1)证明:①∵四边形ABCD是正方形,∴AB=BC=4,∠ABC=∠BCD=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF;②由①得:△ABE≌△BCF,∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°,∴∠BAE+∠ABF=90°,∴∠AGB=90°,∴AE⊥BF;(2)解:①如图2所示:∵E为BC的中点,∴CF=BE=BC=2,∴BF==2,由(1)得:AE⊥BF,∴∠BGE=∠ABE=90°,∵∠BEG=∠AEB,∴△BEG∽△AEB,∴==,设GE=x,则BG=2x,在Rt△BEG中,由勾股定理得:x2+(2x)2=22,解得:x=,∴BG=2×=,∵AB∥CD,∴=,即=,解得:BH=;②由(1)得:∠AGB=90°,∴点G在以AB为直径的圆上,设AB的中点为M,由图形可知:当C、G、M在同一直线上时,CG为最小值,如图3所示:∵AE⊥BF,∴∠AGB=90°,∴GM=AB=BM=2,∵AB∥CD,∴==1,∴CF=CG,∵CF=BE,∴CF=CG=BE,设CF=CG=BE=a,则CM=a+2,在Rt△BCM中,由勾股定理得:22+42=(a+2)2,解得:a=2﹣2,即当CG取得最小值时,BE的长为2﹣2.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾。
基本图形一、选择题(每小题3分,共30分)1.下列命题中,假命题是(D)A. 平行四边形是中心对称图形B. 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C. 对于简单的随机样本,可以用样本的方差去估计总体的方差D. 若x2=y2,则x=y2.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件(B)A. ∠BAC=∠BADB. AC=AD或BC=BDC. AC=AD且BC=BDD. 以上都不正确(第2题图) (第3题图)3.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB,BC,CA的中点,若CD=5 cm,则EF=(A)A. 5 cm B. 10 cmC. 15 cmD. 20 cm4.将一把直尺与一块三角尺按如图的方式放置,若∠1=40°,则∠2的度数为(D)A. 125°B. 120°C. 140°D. 130°(第4题图) (第5题图)5.如图,在坐标平面上,△ABC与△DEF全等,其中A,B,C的对应顶点分别为D,E,F,且AB=BC=5.若点A的坐标为(-3,1),B,C两点在直线y=-3上,D,E两点在y轴上,则点F到y轴的距离为(C)A. 2 B. 3C. 4D. 56.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为5.25cm2,则此方格纸的面积为(B)A. 11 cm2B. 12 cm2C. 13 cm2D. 14 cm2(第6题图) (第7题图)7.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC,BC为直径画半圆,则图中阴影部分的面积为(A)A. -4B. 10π-4C. 10π-8D. -88.如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OM,ON分别交AB,BC于点E,F,且∠EOF=90°,BO,EF交于点P.有下列结论:(第8题图)①图形中全等的三角形只有两对;②正方形ABCD的面积等于四边形OEBF面积的4倍;③BE+BF=2OA;④AE2+CF2=2OP·OB.其中正确的结论有(C)A. 1个B. 2个C. 3个D. 4个9.如图,在正方形ABCD中,AB=3 cm,动点M自A点出发沿AB方向以每秒1 cm的速度运动,同时动点N 自A点出发沿折线AD→DC→CB以每秒3 cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(s),则下列图象中能大致反映y与x之间函数关系的是(B)(第9题图)10.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2015的值为(C )(第10题图)A. ⎝ ⎛⎭⎪⎫222012B. ⎝ ⎛⎭⎪⎫222013 C. ⎝ ⎛⎭⎪⎫122012 D. ⎝ ⎛⎭⎪⎫122013 二、填空题(每小题4分,共24分)11.已知直线l 1,l 2,l 3互相平行,直线l 1与l 2的距离是4 cm ,直线l 2与l 3的距离是6 cm ,那么直线l 1与l 3的距离是10_cm 或2_cm .12.如图,已知矩形ABCD 的边长分别为a ,b ,连结其对边中点,得到四个矩形,顺次连结矩形AEFG 各边中点,得到菱形I 1;连结矩形FMCH 对边中点,又得到四个矩形,顺次连结矩形FNPQ 各边中点,得到菱形I 2……如此操作下去,得到菱形I n ,则I n 的面积是⎝ ⎛⎭⎪⎫122n +1ab .(第12题图)13.如图,若将边长为2 cm 的两个互相重合的正方形纸片沿对角线AC 翻折成等腰直角三角形后,再抽出一个等腰直角三角形沿AC 移动.若重叠部分△A ′PC 的面积是1 cm 2,则移动的距离AA ′等于2_cm .(第13题图) (第14题图)14.如图,点P 是矩形ABCD 内的任意一点,连结PA ,PB ,PC ,PD ,得到△PDA ,△PAB ,△PBC ,△PCD ,设它们的面积分别是S 1,S 2,S 3,S 4,给出如下结论:①S 1+S 2=S 3+S 4;②S 2+S 4=S 1+S 3;③若S 3=2S 1,则S 4=2S 2;④若S 1=S 2,则点P 在矩形的对角线上.其中正确的结论的序号是__②④__(把所有正确结论的序号都填在横线上).15.如图,矩形OABC 在第一象限,OA ,OC 分别与x 轴,y 轴重合,面积为6.矩形与双曲线y =kx(x >0)交BC 于点M ,交BA 于点N ,连结OB ,MN .若2OB =3MN ,则k =__2__.(第15题图)16.如图,边长为n 的正方形OABC 的边OA ,OC 分别在x 轴和y 轴的正半轴上,A 1,A 2,A 3,…,A n -1为OA的n 等分点,B 1,B 2,B 3,…B n -1为CB 的n 等分点,连结A 1B 1,A 2B 2,A 3B 3,…,A n -1B n -1,分别交y =1nx 2(x ≥0)于点C 1,C 2,C 3,…,C n -1,当B 25C 25=8C 25A 25时,则n(第16题图)三、解答题(本题有8小题,共66分)17.(本题6分)已知:∠MON =40°,OE 平分∠MON ,点A ,B ,C 分别是射线OM ,OE ,ON 上的动点(A ,B ,C不与点O重合),连结AC交射线OE于点D.设∠OAC=x°.(1)如图①,若AB∥ON,则①∠ABO的度数是__20°__;②当∠BAD=∠ABD时,x=__120__;当∠BAD=∠BDA时,x=__60__.(2)如图②,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.(第17题图)解:(1)①∵∠MON=40°,OE平分∠MON,∴∠AOB=∠BON=20°.∵AB∥ON,∴∠ABO=∠BON=20°.②∵∠BAD=∠ABD,∴∠BAD=20°.∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=120°.∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°.∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=60°.(2)①当点D在线段OB上时,若∠BAD=∠ABD,则x=20;若∠BAD=∠BDA,则x=35;若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,∵∠ABE=110°,且三角形的内角和为180°,∴只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50,125.18.(本题6分)如图:已知BC平分∠ACD,且∠1=∠2,求证:AB∥CD.(第18题图)证明:∵BC平分∠ACD,∴∠1=∠BCD,∵∠1=∠2,∴∠2=∠BCD ,∴AB ∥CD (内错角相等,两直线平行).19.(本题6分)如图,在正方形ABCD 中,点P 在AD 上,且不与A ,D 重合,BP 的垂直平分线分别交CD ,AB 于E ,F 两点,垂足为Q ,过点E 作EH ⊥AB 于点H .(第19题图)(1)求证:HF =AP .(2)若正方形ABCD 的边长为12,AP =4,求线段EQ 的长解:(1)证明:∵EQ ⊥BO ,EH ⊥AB ,∴∠EQN =∠BHM =90°.∵∠EMQ =∠BMH ,∴△EMQ ∽△BMH ,∴∠QEM =∠HBM .∵四边形ABCD 为正方形,∴∠A =90°=∠ABC ,AB =BC .又∵EH ⊥AB ,∴EH =BC .∴AB =BC .在△APB 与△HFE 中,∵⎩⎪⎨⎪⎧∠ABP =∠HEF ,∠PAB =∠FHE ,AB =EH ,∴△APB ≌△HFE ,∴HF =AP .(2)由勾股定理,得BP =AP 2+AB 2=42+122=410.∵EF 是BP 的垂直平分线,∴BQ =12BP =210, ∴QF =BQ ·tan ∠FBQ =BQ ·tan ∠ABP =210×412=2103.由(1)知,△APB ≌△HFE ,∴EF =BP =410,∴EQ =EF -QF =410-2103=10103. 20.(本题8分)阅读下面材料:小明遇到这样一个问题:如图①,在边长为a (a >2)的正方形ABCD 各边上分别截取AE =BF =CG =DH =1,当∠AFQ =∠BGM =∠CHN =∠DEP =45°时,求正方形MNPQ 的面积.(第20题图)小明发现:分别延长QE ,MF ,NG ,PH 交FA ,GB ,HC ,ED 的延长线于点R ,S ,T ,W ,可得△RQF ,△SMG ,△TNH ,△WPE 是四个全等的等腰直角三角形(如图②).请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__a __.(2)求正方形MNPQ 的面积.(3)参考小明思考问题的方法,解决问题:如图③,在等边△ABC 各边上分别截取AD =BE =CF ,再分别过点D ,E ,F 作BC ,AC ,AB 的垂线,得到等边△RPQ .若S △RPQ =33,则AD 的长为__23__. 解:(1)a .(2)∵四个等腰直角三角形面积的和为a 2,正方形ABCD 的面积也为a 2.∴S 正方形MNPQ =S △ARE +S △BSF +S △GCT +S △HDW =4S △ARE =4×12×12=2. (3)23. 21.(本题8分)联想三角形外心的概念,我们可引入如下概念:定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图①,若PA =PB ,则点P 为△ABC 的准外心.(1)应用:如图②,CD 为等边三角形ABC 的高,准外心P 在高CD 上,且PD =12AB ,求∠APB 的度数.(第21题图)(2)探究:已知△ABC 为直角三角形,斜边BC =5,AB =3,准外心P 在AC 边上,试探究PA 的长. 解:(1)若PB =PC ,连结PB ,则∠PCB =∠PBC .∵CD 为等边三角形的高,∴AD =BD ,∠PCB =30°.∴∠PBD =∠PBC =30°.∴PD =33DB =36AB . 这与已知PD =12AB 矛盾,∴PB ≠PC . 若PA =PC ,连结PA ,同理可得PA ≠PC .若PA =PB ,由PD =12AB ,得PD =BD , ∴∠DPB =45°.故∠APB =90°.(第21题图解)(2)∵BC =5,AB =3,∴AC =BC 2-AB 2=4.①若PB =PC ,设PA =x ,则x 2+32=(4-x )2,x =78,即PA =78. ②若PA =PC ,则PA =2.③若PA =PB ,由图知,在Rt △PAB 中,不可能,故PA =2或78. 22.(本题10分)如图①,把边长为4的正三角形各边四等分,连结各分点得到16个小正三角形.(1)如图②,连结小正三角形的顶点得到的正六边形ABCDEF 的周长=__6__.(2)请你判断:命题“六个内角相等的六边形是正六边形”是真命题还是假命题?如果是真命题,请你把它改写成“如果…,那么…”的形式;如果是假命题,请在图①中画图说明.(第22题图)解:(1)∵正六边形的各边长都等于1,∴周长=6×1=6.(2)命题“六个内角相等的六边形是正六边形”是假命题,反例如解图①②等.(第22题图解)23.(本题10分)如图,在梯形ABCD 中,AD ∥BC ,AB =CD =5,对角线BD 平分∠ABC ,cos C =45. (1)求边BC 的长;(2)过点A 作AE ⊥BD ,垂足为点E ,求tan ∠DAE 的值.(第23题图) (第23题图解)解:(1)过点D 作DH ⊥BC ,垂足为H .在Rt △CDH 中,由∠CHD =90°,CD =5,cos C =45, 得CH =CD ·cos C =5×45=4. ∵对角线BD 平分∠ABC ,∴∠ABD =∠CBD .∵AD ∥BC ,∴∠ADB =∠CBD .∴∠ABD =∠ADB ,∴AD =AB =5.于是,由等腰梯形ABCD ,可知BC =AD +2CH =13.(2)∵AE ⊥BD ,DH ⊥BC ,∴∠BHD =∠AED =90°.∵∠ADB =∠DBC ,∴∠DAE =∠BDH .在Rt △CDH 中,DH =CD 2-CH 2=52-42=3.在Rt △BDH 中,BH =BC -CH =13-4=9.∴tan ∠BDH =BH DH =93=3. ∴tan ∠DAE =tan ∠BDH =3.24.(本题12分)如图,在菱形ABCD 中,AB =10,sin A =45,点E 在AB 上,AE =4,过点E 作EF ∥AD ,交CD 于点F .(第24题图)(1)菱形ABCD 的面积为__80__.(2)若点P 从点A 出发以1个单位长度/秒的速度沿着线段AB 向终点B 运动,同时点Q 从点E 出发也以1个单位长度/秒的速度沿着线段EF 向终点F 运动,设运动时间为t (s).①当t =5时,求PQ 的长;②以点P 为圆心,PQ 长为半径的⊙P 是否能与直线AD 相切?如果能,求此时t 的值;如果不能,说明理由. 解:(1)过点B 作BN ⊥AD 于点N ,如解图①.∴BN =AB ·sin A =10×45=8, ∴S 菱形ABCD =AD ·BN =10×8=80.(第24题图解)(2)①过点P 作PM ⊥EF 于M ,如解图②.由题意可知AE =4,AP =EQ =5,EP =AP -AE =1.∵EF ∥AD ,∴∠BEF =∠A ,∴sin ∠BEF =PM EP =sin A =45,解得PM =45. 在Rt △PME 中,EM =EP 2-PM 2=12-⎝ ⎛⎭⎪⎫452=35, 则有MQ =5-35=225. 在Rt △PQM 中,PQ =PM 2+MQ 2=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫2252=25, 即PQ 的长为2 5.②能.过点P 作PH ⊥AD 于H ,交EF 于G 点,如解图③,(第24题图解)则PH =45t ,PE =t -4,PG =45(t -4),EG =35(t -4), ∴GQ =EQ -EG =t -35(t -4)=25t +125, ∴PQ 2=PG 2+GQ 2=⎝ ⎛⎭⎪⎫45t -1652+⎝ ⎛⎭⎪⎫25t +1252. 若以点P 为圆心,PQ 长为半径的⊙P 与直线AD 相切,则PH =PQ ,则有⎝ ⎛⎭⎪⎫45t 2=⎝ ⎛⎭⎪⎫45t -1652+⎝ ⎛⎭⎪⎫25t +1252, 整理,得t 2-20t +100=0,解得t 1=t 2=10.此时t 的值为10.。
152 3 3 ⎩2019 年九年级数学中考复习卷(2)参考答案及评分建议一、选择题(每小题 3 分,共 30 分)题号 1 2 3 4 5 6 7 8 9 10 答案BDCAABDBBB二、填空题(每小题 3 分, 共 24 分) 11.(2,-3) 12.x ≥2 且 x ≠413. 9 2514.70°或 20°15. 3 + 16. 0,4 - 4,4 < x < 4三、解答题(本题有 8 个小题,第 17-19 每题 6 分,第 20,21 题每题 8 分,第 22,23 题10 分,第 24 题 12 分,共 66 分).17.解: 2sin 60︒+∣3 -√3∣+ (π - 2)0 -(12)−1= 2 ⨯==23 + 3 - + 1 - 22+ 3 - + 1 - 2⎧⎪3 - x > 1 (1) 18.解: ⎪⎨2x - 4 ≥ -8 (2) 由不等式(1)解得:x <2;由不等式(2)解得:x ≥-2, 则不等式组的解集为-2≤x <2,表示在数轴上,如图所示:19.解:(1)抽取的学生数:16÷40%=40(人);抽取的学生中合格的人数:40-12-16-2=10, 合格人数所占百分比:10÷40=25%,23优秀人数所占百分比:12÷40=30%,如图所示:(2)成绩未达到良好的男生所占比例为:25%+5%=30%,所以600 名九年级男生中成绩未达到良好的约有600×30%=180(名);(3)如图:,可得一共有9 种可能,甲、乙两人恰好分在同一组的有 3 种,所以甲、乙两人恰好分在同一组的概率P= 39=1.320.(1)m=2,k=4;(2)线段AB 的长为3.21.解:(1)如图,作CH⊥AB 于H.在Rt△ACH 中,∵∠ACH=45°,CH=5 米,∴AH=HC=5(米),在Rt△BCH 中,∵∠BCH=30°,CH=5 米,∴BH=CH·tan30°≈2.89(米),∴AB=AH+BH=5+2.89≈7.9(米).(2)国旗上升的速度=7.9 - 2≈ 0.13 (米/秒).4522.解:(1)证明:如图,连结OD,BD,∵AB 是半圆O 的切线,∴AB⊥BC,即∠ABO=90°,∵AB=AD,∴∠ABD=∠ADB,∵OB=OD,∴∠DBO=∠BDO,∴∠ABD+∠DBO=∠ADB+∠BDO,∴∠ADO=∠ABO=90°,∵OD 为半径∴AD 是半圆O 的切线; 3 分(2)证明:由(1)知,∠ADO=∠ABO=90°,∴∠A=360°-∠ADO-∠ABO-∠BOD=180°-∠BOD=∠DOC,∵AD 是半圆O 的切线,∴∠ODE=90°,∴∠ODC+∠CDE=90°,∵BC 是半圆O 的直径,∴∠ODC+∠BDO=90°,∴∠BDO=∠CDE,∵∠BDO=∠OBD,∴∠DOC=2∠BDO,∴∠DOC=2∠CDE,∴∠A=2∠CDE; 6 分(3)∵∠CDE=27°,由(2)可知:∠DOC=2∠CDE∴∠DOC=2∠CDE=54°,∴∠BOD=180°-54°=126°,∵OB=2,∴B D=126⨯π⨯2=7π.10 分180 523.(1)CF⊥BD(提示:证△DAB≌△FAC)(2)示意图如图所示,此时(1)中结论仍然成立(提示过点A 作AG⊥AC 交BD 于点G,证△DAG≌△FAC)(3)①点D 在线段BC 上运动时,过点A 作AQ⊥BC 交CB 的延长线于点Q,如图(3)①∵∠BCA=45°,可求出AQ=CQ=4.∴DQ=4-2=2,△AQD∽△DCP,∴ CP=CD,∴CP=2,DQ AQ 2 4∴CP=1.24.②点D 在线段BC 延长线上运动时,如图(3)②过点A 作AQ⊥BC 交CB 的延长线于点Q,设AD、PF 相交于点C′∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+2=6.∵∠Q=∠FAD=90°,∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,∴∠ADQ=∠AFC′,又∵∠P=∠AFC′,∴∠P=∠ADQ,又∵CF⊥BD,∴∠Q=∠DCP,∴△AQD∽△DCP,∴CP=CD,DQ AQ∴CP=2,6 4∴CP=3.解:(1)∵点B 在x 轴上,点C 在y 轴上,直线y=x-5 经过点B,C,∴B(5,0),C(0,-5),2 22 ∵点 B ,C 在抛物线 y =ax 2+6x +c 的图象上,∴将 B ,C 两点的坐标分别代入可解得 a =-1,c =-5, ∴ 抛 物 线 的 解 析 式 为 y =-x 2+6x -5 (2)①解方程-x 2+6x -5=0,得 x 1=1,x 2=5,则 A (1,0), ∵B (5,0),C (0,-5),∴△OCB 为等腰直角三角形,∴∠OBC =∠OCB =45°, ∵AM ⊥BC ,∴△AMB 为等腰直角三角形,∴AM = 2 AB = 2×4= 2 ,2 2∵以点 A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ ,∴PQ =AM = 2 ,PQ ⊥BC ,作 PD ⊥x 轴交直线 BC 于 D ,如图 1,则∠PDQ =45°,∴PD = PQ = × 2 =4,设 P (m ,-m 2+6m -5),则 D (m ,m -5), 当 P 点在直线 BC 上方时,PD =-m 2+6m -5-(m -5)=-m 2+5m =4,解得 m 1=1(舍去),m 2=4, 当 P 点在直线 BC 下方时,PD =m -5-(-m 2+6m -5)=m 2-5m =4,解得 m 3= 5 + 41 ,m 4= 5 - 41,2 2综上所述,P 点的横坐标为 4 或5+√41 2或5−√412;②过点 A 作 AN ⊥BC 于 N ,NH ⊥x 轴于 H ,作 AC 的垂直平分线交 BC 于 M 1,交 AC 于 E ,交 y 轴于点 F ,连结 AF ,如图 2,2 2∵M 1A =M 1C ,∴∠ACM 1=∠CAM 1, ∴∠AM 1B =2∠ACB ,∵△ANB 为等腰直角三角形, ∴AH =BH =NH =2, ∴N (3,-2),易得 AC 的解析式为 y =5x -5,E 点坐标为(12 ,- 52),∵AF=FC ,在 Rt △AFO 中,可解出 F 点的坐标(0,- 125)设直线 EM 1 的解析式为 y =ax - 12,5把 E (1 ,- 5 )代入得 1 a -12 = -5 ,解得 a = -1 ,2 2 2 5 2 5∴直线 EM 1 的解析式为 y = - 1 x -12,55解方程组 y = x - 5y=- 15x −125 ,则M 1(136,−176)得 x=136y=-176在直线 BC 上作点 M 1 关于 N 点的对称点 M 2,如图 2,则∠AM 2C =∠AM 1B =2∠ACB , 设 M 2(x ,x -5),∵3=136+x 2, ∴x =236,∴M 2(236, - 76),综上所述,点 M 的坐标为(136, y = -176 )或( 236 , - 76).。
北京市西城区2019届初三数学中考复习 角的平分线的性质 专题复习检测题1.作∠AOB 的平分线时,以点O 为圆心,某一长度为半径作弧,与OA ,OB 分别相交于点C ,D ,然后分别以点C ,D 为圆心,适当的长度为半径作弧,使两弧相交于一点,则这个适当的长度应( ) A .大于12CD B .等于12CD C .小于12CD D .以上答案都不对2. 用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是( )A .SSSB .ASAC .AASD .角平分线上的点到角两边距离相等3. 如图,OP 平分∠MON,PA ⊥ON 于点A ,点Q 是射线OM 上一个动点,若PA =3,则PQ 的最小值为( )A. 3 B .2 C .3 D .2 34. 如图,AD 是△ABC 中∠BAC 的角平分线,DE⊥AB 于点E ,DE =2,AC =3,则△ADC 的面积是( )A .3B .4C .5D .65. 如图,OP 平分∠AOB ,PC⊥OA,PD⊥OB,垂足分别是C ,D ,下列结论中错误的是( )A .PC =PDB .OC =OD C .∠CPO=∠DPO D .OC =PC6. 如图,在△ABC 中,∠B,∠C 的平分线交于点O ,OD⊥AB 于点D ,OE⊥AC 于点E ,则OD 与OE 的大小关系是( )A .OD>OEB .OD =OEC .OD<OED .不能确定7. 如图,在△ABC 中,∠C=90°,AC =BC ,AD 平分∠CAB 交BC 于点D ,DE⊥AB 于点E ,且AB =6 cm ,则△DEB 的周长为( )A.4 cm B.6 cm C.8 cm D.10 cm8. 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P且与AB垂直.若AD=8,则点P到BC的距离是( )A.8 B.6 C.4 D.29. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为 .10. 命题“全等三角形对应边上的高线相等”的已知是,结论是.11. 如图,在△ABC中,AD是∠BAC的角平分线,AB=6 cm,AC=8 cm,则S△ABD∶S△ACD=,BD∶CD= .12. 如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,S△ABC=7,DE=2,AB=4,则AC的长是 .13. 如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:∠B=∠C.14. 证明:全等三角形对应边上的中线相等.15. 如图,已知OD平分∠AOB,P是OD上一点,在OA,OB边上取OA=OB,PM⊥BD,PN⊥AD,垂足分别为M,N.求证:PM=PN.16. 如图,在四边形ABCD 中,AC 平分∠BAD,过点C 作CE⊥AB 于点E ,且CD =CB ,∠ABC +∠ADC =180°.求证:AE =12(AB +AD).答案:1---8 AACAD BBC 9. 310. 两个三角形是全等三角形 它们对应边上的高相等 11. 3∶4 3∶4 12. 313. 证明:∵AD 平分∠BAC ,DE⊥AB,DF⊥AC, ∴DE=DF ,∠BED=∠CFD =90°,∵D 是BC 的中点,∴BD=CD ,在Rt △BDE 和Rt △CDF 中, ∵DE=DF ,DB =DC ,∴Rt △BDE ≌Rt △CDF(HL),∴∠B=∠C 14. 证明:△ABC≌△A′B′C′,∴AB=A′B′, ∠B=∠B′,BC =B′C′.又∵AD ,A′D′分别是BC ,B′C′边上的中线,∴BD=B′D′.∴△ABD≌△A′B′D′,∴AD=A′D′ 15. 证明:∵OD 平分∠AOB ,∴∠1=∠2, 又∵OA =OB ,OD =OD ,∴△AOD≌△BOD, ∴∠3=∠4,又∵PM⊥DB,PN⊥DA,∴PM=PN16. 证明:过点C 作CF⊥AD,交AD 延长线于点F ,易证△CEB≌△CFD,△AEC ≌△AFC ,∴DF =BE ,AF =AE ,又DF =AF -AD =AE -AD ,BE =AB -AE ,∴AB -AE =AE -AD ,即AE =12(AB +AD)2019-2020学年数学中考模拟试卷一、选择题1.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( ) A .11B .13C .11或13D .不能确定2.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是( ) A .众数是2.3 B .平均数是2.4 C .中位数是2.5 D .方差是0.013.如图,在O 中,AB 是直径,CD 是弦,AB CD ⊥,垂足为点E ,连接CO ,AD ,若30BOC ∠=︒,则BAD ∠的度数是( )A .30°B .25︒C .20︒D .15︒4.若点A (a ,b ),B (1a,c )都在反比例函数y =1x 的图象上,且﹣1<c <0,则一次函数y =(b ﹣c )x+ac 的大致图象是( )A .B .C .D .5.如图,在△ABC 中,CA=CB ,∠C=90°,点D 是BC 的中点,将△ABC 沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E ,交AC 于点F ,那么sin ∠BED 的值为( ).A .35B .53C .512D .126.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .棱锥D .球7.把抛物线y=(x-2)2向左平移2个单位长度,再向上平移2个单位长度,所得到的抛物线是( ). A .y=x 2+2B .y=x 2-2C .y=(x+2)2-2D .y=(x+2)2+28.已知点(-2,1y ),(1,0),(3,2y )都在二次函数2y x bx 3=+-的图象上,则1y ,0,2y 的大小关系是( ) A .120y y <<B .21y 0y <<C .12y y 0<<D .12y 0y <<9.半径为r 的圆的内接正六边形边长为( )A .1r 2B C .r D .2r10.如图,在边长为2的等边三角形ABC 中,以B 为圆心,AB 为半径作AC ,在扇形BAC 内作⊙O 与AB 、BC 、AC 都相切,则⊙O 的周长等于( )A .49πB .23π C .43π D .π11.在平面直角坐标系中,将A(﹣1,5)绕原点逆时针旋转90°得到A′,则点A′的坐标是( ) A .(﹣1,5)B .(5,﹣1)C .(﹣1,﹣5)D .(﹣5,﹣1)12.某校九年级3月份中考模拟总分760分以上有300人,同学们在老师们的高效复习指导下,复习效果显著,在4月份中考模拟总分760分以上人数比3月份增长5%,且5,6月份的760分以上的人数按相同的百分率x 继续上升,则6月份该校760分以上的学生人数( ). A .()()30015%12x ++人 B .()()230015%1x ++人 C .()()3005%3002++人 D .()30015%2x ++人二、填空题13.十九大报告指出:十八大以来,我国就业状况持续改善,城镇新增就业年均一千三百万人以上,一千三百万人用科学计数法表示为__________人.14.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.15.已知|a ﹣=a ,则a ﹣20072的值是_____.16.直线22y x =+沿y 轴向下移动6个单位长度后,与x 轴的交点坐标为_______ 17.如图,在四边形ABCD 中,∠B =∠D =90°,AB =3, BC =2,tanA =43,则CD =_____.18.如图,直线l 1与l 2相交于点O ,OM ⊥l 1,若α=52°,则β的度数是_____度.三、解答题19.如图是一张锐角三角形纸片,AD 是BC 边上的高,BC=40cm ,AD=30cm ,现从硬纸片上剪下一个长是宽2倍的周长最大的矩形,则所剪得的矩形周长为_____________cm .20.先化简,再求值:211211a a a a ⎛⎫÷- ⎪+++⎝⎭,其中1a =.21.某校举行了一次古诗词朗读竞赛,满分为10分,学生得分均为整数,成绩达到6分及6分以上为合格.达到9分或10分为优秀.这次竞赛中,甲、乙两组学生成绩统计分析表和成绩分布的折线统计图如图所示.(1)求出成绩统计分析表中a的值.(2)小英说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察成绩统计分析表判断,小英是甲、乙哪个组的学生.(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.试写出两条支持乙组同学观点的理由.(4)从这次参加学校古诗词朗诵竞赛的甲、乙两组成绩优秀的学生中,随机抽取两名学生参加全市古诗词朗诵竞赛,恰好是乙组学生的概率是多少?(画树状图或列表求解)22.抛物线L:y=a(x﹣x1)(x﹣x2)(常数a≠0)与x轴交于点A(x1,0),B(x2,0),与y轴交于点C,且x1•x2<0,AB=4,当直线l:y=﹣3x+t+2(常数t>0)同时经过点A,C时,t=1.(1)点C的坐标是;(2)求点A,B的坐标及L的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L的大致图象;(4)将L向右平移t个单位长度,平移后y随x的增大而增大部分的图象记为G,若直线l与G有公共点,直接写出t的取值范围.23.为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55∼70;第二组70∼85;第三组85∼100;第四组100∼115;第五组115∼130,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了__ _名学生;(2)补全频数分布直方图;(3)将得分转化为等级,规定:得分低于70分评为“D”,70∼100分评为“C”,100∼11评为“B”,115∼130分评为“A”,根据目前的统计,请你估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有多少名?24.在如图菱形ABCD中,对角线AC、BD相交于O,E、F分别是AB、BC的中点.求证:OE=OF.25.问题发现:如图1,△ABC是等边三角形,点D是边AD上的一点,过点D作DE∥BC交AC于E,则线段BD与CE有何数量关系?拓展探究:如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明.问题解决:如果△ABC的边长等于,AD=2,直接写出当△ADE旋转到DE与AC所在的直线垂直时BD 的长.【参考答案】***一、选择题二、填空题 13.3×10714.90 15.2008 16.(2,0) 17.5618.38 三、解答题 19.72cm 【解析】 【分析】设所剪得的矩形的长为2xcm ,宽为xcm ,根据相似三角形的对应高的比等于相似比即可列方程求解. 【详解】解:设所剪得的矩形的长为2xcm ,宽为xcm ,由题意得2304030x x -=或3024030x x -= 解得x=12或12011x =则周长为()2412272cm +⨯=或2401207202cm 111111⎛⎫+⨯= ⎪⎝⎭因为7207211>所以所剪得的矩形周长为72cm. 故答案为:72cm 【点睛】相似三角形的应用相似三角形的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.20.11a +,2. 【解析】 【分析】原始第一项先化简括号里面的,再利用除法法则变形,约分后利用同分母分式得到最简结果,将a 的值代入即可 【详解】 解:21(1)211a a a a ÷-+++ =211(1)1a a a a +-÷++=21(1)a a a a ++=1+1a,当a=2.【点睛】此题考察分式的化简求值,关键在于约分21.(1)中位数a=6;(2)小英属于甲组学生;(3)①乙组的总体平均水平高;②乙组的成绩比甲组的成绩稳定;(4)随机抽取两名学生参加全市古诗词朗诵竞赛,恰好是乙组学生的概率为1 10.【解析】【分析】(1)由折线图中数据,根据中位数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可;(4)首先根据题意列表,然后求得所有等可能的结果与两名学生恰好是乙组的情况,再利用概率公式即可求得答案.【详解】(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生;(3)乙组学生成绩的平均分b=(5×2+6×1+7×2+8×3+9×2)÷10=7.2;①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定;(4)列表得:∵共有20种等可能的结果,两名学生恰好是乙组的有2种情况,∴随机抽取两名学生参加全市古诗词朗诵竞赛,恰好是乙组学生的概率=21= 2010.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 的结果数目m,然后利用概率公式计算事件A的概率.也考查了折线统计图以及中位数与方差的定义.22.(1) 点C的坐标是(0,3); (2)A(1,0),B(﹣3,0),L的顶点坐标为(﹣1,4);(3)见解析;(4)t≥1 2【解析】【分析】(1)把t=1代入y=﹣3x+t+2,令x=0,求得相应的y值,即可得到点C的坐标;(2)根据待定系数法,可得函数解析式;(3)根据描点法,可得函数图象;(3)根据平移规律,可得G的解析式,根据函数与不等式的关系,可得答案.【详解】(1)直线的解析式为y=﹣3x+3,当x=0时,y=3,即C点坐标为(0,3),故答案为:(0,3);(2)当y=0时,﹣3x+3=0,解得x1=1,即A(1,0),由点A(x1,0),B(x2,0),且x1•x2<0,AB=4,得1﹣x2=4,解得x2=﹣3,即B(﹣3,0);L:y=a(x﹣1)(x+3),将C(0,3)坐标代入L,得a=﹣1,∴L的解析式为y=﹣(x﹣1)(x+3),即y=﹣(x+1)2+4,∴L的顶点坐标为(﹣1,4);(3)函数图象如图所示:;(4)L向右平移t个单位的解析式为y=﹣(x+1﹣t)2+4,a=﹣1<0,当x t﹣1时,y随x的增大而增大.若直线l与G有公共点时,则有当x=﹣1+t时,G在直线l的上方,即﹣(t﹣1+1﹣t)2+4≥﹣3(t﹣1)+t+2,解得t≥12.【点睛】本题考查了二次函数综合题,解(1)的关键是利用自变量与函数值的对应关系;解(2)的关键是待定系数法;解(3)的关键是描点法,解(4)的关键是利用函数值的大小得出不等式,还利用了函数图象平移的规律.23.(1) 50;(2)见解析;(3) 1620.【解析】【分析】(1)根据第三组的数据,用人数除以百分数得出结论即可;(2)根据抽取的总人数减去前4组的人数,即可得到第五组的频数,并画图;(3)用样本中考试成绩评为“B”级及其以上的学生数占抽取的总人数的百分比,乘上全区该年级4500名考生数,即可得出结论.【详解】解:(1)20÷40%=50名,故答案为:50;(2)50-4-8-20-14=4,画图如下:(3)(4+14)÷50×4500=1620.答:估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有1620名.【点睛】本题主要考查了直方图和扇形图以及用样本估计总体的知识,根据直方图和扇形图中都有的数据求出抽取的学生总数是解决此题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.24.证明见解析【解析】【分析】根据菱形ABCD,可得AC⊥BD,所以可得△AOB、△BOC为直角三角形,再利用直角三角形斜边的中线等于斜边的一半即可证明OE=OF.【详解】解:∵AC⊥BD,∴△AOB、△BOC为直角三角形,∵E、F分别是AB、BC的中点,∴OE=12AB,OF=12BC,∵AB=BC,∴OE=OF.【点睛】本题主要考查菱形的性质,应当熟练掌握,这是重点知识.25.问题发现:BD=CE;拓展探究:结论仍然成立,见解析;问题解决:BD的长为2和【解析】【分析】问题发现:如图1,由平行线分线段成比例定理可得BD=CE;拓展探究:如图2,证明△BAD≌△CAE,可得BD=CE;问题解决:分两种情况:①如图3,在直角三角形中,根据30°角所对的直角边等于斜边的一半求出DG=1,由勾股定理求出AG BG,从而计算出BD的长.②如图4,求EF的长和CF的长,根据勾股定理在Rt△EFC中求EC的长,所以BD=EC=【详解】解: 问题发现:如图1,BD=CE,理由是∵△ABC是等边三角形,∴AB=AC,∵DE∥BC,∴BD=CE,拓展探究:结论仍然成立,如图2,由图1得,△ADE是等边三角形,∴AD=AE,由旋转得∠BAD=∠CAE,△BAD≌△CAE,(旋转的性质)∴BD=CE,问题解决:当△ADE旋转到DE与AC所在的直线垂直时,设垂足为点F,此时有两种情况:①如图3,∵△ADE是等边三角形,AF⊥DE,∴∠DAF=∠EAF=30°,∴∠BAD=30°,过D作DG⊥AB,垂足为G,∵AD=2,∴∵∴∴BD=2(勾股定理),②如图4,同理得△BAD≌△CAE, ∴BD=CE,∵△ADE是等边三角形, ∴∠ADE=60°,∵AD=AE,DE⊥AC,∴∠DAF=∠EAF=30°,∴EF=FD=12AD=1,∴∴,在Rt△EFC中===∴综上所述,BD的长为2和【点睛】本题是几何变换的综合题,考查了等边三角形、全等三角形的性质与判定;在几何证明中,如果出现等边三角形,它所得出的结论比较多,要准确把握需要利用哪些结论进行证明;此类题的解题思路为:证明两个三角形全等或利用勾股定理求边长;如果有平行的关系,可以考虑利用平行相似来证明.2019-2020学年数学中考模拟试卷一、选择题1.如图,直角三角板的直角顶点A 在直线上,则∠1与∠2( )A .一定相等B .一定互余C .一定互补D .始终相差10°2.如图,已知直线y =334x -,与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB ,则△PAB 面积的最小值是( )A.6B.5.5C.5D.4.5 3.如图,ABC ∆为O 的内接三角形,1tan 2ACB ∠=,且2AB =,则O 的半径为( )A B C .D .4.如图,在▱ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG =4,则△CEF 的周长为( )A.8B.9.5C.10D.11.55.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )A .(1+x )2=1110B .(1+x )2=109C .1+2x =1110D .1+2x =1096.某颗人造地球卫星绕地球运行的速度是7.9×103m/s,那么这颗卫星绕地球运行一年(一年以3.2×107 s计算)走过的路程约是()A.1.1×1010m B.7.9×1010m C.2.5×1010m D.2.5×1011m7.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个8.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④B.①③C.①②D.③④9.若一个直角三角形的两条直角边长分别为5和12,则其第三边长()A.13 B C.5 D.1510.在一次数学竞赛中,五位同学答对题目的个数分别为7,5,3,5,10,则这组数据的众数、中位数、方差分别是()A.5、3、4.6 B.5、5、5.6 C.5、3、5.6 D.5、5、6.611.如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD的垂直平分线交线段AB 于点C.若△OBC和△OAD的周长相等,则OD的长是( )A.2 B.C.2D.412.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5 C.6 D.254二、填空题13.函数6x y x =-中,自变量x 的取值范围是_______. 14.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为_____.15.如图所示,已知A 点从(1,0)点出发,以每秒1个单位长的速度沿着x 轴的正方向运动,经过t 秒后,以O 、A 为顶点作菱形OABC ,使B 、C 点都在第一象限内,且∠AOC =60°,又以P (0,4)为圆心,PC 为半径的圆恰好与OA 所在的直线相切,则t =_____.16在实数范围内有意义,则x 的取值范围是_________. 17.已知a ∥b ,某学生将一直角三角板放置如图所示,如果∠1=35°,则∠2的度数为_____.18.如果分式有意义,那么x 的取值范围是_____.三、解答题 19.解不等式组211,?331x x x ①②+-⎧⎨+-⎩…… 请结合题意填空,完成本题的解答。
2019届中考数学总复习《尺规作图》专项试题一、单选题1.用尺规作图,不能作出唯一直角三角形的是()A. 已知两条直角边B. 已知两个锐角C. 已知一直角边和直角边所对的一锐角D. 已知斜边和一直角边2.根据已知条件作符合条件的三角形,在作图过程中,主要依据是()A. 用尺规作一条线段等于已知线段B. 用尺规作一个角等于已知角C. 用尺规作一条线段等于已知线段和作一个角等于已知角D. 不能确定3.用尺规作图,下列条件中可能作出两个不同的三角形的是()A. 已知三边B. 已知两角及夹边C. 已知两边及夹角D. 已知两边及其中一边的对角4.尺规作图是指()A. 用直尺规范作图B. 用刻度尺和圆规作图C. 用没有刻度的直尺和圆规作图D. 直尺和圆规是作图工具5.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧6. 如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A. 以点B为圆心,OD为半径的圆B. 以点B为圆心,DC为半径的圆C. 以点E为圆心,OD为半径的圆D. 以点E为圆心,DC为半径的圆7.如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. ASAD. AAS8.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的根据是()A. SASB. ASAC. AASD. SSS9.下列作图语句中,不准确的是()A. 过点A、B作直线ABB. 以O为圆心作弧C. 在射线AM上截取AB=aD. 延长线段AB到D ,使DB=AB10.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧11.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.点P关于x轴的对称点P′的坐标为(a,b),则a与b的数量关系为()A. a+b=0B. a+b>0C. a﹣b=0D. a﹣b>012.如图所示的作图痕迹作的是()A. 线段的垂直平分线B. 过一点作已知直线的垂线C. 一个角的平分线D. 作一个角等于已知角13.下列作图语句正确的是()A. 作射线AB,使AB=aB. 作∠AOB=∠aC. 延长直线AB到点C,使AC=BCD. 以点O为圆心作弧14.某探究性学习小组仅利用一副三角板不能完成的操作是()A. 作已知直线的平行线B. 作已知角的平分线C. 测量钢球的直径D. 作已知三角形的中位线15.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(m,n﹣3),则m与n的数量关系为()A. m﹣n=﹣3B. m+n=﹣3C. m﹣n=3D. m+n=316.小明用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K,使K和B在AC的两侧;所以,BH就是所求作的高.其中顺序正确的作图步骤是()A. ①②③④B. ④③②①C. ②④③①D. ④③①②17.已知∠AOB ,求作射线OC ,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD ,OE ,使OD=OE;③分别以D ,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C .A. ①②③B. ②①③C. ②③①D. ③②①二、填空题18.画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD=________AB.19.已知,∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .作法:①以________为圆心,________为半径画弧.分别交OA ,OB于点C ,D .②画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,③以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.④过点________画射线O′B′,则∠A′O′B′=∠AOB .20.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB的度数为________ .21.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.小明的作法:(i)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)(ii)在射线BM上取一点D,使得BD=BA;(iii)连结AD,交BC于点E.线段AE即为所求.小明的作法所蕴含的数学道理为________.22.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________ ;由此可证明直线PA,PB都是⊙O的切线,其依据是________三、解答题23.如图所示,作△ABC关于直线l的对称.24.在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE//BC,交AC于E;(3)说明∠EDC=∠GFB的理由.25.如图,△ABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)四、综合题26.看图、回答问题(1)已知线段m和n,请用直尺和圆规作出等腰△ABC,使得AB=AC,BC=m,∠A的平分线等于n.(只保留作图痕迹,不写作法)(2)若①中m=12,n=8;请求出腰AB边上的高.27.如图,平面内有A、B、C、D四点,按照下列要求画图:(1)顺次连接A、B、C、D四点,画出四边形ABCD;(2)连接AC、BD相交于点O;(3)分别延长线段AD、BC相交于点P;(4)以点C为一个端点的线段有________条;(5)在线段BC上截取线段BM=AD+CD,保留作图痕迹.28.已知不在同一条直线上的三点P,M,N(1)画射线NP;再画直线MP;(2)连接MN并延长MN至点R,使NR=MN;(保留作图痕迹,不写作图过程)(3)若∠PNR比∠PNM大100°,求∠PNR的度数.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】D9.【答案】B10.【答案】D11.【答案】C12.【答案】B13.【答案】B14.【答案】C15.【答案】D16.【答案】D17.【答案】C二、填空题18.【答案】619.【答案】O;任意长;O′;OC;C ;CD;D′20.【答案】30°21.【答案】等边对等角;两直线平行,内错角相等22.【答案】直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线三、解答题23.【答案】解答:解:如图所示:24.【答案】(1)(2)(3)解:因为DE//BC,所以∠EDC=∠BCD,因为FG⊥AB,CD⊥AB,所以CD//FG,所以∠BCD=∠GFB,所以∠EDC=∠GFB。
第三节一次函数的实际应用
1.(2018哈尔滨中考)明君社区有一块空地需要绿化,某绿化组承担了这项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( B)
A.300 m2B.150 m2C.330 m2D.450 m2
(第1题图)
(第2题图)
2.(2018鄂州中考)如图,O是边长为4 cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A-B-M方向匀速运动,到M点时停止运动,速度为1 cm/s.设P点的运动时间为t(s),点P 的运动路径与OA,OP所围成的图形的面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是( A)
,A) ,B)
,C) ,D)
3.(2018遵义一中一模)张师傅驾车从甲地到乙地,两地相距500 km,汽车出发前油箱有油25 L,途中加油若干升,加油前、后汽车都以100 km/h的速度匀速行驶,已知油箱中剩余油量y(L)与行驶时间t(h)之间的关系如图所示.以下说法错误的是( C)
A.加油前油箱中剩余油量y(L)与行驶时间t(h)的函数关系是y =-8t+25
B.途中加油21 L
C.汽车加油后还可行驶4 h
D.汽车到达乙地时油箱中还余油6 L
4.(2018贵阳白云七中中考模拟)某市按以下标准收取水费:用量不超过20吨,按每吨1.2元收费,超过20吨则超过部分按每吨1.5元收费.某家庭五月份的水费是平均每吨1.25元,那么这个家庭五月份应交水费( C)
A.20元B.24元C.30元D.36元
5.(2018黑龙江中考)甲、乙两车从A 城出发前往B 城,在整个行程中,两车离开A 城的距离y 与t 的对应关系如图所示:
(1)A 、B 两城之间的距离是多少千米?
(2)求乙车出发多长时间追上甲车?
(3)直接写出甲车出发多长时间,两车相距20 km .
解:(1)A 、B 两城之间距离为300 km ;(2)设y 甲=k 1t +b 1,y 乙
=k 2t +b 2,将(5,0)(10,300)代入y 甲,得⎩⎪⎨⎪⎧5k 1+b 1=0,10k 1+b 1=300,
解得⎩⎪⎨⎪⎧k 1=60,b 1=-300,则y 甲=60t -300;将(6,0)(9,300)代入y 乙,得⎩⎪⎨⎪⎧6k 2+b 2=0,9k 2+b 2=300,解得⎩⎪⎨⎪⎧k 2=100,b 2
=-600,则y 乙=100t -600,令y 甲=y 乙,即60t -300=100t -600,解得t =7.5,7.5-6=1.5,故乙车出发
1.5 h 后追上甲车;(3)甲出发13 h ,2 h ,3 h 和143
h 后,两车相距20 km .
6.(2018深圳中考)荔枝是深圳特色水果,小明的妈妈先购买了2 kg 桂味和3 kg 糯米糍,共花费90元;后又购买了1 kg 桂味和2 kg 糯米糍,共花费55元.(每次两种荔枝的售价都不变)
(1)求桂味和糯米糍的售价分别是每千克多少元; (2)如果还需购买两种荔枝共12 kg ,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.
解:(1)设桂味的售价为x 元/kg ,糯米糍的售价为y 元/kg ,根
据题意得⎩⎪⎨⎪⎧2x +3y =90,x +2y =55,解得⎩⎪⎨⎪⎧x =15,y =20.
答:桂味的售价为15元/kg ,糯米糍的售价为20元/kg ;(2)设购买桂味t kg ,总费用为W 元,则购买糯米糍(12-t)kg ,根据题意得:12-t≥2t,∴t ≤4,∵W =15t +20(12-t)=-5t +240,k =-5<0,∴W 随t 的增大而减小,∴当t =4时,W 的最小值=220.此时12-4=8.答:购买桂味4 kg ,糯米糍8 kg 时,所需总费用最低.
7.(2018汇川区升学模拟)遵义市赤水风景名胜区是国务院唯一以行政区名称命名的国家级风景名胜区,其中某景区的三个景点A 、
B 、
C 在同一线路上,甲、乙两名游客从景点A 出发,甲步行到景点C ,乙乘景区观光车先到景点B ,在B 处停留一段时间后,再步行到景点
C.甲、乙两人离开景点A 后的路程s(m )关于时间t(min )的函数图象如图所示.根据以上信息回答下列问题:
(1)乙出发后多长时间与甲第一次相遇?
(2)要使甲到达景点C 时,乙与C 的路程不超过400 m ,则乙从景点B 步行到景点C 的速度至少为多少?(结果精确到0.1 m /min )
解:(1)设s 甲=kt ,将(90,5 400)代入得:5 400=90k ,解得
k =60,∴s 甲=60t ;当0≤t≤30,设s 乙=at +b ,将(20,0),(30,
3 000)代入得出:⎩⎪⎨⎪⎧20a +b =0,30a +b =3 000,解得⎩⎪⎨⎪⎧a =300,b =-6 000,
∴当20≤t≤30,s 乙=300t -6 000.当s 甲=s 乙,∴60t =300t -6 000,
解得t =25,∴乙出发后5 min 与甲第一次相遇;(2)由题意可得出:当甲到达C 地,乙距离C 地400 m 时,乙需要步行的距离为:5 400-3 000-400=2 000(m ),乙所用的时间为:90-60=30(min ),故
乙从景点B 步行到景点C 的速度至少为:2 00030
≈66.7(m /min ).答:乙从景点B 步行到景点C 的速度至少为66.7 m /min .
8.(2018大庆中考)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y 1(万立方米)与干旱持续时间
x(天)的关系如图中线段l 1所示,针对这种干旱情况,从第20天开始
向水库注水,注水量y 2(万立方米)与时间x(天)的关系如图中线段l 2所示.(不考虑其他因素)
(1)求原有蓄水量y 1(万立方米)与时间x(天)的函数关系式,并
求当x =20时的水库总蓄水量;
(2)求当0≤x≤60时,水库的总蓄水量y(万立方米)与时间x(天)的函数关系式(注明x 的取值范围),若总蓄水量不多于900万立方米
为严重干旱,直接写出发生严重干旱时x的范围.
解:(1)y1=-20x+1 200,当x=20时,y1=-20×20+1 200=800;(2)y2=25x-500,当0≤x≤20时,y=-20x+1 200,当20<x≤60时,y=y1+y2=-20x+1 200+25x-500=5x+700,y≤900,则5x+700≤900,x≤40,当y1=900时,900=-20x+1 200,x=15,∴发生严重干旱时x的范围为:15≤x≤40.
9.(2018荆州中考)A城有某种农机30台,B城有农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台.从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.
(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;
(2)现该运输公司要求运送全部农机的总费用不低于16 460元,则有多少种不同的调运方案?将这些方案设计出来;
(3)现该运输公司对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其他费用不变.如何调运,使总费用最少?
解:(1)W=250x+200(30-x)+150(34-x)+240(6+x)=140x +12 540(0<x≤30);(2)根据题意得140x+12 540≥16 460,∴x≥
28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从B城调往C城6台,调往D城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从B城调往C城5台,调往D城35台;第三种调运方案:从A 城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台;(3)W=(250-a)x+200(30-x)+150(34-x)+240(6+x)=(140-a)x+12 540,∴当a=200时,y最小=-60x+12 540,此时x =30时,y最小=10 740元.此时的方案为:从A城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台.。