第十九章脱氮除磷与城市污水深度处理
- 格式:ppt
- 大小:1.83 MB
- 文档页数:15
深度除磷脱氮污水处理工艺摘要:随着社会经济的加速发展,人们日常生活中所知道的环境污染也在日益加剧。
党中央在报告会上明确地指出来金山银山不如青山绿水的口号。
各级政府部门逐渐意识到处理污水对于加强城市环境建设以及加快建设社会主义现代化进城的重要性。
其中,城市污水作为城市环境建设中最为关键也是最难处理的因素之一,正在引起社会多方面的关注。
因此,我们在本篇文章中主要对于当前深度处理污水中氮、磷两种化学成分的工艺研究和阐述,希望能够对于城市污水处理提供一些建设性的意见。
关键词:深度;除磷脱氮;污水处理工艺前言:随着城市化进城的不断推进,对于城市污水处理的要求也在随之发生变化。
污水之前处理过程中只要求出去基本的一些污染物,但是现在污水处理的标准正在不断地升高,现在的污水处理过程中还要将其中的氮磷一并出去,来保证生态环境安全。
城市污水中氮磷的数量只有在经过污水处理操作之后达到一定的标准之后才可以排放,极为地严苛。
在当前的城市污水处理过程中主要考虑两个方敏的问题,第一个是关于污水处理后内含氮磷元素的多少,第二是考虑到污水处理操作的经济效益,一般情况下,污水处理工厂都会选择又经济又实惠的污水处理方法。
一、为什么要除去污水中的氮磷物质城市中的污水主要有两个来源,一个是居民日常生活污水的排放。
另一个主要来源就是工业工厂生产过后所造成的污水排放。
这两种来源的污水中都含有大量的氮、磷两种物质。
之所以城市污水处理操作要出去氮磷,主要是因为氮、磷两种元素若未经处理后排放会造成以下几种危害。
氮磷的主要危害之一就是随着污水进入到广大的江河湖泊,打破原有生态环境中微量元素的平衡,造成水体的富营养化,水体内的鱼类,虾类以及其他生物因为缺氧而死亡,进一步造成了水质的污染。
氮磷物质未经处理后污水进行排放的第二个巨大的害处就是会污染水源和水质。
污水排放的时间和地点不对都会造成对于干净水源或者是水质的严重影响。
这又会进一步地增加水质处理的时间和成本。
全面解析城市污水的深度处理——氮磷的去除随着城市人口的集中和工农业的发展,水体的富营养化问题日益突出。
目前中国的某些湖泊,如昆明滇池,江苏太湖,安徽巢湖等都已出现不同程度的富营养化现象。
引起富营养化的营养元素有碳、磷、氮、钾、铁等,其中,氮和磷是引起藻类大量繁殖的主要因素。
欲控制富营养化,必须限制氮、磷的排放。
国外一些污水处理厂把氮、磷的排放标准分别设定为15mg/L和0.5mg/L。
1氮的去除废水中的氮以有机氮、氨氮、亚硝酸氮和硝酸氮四种形式存在。
在生活污水中,主要含有有机氮和氨态氮,它们均来源于人们食物中的蛋白质。
新鲜生活污水含氮中有机氮约占总氮的60%,氨氮约占40%。
当污水中的有机物被生物降解氧化时,其中的有机氮被转化为氨氮。
经活性污泥法处理的污水有相当数量的氨氮排入水体,可导致水体富营养化。
水体若为水源,将增加给水处理的难度和成本。
因此二级处理的出水有时需进行脱氮处理。
脱氮的方法有化学法和生物法两大类,现分别加以论述。
1化学法除氮常用于去除氨氮的方法有吹脱法、折点加氯法和离子交换法。
它们主要用于工厂内部的治理,对于城市污水处理厂很少采用。
(1)吹脱法废水的氨氮可以气态吹脱。
废水中,NH3与NH4+以如下的平衡状态共存:NH3+H2O=NH4++OH-这一平衡受pH值的影响,pH为10.5~11.5时,因废水中的氨呈饱和状态而逸出,所以吹脱法常需加石灰。
吹脱过程包括将废水的pH值提高至10.5~11.5,然后曝气,这一过程在吹脱塔中进行城市污水的深度处理---氮磷的去除)。
该过程受温度的影响较大,随温度的降低,为达到同样处理效果所需的空气量迅速增加,由于用石灰调pH值,在吹脱塔中会发生碳酸钙结垢现象,影响运行。
另外,NH3气的释放会造成空气污染。
因此,对该工艺已有多种改进,例如使吹脱塔的气体通过H2SO4溶液以吸收NH3。
(2)折点加氯法在净水工程中,称氯胺为化合余氮,次氯酸为余氯,均有杀菌作用。
・水污染防治・深度除磷脱氮污水处理工艺T he P rocess of D ep th Pho spho rus R emoval and D enitrificationin W astew ater T reatm ent黄主榕 莫赛贞 张碧存 (福州绿明环保工程有限公司,福州 350004)摘要 采用生物酶提取转化的技术、强化活性污泥培养驯化等措施,深度除磷脱氮处理污水出水水质清晰透明,达到良好的处理效果。
关键词:生物酶;提取转化;除磷脱氮Abstract A pp lying the counter m easures of the transfo r m ati on technique of using bi o logical enzym e extracti on and en2 hancing the active sludge culture dom esticati on to treating the w astew ater w ith the p rocess of dep th pho spho rus removal and denitrificati on,and then ach ieves the good treating effect.Key words:B iolog ical enzy m e;Extraction and tran sfor mation;Phosphorus re m oval and den itr if ication1 基本情况生化法传统污水处理工艺处理高浓度、成份复杂的各种类型有机污水,从理论分析是可行,实际运行过程是达不到排放标准。
为了提高处理效果,在常规的工艺基础上,从污水的性质和特点入手,通过技术创新,加强A段措施,探索适合我国国情的污水处理工艺过程及设备,提高除磷脱氮效果,达到水质净化的目的。
使用无污泥生物接触氧化工艺,以低溶解氧的运转模式处理各类污水,各工艺参数的选择;构筑物尺寸、设备规格型号、填料类型的确定等,理论计算与实际运作有较大差距。
污水处理中对氮和磷的深度去除技术研究随着城市化进程的加速,污水处理成为现代城市建设的重要组成部分。
而在污水中,氮和磷是主要的污染物,对水体生态环境和人类健康带来威胁,因此深度去除氮和磷成为污水处理的重要环节。
1. 氮和磷的生态作用与处理需求氮和磷是生命存在留下的基本元素,但它们过量的排放会在自然水环境中引发一系列问题。
氮污染会引起水体富营养化,促进藻类生长,使水质恶化;而磷污染则会增加水中有害氮素成分的含量,造成水中生命体吸收过多的磷,导致水质变质,水生生物群落作用过程发生不良变化。
由于氮和磷的生态风险,目前已有相关法律作为污染物的管理标准。
要求污水处理厂对氮和磷做到深度去除,确保处理后的污水达到指定的排放标准。
2. 常见的氮磷去除技术目前,氮和磷的去除技术主要包括生化法、化学法等。
生化法主要是指通过菌群的代谢过程去除氮和磷,包括厌氧处理、好氧处理、反硝化和硝化除磷等;而化学法则是先将污水处理成具有一定特性的水质,然后按照所需求去除氮和磷的特性进行针对性的处理,包括化学沉淀法、结晶法、离子交换法、高级氧化法等。
3. 新型去除技术的研究尽管传统的氮和磷去除技术已经相对成熟,但仍然存在着很多问题,例如投入成本较高、效益不稳定、反应速率较低等问题。
因此,研究新型的氮和磷去除技术,是当前污水处理工程需要面对的挑战。
3.1. 生物电化学技术生物电化学技术是一种新型的氮和磷去除技术,通过生物与电子的接口作用,加速污染物的降解。
这种技术的优势在于设备简单、工艺稳定、投入成本低,而且具有更加环保的特性。
目前,在生物电化学技术中,节能、高效的微生物贡献最大。
当微生物附着在电极表面时,它们能够利用媒质中的电子将化学反应加速。
3.2. 细菌自聚集(Bacterial Self-aggregation)细菌自聚集是一种高效的氮和磷去除技术。
在这个技术中,加入细菌自同种聚集,它们在整个处理生命周期内都能够维持其良好的营养状态。
污水深度处理的概念引言概述:污水深度处理是指对污水进行进一步处理,以去除其中的有机物、氮、磷等污染物,使其达到排放标准或可再利用的水质要求。
这种处理方式在环境保护和资源回收利用方面具有重要意义。
本文将从五个方面详细介绍污水深度处理的概念和相关内容。
一、污水深度处理的目的1.1 去除有机物:有机物是污水中的主要污染物之一,经过深度处理可以有效去除有机物,降低水体中的化学需氧量(COD)和生物需氧量(BOD)。
1.2 去除氮污染物:氮污染物主要来自污水中的氨氮、硝态氮和有机氮,通过深度处理可以将氮污染物转化为氮气释放到大气中,以减少对水体的污染。
1.3 去除磷污染物:磷是引起水体富营养化的主要元素之一,深度处理可以将污水中的磷转化为难溶性磷酸盐,从而减少对水体的磷污染。
二、污水深度处理的方法2.1 生物处理:生物处理是污水深度处理中常用的方法之一,通过利用微生物对污水中的有机物、氮、磷等进行降解和转化,达到净化水质的目的。
2.2 物理化学处理:物理化学处理包括沉淀、吸附、氧化等方法,通过这些方法可以去除污水中的悬浮物、溶解物和有机污染物,提高水质的净化效果。
2.3 膜分离技术:膜分离技术是一种高效的分离和浓缩方法,通过超滤、纳滤、反渗透等膜技术,可以有效去除污水中的微生物、胶体、颗粒物等,提高水质的净化程度。
三、污水深度处理的关键技术3.1 水解酸化技术:水解酸化是一种通过微生物将有机物分解为有机酸的过程,可以进一步提高有机物的降解效率,减少有机物的残留。
3.2 生物脱氮脱磷技术:通过合理控制反硝化、硝化和磷酸盐释放等过程,可以实现对氮、磷污染物的高效去除,减少对水体的污染。
3.3 膜污染控制技术:膜污染是膜分离技术中的一个重要问题,通过合理选择膜材料、优化操作条件等措施,可以有效控制膜污染,延长膜的使用寿命。
四、污水深度处理的应用领域4.1 市政污水处理:污水深度处理在城市污水处理厂中得到广泛应用,可以将污水处理后直接排放到自然水体中,或者用于灌溉、农业用水等领域。
污水深度处理与脱氮除磷污水深度处理与脱氮除磷污水处理是一项非常重要的环境保护工作,特别是在城市化进程加快的今天,城市生活污水的排放成为了一个不可忽视的问题。
为了保护水环境,我们需要对污水进行深度处理,并进行脱氮除磷等工艺,以减少对水体的污染。
污水深度处理的一种常见工艺是生物处理技术。
生物处理是利用生物体的代谢活动将有机物、氮、磷等污染物转化为稳定、无毒的物质的过程。
其中,脱氮除磷是生物处理的重要组成部分,主要是利用与污水中的氮、磷有亲和力的细菌来进行处理。
脱氮是指将污水中的氨氮转化为氮气,并释放到大气中。
常见的脱氮工艺有硝化反硝化法和膜生物反应器法。
硝化反硝化法主要是利用硝化细菌和反硝化细菌的代谢活动来完成。
首先,硝化细菌将污水中的氨氮氧化为亚硝酸盐,然后反硝化细菌将亚硝酸盐还原为氮气释放到大气中。
膜生物反应器法则是利用特殊的膜分离技术,将硝化细菌和反硝化细菌固定在膜上,使其能够同时进行硝化和反硝化反应,高效地实现脱氮处理。
除磷是指将污水中的磷转化为难溶的物质,以实现去除。
常用的除磷工艺有化学除磷法和生物除磷法。
化学除磷法主要是通过加入化学药剂,如聚合氯化铝、硫酸铝等,将污水中的磷转化为难溶的磷酸盐沉淀物,然后通过混凝沉淀和固液分离等工艺将其去除。
生物除磷法则是通过培养和利用具有生物磷去除能力的细菌,将污水中的磷转化为多聚磷酸盐等可沉淀物质,然后进行混凝沉淀和固液分离,最终完成除磷处理。
污水深度处理与脱氮除磷不仅可以减少对水环境的污染,还可以有效地保护水资源。
首先,通过深度处理,可以将污水中的有机物、氮、磷等污染物转化为无毒的物质,减少对水体生物的危害。
其次,脱氮除磷可以减少水体中养分的浓度,防止营养过剩导致的水体富营养化,维护水体的生态平衡。
此外,污水深度处理还可以回收利用污水中的水资源,减少对自然水源的依赖。
在进行污水深度处理与脱氮除磷过程中,我们还需要注意一些问题。
首先,需要控制处理过程的温度、pH值等,以提供最适宜的环境条件,促进细菌的正常生长和代谢。