大学物理第三版十六章
- 格式:ppt
- 大小:1.70 MB
- 文档页数:32
习题1616・1・如图所示,金属圆环半径为/?,位于磁感应强度为P的均匀磁场中,圆环平面与磁场方向垂直。
当圆环以恒定速度▽在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端〃间的电势差。
解:(1)由法拉第电磁感应定律考虑到圆环内的磁通量不变,所以,环中的感dtr u ——(2)利用:8ah= £ (vxB)-dl ,有:£ah = Bv・2R = 2BvR。
【注:相同电动势的两个电源并联,并联后等效电源电动势不变】16-2.如图所示,长直导线屮通有电流/ = 5.0/1,在与其相距d = 0.5cm 处放有一矩形线圈,共1000匝,设线圈长/ = 4.0cm ,宽a = 2.0cm。
不计线圈口感,若线圈以速度v = 3.0cm/s沿垂直于长导线的方向向右运动,线圈中的感生电动势多大?解法一:利用法拉第电磁感应定律解决。
首先用[fp•〃二工/求出电场分布,易得:则矩形线圈内的磁通量为:rh s = -N有:dxdt八=1.92x107 V。
2 兀(d + a)解法二:利用动生电动势公式解决。
由击j〃二“0工/求出电场分布,易得:“()/ 17tr考虑线圈框架的两个平行长直导线部分产生动生电动势,近端部分:®=NBJv,远端部分:E2=NB2I V,吗丄—丄”心2兀 ' d d + a 27ld(d 十= l・92xlOP。
16・3・如图所示,长直导线屮通有电流强度为/的电流,长为/的金属棒必与长直导线共面且垂直于导线放置,其。
端离导线为d,并以速度E平行于长直导线作匀速运动,求金属棒中的感应电动势£并比较4、5的电势大小。
解法一:利用动生电动势公式解决:d£ = (yxBydl如力,171 r"o" dr“0以[〃 + /------ ——= -------- In -----17C r 2兀 d由右手定则判定:u(l>u ho解法二:利用法拉第电磁感应定律解决。
第十六章 电磁场P177.16.1 一条铜棒长为L = 0.5m ,水平放置,可绕距离A 端为L /5处和棒垂直的轴OO'在水平面内旋转,每秒转动一周.铜棒置于竖直向上的匀强磁场中,如图所示,磁感应强度B = 1.0×10-4T .求铜棒两端A 、B 的电势差,何端电势高.[解答]设想一个半径为R 的金属棒绕一端做匀速圆周运动,角速度为ω,经过时间d t 后转过的角度为d θ = ωd t ,扫过的面积为d S = R 2d θ/2,切割的磁通量为d Φ = B d S = BR 2d θ/2,动生电动势的大小为ε = d Φ/d t = ωBR 2/2.根据右手螺旋法则,圆周上端点的电势高.AO 和BO 段的动生电动势大小分别为22()2550AO B LBL ωωε==, 22416()2550BOB LBL ωωε==. 由于BO > AO ,所以B 端的电势比A 端更高,A 和B 端的电势差为2310BO AOBL ωεεε=-=242332π 1.010(0.5)1010BL ω-⨯⨯⨯=== 4.71×10-4(V). [讨论]如果棒上两点到O 的距离分别为L 和l ,则两点间的电势差为222()(2)222B L l Bl B L Ll ωωωε++=-=.16.2 一长直载流导线电流强度为I ,铜棒AB 长为L ,A 端与直导线的距离为x A ,AB 与直导线的夹角为θ,以水平速度v 向右运动.求AB 棒的动生电动势为多少,何端电势高?[解答]在棒上长为l 处取一线元d l ,在垂直于速度方向上的长度为 d l ⊥ = d l cos θ;线元到直线之间的距离为r = x A + l sin θ,直线电流在线元处产生的磁感应强度为图16.1图16.2002π2π(sin )A IIB rx l μμθ==+.由于B ,v 和d l ⊥相互垂直,线元上动生电动势的大小为0cos d d d 2π(sin )A Iv lBv l x l μθεθ⊥==+,棒的动生电动势为00cos d 2πsin LAIv lx l μθεθ=+⎰00cos d(sin )2πsin sin LA A Iv x l x l μθθθθ+=+⎰ 0sin cot ln2πA AIvx L x μθθ+=,A 端的电势高.[讨论](1)当θ→π/2时,cot θ = cos θ/sin θ→0,所以ε→0,就是说:当棒不切割磁力线时,棒中不产生电动势.(2)当θ→0时,由于sin sin sin lnln(1)A A A Ax L L L x x x θθθ+=+→,所以02πAIvLx με→,这就是棒垂直割磁力线时所产生电动势.16.3 如图所示,平行导轨上放置一金属杆AB ,质量为m ,长为L .在导轨上的一端接有电阻R .匀强磁场B 垂直导轨平面向里.当AB 杆以初速度v 0向运动时,求:(1)AB 杆能够移动的距离;(2)在移动过程中电阻R 上放出的焦耳热为多少? [分析]当杆运动时会产生动生电动势,在电路中形成电流;这时杆又变成通电导体,所受的安培力与速度方向相反,所以杆将做减速运动.随着杆的速度变小,动生电动势也会变小,因而电流也会变小,所受的安培力也会变小,所以杆做加速度不断减小的减速运动,最后缓慢地停下来.[解答](1)方法一:速度法.设杆运动时间t 时的速度为v ,则动生电动势为ε = BLv ,电流为I = ε/R ,所受的安培力为F = -ILB = -εLB/R = -(BL )2v/R ,负号表示力的方向与速度方向相反.取速度的方向为正,根据牛顿第二定律F = ma 得速度的微分方程为BA图16.32()d d BL v v m R t-=,即: 2d ()d v B L t v m R=-积分得方程的通解为21()ln BL v t C mR=-+.根据初始条件,当t = 0时,v = v 0,可得常量C 1 = ln v 0.方程的特解为20()exp[]BL v v t mR=-.由于v = d x /d t ,可得位移的微分方程20()d exp[]d BL x v t t mR=-,方程的通解为20()exp[]d BL x v t t mR =-⎰2022()exp[]()mRv BL t C BL mR-=-+, 当t = 0时,x = 0,所以常量为022()mRv C BL =. 方程的特解为202(){1exp[]}()mRv BL x t BL mR=--. 当时间t 趋于无穷大时,杆运动的距离为2()mRv x BL =. 方法二:冲量定理.根据安培力的公式可得F = -(BL )2v/R ,负号表示安培力与速度的方向相反.因此2()d d BL x F t R-=,根据冲量定理得d 0tF t mv=-⎰,即:杆所受的冲量等于杆的动量的变化量.积分后可得02()mv Rx BL =. (2)方法一:焦耳定律.杆在移动过程中产生的焦耳热元为222()d d d d BLv Q I R t t t R R ε===220()2()exp[]d BLv BL t t R mR=-整个运动过程中产生的焦耳热为2200()2()exp[]d BLv BL Q t t R mR ∞=-⎰222002()exp[]22mv mv BL t mR ∞-=-=, 即:焦耳热是杆的动能转化而来的.方法二:动能定理.由于I = ε/R ,其中ε = BLv = BL d x /d t ,而安培力为F = -ILB ,负号表示安培力的方向与杆运动的方向相反.因此焦耳热元为d Q = I 2R d t = I εd t = IBL d x = -F d x .负号表示安培力做负功.根据动能定理,磁场的安培力对杆所做的功等于杆的动能的增量,因此安培力在杆的整个运动过程中所做的功为201d (0)2W F x mv =-=--⎰, 所以产生的焦耳热为212Q W mv ==. [小结]在求杆的运动距离时,用冲量定理可避免解微分方程.在求焦耳热时用动能定理可避免积分运算.16.4 如图所示,质量为m 、长度为L 的金属棒AB 从静止开始沿倾斜的绝缘框架滑下.磁感应强度B 的方向竖直向上(忽略棒AB 与框架之间的摩擦),求棒AB 的动生电动势.若棒AB 沿光滑的金属框架滑下,设金属棒与金属框组成的回路的电阻R 为常量,棒AB 的动生电动势又为多少?[解答](1)棒的加速度为a = g sin θ,经过时间t ,棒的速度为v = at = (g sin θ)t ,而切割磁力线的速度为v ⊥ = v cos θ,所以棒的动生电动势为ε = BLv ⊥ = BLg (sin θcos θ)t = BLg (sin2θ)t /2.(2)设棒运动时间t 时的速度为v ,则动生电动势为图16.4ε = BLv cos θ,电流为I = ε/R ,所受的安培力的大小为F = ILB = εLB/R = (BL )2v cos θ/R ,其方向水平向右.安培力沿着斜面向上的分量为F' = F cos θ,其方向与速度的方向相反.取速度的方向为正,根据牛顿第二定律ΣF = ma 得速度的微分方程为2(cos )d sin d BL v vmg m R tθθ-=,即 2d d sin (cos )mRt v mgR BL vθθ=-, 方程可化为222d[sin (cos )]d (cos )sin (cos )mR mgR BL v t BL mgR BL vθθθθθ--=-. 积分得方程的通解为22ln[sin (cos )](cos )mR t mgR BL v C BL θθθ-=-+.根据初始条件,当t = 0时,v = 0,可得常量2ln(sin )(cos )mRC mgR BL θθ=, 方程的特解为22[sin (cos )]ln (cos )sin mR mgR BL v t BL mgR θθθθ--=, 棒的速度为22sin (cos ){1exp[]}(cos )mgR BL v t BL mRθθθ=--, 动生电动势为cos BLv εθ=2(cos )tan {1exp[]}mgR BL t BL mRθθ=--. [讨论]当时间t 趋于无穷大时,最终速度为2sin (cos )mgR v BL θθ=,最终电动势为tan mgRBL εθ=, 最终电流为tan mgI BLθ=. 另外,棒最终做匀速运动,重力做功的功率等于感生电流做功的功率,重力做功的功率为P = mg sin θv ,感生电流做功的功率为222(cos )BLv P I R R Rεθ===, 两式联立也可得2sin (cos )mgR v BL θθ=,由此可以求出最终电动势和电流.[注意]只有当物体做匀速运动时,重力所做的功才等于电流所做的功,否则,重力还有一部分功转换成物体的动能.16.5 电磁涡流制动器是一个电导率为ζ,厚度为t 的圆盘,此盘绕通过其中心的垂直轴旋转,且有一覆盖小面积为a 2的均匀磁场B 垂直于圆盘,小面积离轴r (r >>a ).当圆盘角速度为ω时,试证此圆盘受到一阻碍其转动的磁力矩,其大小近似地表达为M ≈B 2a 2r 2ωζt .[解答]电导率是电阻率的倒数ζ = 1/ρ.不妨将圆盘与磁场相对的部分当成长、宽和高分别为a 、a 和t 的小导体,其横截面积为S = at ,电流将从横截面中流过,长度为a ,因此其电阻为1l R S tρσ==. 宽为a 的边扫过磁场中,速度大小为v = r ω,产生的感生电动势为ε = Bav = Bar ω,圆盘其他部分的电阻远小于小导体的电阻,因此通过小导体的电流强度为I ≈ε/R = Bar ωζt ,所受的安培力为F = IaB ≈B 2a 2r ωζt ,其方向与速度方向相反.产生的磁力矩为M = Fr ≈B 2a 2r 2ωζt .其方向与角速度的方向相反.16.6 如图,有一弯成θ角的金属架COD 放在磁场中,磁感应强度B 的方向垂直于金图16.5t属架COD 所在平面,一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v 向右滑动,v 与MN 垂直,设t = 0时,x = 0,求下列两情形,框架内的感应电动势εi .(1)磁场分布均匀,且B 不随时间改变; (2)非均匀的交变磁场B = Kx cos ωt . [解答](1)经过时间t ,导体杆运动的距离为X = vt ,杆的有效长度为l = X tan θ = v (tan θ)t , 动生电动势为εi = Blv = Bv 2(tan θ)t . (2)导体杆在t 时刻运动到X 处,在三角形中取一个面积元 d S = y d x , 由于y = x tan θ,所以d S = x tan θd x ,通过该面元的磁通量为d Φ = B d S = K cos ωt tan θx 2d x ,通过三角形的磁通量为20tan cos d XK t x x Φθω=⎰31tan cos 3K tX θω=331tan cos 3Kv t t θω=,感应电动势为d d i t Φε=-323tan (3cos sin )3kv t t t t θωωω=--,即: 32tan (sin 3cos )3i kv t t t t θεωωω=-.[注意]公式B = Kx cos ωt 中的x 是场点到O 点的距离,不一定是杆运动的距离,为了区别两个距离,杆的距离用X 表示.16.7 如图所示的回路,磁感应强度B 垂直于回路平面向里,磁通量按下述规律变化Φ = 3t 2 + 2t + 1,式中Φ的单位为毫韦伯,t 的单位为秒.求:(1)在t = 2s 时回路中的感生电动势为多少? (2)电阻上的电流方向如何?[解答](1)将磁通量的单位化为韦伯得 Φ = (3t 2 + 2t + 1)/103,感生电动势大小为ε = |d Φ/d t | = 2(3t + 1)/103.t = 2s 时的感生电动势为1.4×10-2(V).(2)由于原磁场在增加,根据楞次定律,感应电流所产生的磁场的方向与原磁场的方向相反,所以在线圈中感生电流的方向是逆时针的,从电阻的左边流向右边.O图16.6图16.716.8 如图所示的两个同轴圆形导体线圈,小线圈在大线圈上面.两线圈的距离为x ,设x 远大于圆半径R .大线圈中通有电流I 时,若半径为r 的小线圈中的磁场可看作是均匀的,且以速率v = d x /d t 运动.求x = NR 时,小线圈中的感应电动势为多少?感应电流的方向如何?[解答]环电流在轴线上产生的磁感应强度为20223/22()IR B x R μ=+, 当x >>R 时,磁感应强度为2032IRB xμ≈.小线圈的面积为S = πr 2,通过的磁通量为2203π2IR r BS x μΦ=≈, 当小线圈运动时,感应电动势为22043πd d 2IR r vt xμΦε=-≈, 当x = NR 时,感应电动势为20423π2Ir vN Rμε≈. 感应电流的磁场与原磁场的方向相同,感应电流的方向与原电流的环绕方向相同.16.9 如图所示,匀强磁场B 与矩形导线回路的法线n 成θ = 60°角,B = kt (k 为大于零的常数).长为L 的导体杆AB 以匀速v 向右平动,求回路中t 时刻的感应电动势的大小和方向(设t = 0时,x = 0).[解答]经过时间t ,导体杆运动的距离为 x = vt , 扫过的面积为 S = Lx = Lvt ,通过此面积的磁通量为Φ = B ·S = BS cos θ = Lvkt 2/2. 感应电动势的大小为ε = d Φ/d t = Lvkt .由于回路中磁通量在增加,而感应电流的磁通量阻碍原磁通量增加,其磁场与原磁场的方向相反,所以感应电动势的方向是顺时针的.16.10 长为b ,宽为a 的矩形线圈ABCD 与无限长直截流导线共面,且线圈的长边平行于长直导线,线圈以速度v 向右平动,t 时刻基AD 边距离长直导线为x ;且长直导线中的电流按I = I 0cos ωt 规律随时间变化,如图所示.求回路中的电动势ε.[解答]电流I 在r 处产生的磁感应强度为图16.8图16.902πIB rμ=,穿过面积元d S = b d r 的磁通量为0d d d 2πIbB S r rμΦ==,穿过矩形线圈ABCD 的磁通量为001d ln()2π2πx axIbIb x a r r xμμΦ++==⎰, 回路中的电动势为d d t Φε=-0d 11d [ln()()]2πd d b x a I x I x t x a x tμ+=-+-+ 00cos [ln()sin ]2π()I bx a av tt x x x a μωωω+=++. 显然,第一项是由于磁场变化产生的感生电动势,第二项是由于线圈运动产生的动生电动势. *16.11 如图,一个矩形的金属线框,边长分别为a和b (b 足够长).金属线框的质量为m ,自感系数为L ,忽略电阻.线框的长边与x 轴平行,它以速度v 0沿x 轴的方向从磁场外进入磁感应强度为B 0的均匀磁场中,B 0的方向垂直矩形线框平面.求矩形线框在磁场中速度与时间的关系式v = v (t )和沿x 轴方向移动的距离与时间的关系式x = x (t ).[解答]由于b 边很长,所以线框只有右边在做切割磁力线的运动.当线框速度为v 时,产生的动生电动势为ε = B 0av .当线框中的电流为i 时,产生的自感电动势的大小为d d L i Ltε=. 根据欧姆定律得ε + εL = iR ,由于不计电阻,所以有0d 0d iB av Lt+=. ① 右边所受的力为F = iaB 0,根据牛顿第二定律得0d d v iaB mt=, 微分得图16.10图16.11202d d d d i vaB m t t=, ②联立①和②式得微分方程2202()d 0d aB v v t mL+=, 这是简谐振动的微分方程,其通解为v A B =+.当t = 0时,v = v 0,所以A = v 0.加速度a t = d v /dt )A B =-+,当t = 0时,a t = 0,所以B = 0.速度方程为0v v =. 由于v = d x /d t ,所以0d d x v t v t ==⎰⎰00v C =+. 当t = 0时,x = 0,所以C = 0,所以位移方程为0x v =.16.12 如图所示的圆面积内,匀强磁场B 的方向垂直于圆面积向里,圆半径R = 12cm ,d B /d t = 10-2T·s -1.求图中a 、b 、c 三点的涡旋电场为多少(b 为圆心)?设ab = 10cm ,bc = 15cm . [解答](1)当点在磁场之中时,以b 为圆心,以r 为半径作一圆形环中,其周长为C = 2πr ,面积为S = πr 2.取环路的逆时针方向为正,根据右手螺旋法则,面积的法向方向垂直纸面向外。
习题十六16-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:Km 10897.2,3⋅⨯==-b b T m λ对太阳:K103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K100.11029.010897.246333⨯=⨯⨯==--m bT λ16-2 用辐射高温计测得炉壁小孔的辐射出射度(总辐射本领)为22.8W ·cm -2,求炉内温度. 解:炉壁小孔视为绝对黑体,其辐出度242mW 108.22cm W 8.22)(--⋅⨯=⋅=T M B按斯特藩-玻尔兹曼定律:=)(T M B 4T σ41844)1067.5108.22()(-⨯⨯==σT M T B K 1042.110)67.58.22(3341⨯=⨯=16-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A据光电效应公式221mmv hv =A +则光电子最大动能:AhcA h mv E m -=-==λυ2max k 21eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mvE eUa==∴遏止电势差V0.2106.11023.31919=⨯⨯=--a U(3)红限频率0υ,∴000,λυυcA h ==又∴截止波长1983401060.12.41031063.6--⨯⨯⨯⨯⨯==Ahc λm 0.296m 1096.27μ=⨯=-16-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcn nh E功率 W1099.118-⨯==tE16-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少?解:一个光子能量λυhch E ==1秒钟落到2m 1地面上的光子数为21198347ms1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hcEn λ每秒进入人眼的光子数为11462192s1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==dnN π16-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量. 解:电子的静止质量SJ 1063.6,kg 1011.934310⋅⨯=⨯=--h m当 20cm h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--h c m υο12A02.0m 104271.2=⨯==-υλc122831020122sm kg 1073.21031011.9sm kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m c cm c E p cpE hp 或λ16-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同?答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.16-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少? 解:由2200mc h cm hv +=+υ)(00202υυυυ-=-=-=h h h cm mcE kυεh =∴ 5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.110=υυ则52.0112.110==-=-υυυ16-9 波长ο0A 708.0=λ的X 射线在石腊上受到康普顿散射,求在2π和π方向上所散射的X 射线波长各是多大?解:在2πϕ=方向上: ο1283134200A 0243.0m 1043.24sin1031011.91063.622sin2Δ=⨯=⨯⨯⨯⨯⨯==-=---πϕλλλcm h散射波长ο0A732.00248.0708.0Δ=+=+=λλλ 在πϕ=方向上ο120200A0486.0m 1086.422sin2Δ=⨯===-=-cm h cm h ϕλλλ散射波长 ο0A756.00486.0708.0Δ=+=+=λλλ16-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有000,ελλεhchc=∴=经散射后00020.1020.0λλλλ∆λλ=+=+=此时能量为 02.112.1ελλε===hc hc反冲电子能量MeV10.060.0)2.111(0=⨯-=-=εεE16-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角.解:反冲电子的能量增量为202022020225.06.01cm cm cm cm mcE =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量,故有 20025.0cm hchc=-λλ散射光子波长ο121083134103400A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin 0243.022sin22200ϕϕλλλ∆⨯==-=cm h可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ 16-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上.解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n或者 )111(22n Rhc E -=∆75.12)11.(1362=-=n解出 4=n题16-12图 题16-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.16-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221nRhc nRhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A 6563536,3653121~:23A 121634,432111~:12A1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n RR R n λυλυλυ从从从可以发出以上三条谱线.题16-14图16-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hcE E hc E E hch VE V E V E a mn mn βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴λυhcE E h =-=14Hz1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--h E E υ16-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍?解: eV09.12]11[6.1321=-=-n E E n26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n ,19r r n =轨道半径增加到9倍.16-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.16-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压?解: ooA1A 25.12==u λ 25.12=U∴ 加速电压 150=U 伏16-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV4.16.13152112=-=+==E E mvE k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==mE v k -15s m 100.7⋅⨯=其德布罗意波长为:o953134A10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mvh λ16-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等. 1-241034sm kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量2202)()(c m cp E +=,eV 102.63⨯=cp而eV100.51MeV 51.0620⨯==cm∴ cpcm >>2∴MeV51.0)()(202202==+=c m c m cp E16-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少?解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能m pKT E k 2232==德布罗意波长 oA456.13===mkT hp hλ16-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,hp x x ≥∆∆,xx v m p ∆=∆,则hv x m x ≥∆∆,x m h v x ∆≥∆这粒子最小动能应满足222222min 22)(21)(21mL hxm hxm h m v m E x =∆=∆≥∆=16-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命.解:光子的能量λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为: λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c Eh t 2s103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=16-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm30A 103103000o962=⨯=====-λλ∆λλ∆λ∆∆p h x16-24波函数在空间各点的振幅同时增大D 倍,则粒子在空间分布的概率会发生什么变化?解:不变.因为波函数是计算粒子t 时刻空间各点出现概率的数学量.概率是相对值.则21、点的概率比值为:22212221φφφφD D =∴ 概率分布不变.16-25 有一宽度为a 的一维无限深势阱,用测不准关系估算其中质量为m 的粒子的零点能. 解:位置不确定量为a x =∆,由测不准关系:h p x x ≥∆⋅∆,可得:x h P x ∆≥∆,x h P P x x ∆≥∆≥∴222222)(22mahx m hm P E xx =∆≥=,即零点能为222ma h.16-26 已知粒子在一维矩形无限深势阱中运动,其波函数为:a xax 23cos1)(πψ=︒ )(a x a ≤≤- 那么,粒子在ax 65=处出现的概率密度为多少? 解: 22*)23cos 1(a x a πψψψ==aaaa a aa a 21)21(14cos1)4(cos 145cos12653cos122222===+===πππππ16-27 粒子在一维无限深势阱中运动,其波函数为:)sin(2)(a x n ax n πψ=)0(a x <<若粒子处于1=n 的状态,在0~a41区间发现粒子的概率是多少?解:xaxax w d sin2d d 22πψ==∴ 在4~0a区间发现粒子的概率为:⎰⎰⎰===42244)(d sin2d sin2aa ax a a xa ax axa dw p ππππ091.0)(]2cos 1[2124/0=-=⎰x a d a x a πππ16-28 宽度为a 的一维无限深势阱中粒子的波函数为xan A x πψsin)(=,求:(1)归一化系数A ;(2)在2=n 时何处发现粒子的概率最大? 解:(1)归一化系数⎰⎰==+∞∞-ax x 0221d d ψψ即⎰⎰=a a x a n x an An a x x an A 0222)(d sind sinππππ⎰-=ax a n x an An a2)(d )2cos1(2πππ12222===Aa n A n a ππ∴ =A a 2粒子的波函数 xa n a x πψsin2)(=(2)当2=n 时,xaaπψ2sin22=几率密度]4cos 1[12sin2222x a a x aaw ππψ-=== 令0d d =xw,即04sin4=x aaππ,即,04sin =x aπ,,2,1,0,4==k k x aππ∴ 4a kx =又因a x <<0,4<k ,∴当4a x =和ax 43=时w 有极大值,当2ax =时,0=w .∴极大值的地方为4a,a43处16-29 原子内电子的量子态由s l m m l n ,,,四个量子数表征.当l m l n ,,一定时,不同的量子态数目是多少?当l n ,一定时,不同的量子态数目是多少?当n 一定时,不同的量子态数目是多少? 解:(1)2)21(±=s m(2))12(2+l ,每个l 有12+l 个l m ,每个l m可容纳21±=s m 的2个量子态.(3)22n16-30求出能够占据一个d 分壳层的最大电子数,并写出这些电子的sl m m ,值.解:d 分壳层的量子数2=l ,可容纳最大电子数为10)122(2)12(2=+⨯=+=l Z l 个,这些电子的:=l m ,1±,2±,21±=s m16-31 试描绘:原子中4=l 时,电子角动量L 在磁场中空间量子化的示意图,并写出L 在磁场方向分量z L 的各种可能的值. 解: 20)14(4)1(=+=+=l l L题16-31图磁场为Z 方向,l Z m L =,0=l m ,1±,2±,3±,4±.∴ )4,3,2,1,0,1,2,3,4(----=Z L16-32写出以下各电子态的角动量的大小:(1)s 1态;(2)p 2态;(3)d 3态;(4)f 4态.解: (1)0=L (2)1=l , 2)11(1=+=L (3)2=l 6)12(2=+=L(4)3=l 12)13(3=+=L16-33 在元素周期表中为什么n 较小的壳层尚未填满而n 较大的壳层上就开始有电子填入?对这个问题我国科学工作者总结出怎样的规律?按照这个规律说明s 4态应比d 3态先填入电子.解:由于原子能级不仅与n 有关,还与l 有关,所以有些情况虽n 较大,但l 较小的壳层能级较低,所以先填入电子.我国科学工作者总结的规律:对于原子的外层电子,能级高低以)7.0(l n +确定,数值大的能级较高.s 4(即0,4==l n ),代入4)07.04()7.0(=⨯+=+l n)2,3(3==l n d ,代入4.4)27.03(=⨯+s 4低于d 3能级,所以先填入s 4壳层.。
第十六章热力学第二定律1、从热力学第二定律来看,下列说法中正确的是:(1)热量只能从高温物体传向低温物体;(2)热量从低温物体传送到高温物体必须借助外界帮助;(3)功可以完全转变为热,但热不能完全转变为功;(4)自然界中一切宏观过程都是不可逆的。
解:(1)电冰箱(致冷机)可以使热量从低温物体传向高温物体;(3)等温膨胀为热量完全转变为功;(4)自然界中一切与热力学有关的宏观过程都是不可逆的。
选(2)2、一发明者声称他发明了一种工作在高温(600K )和低温(300K )热源之间的新式热机,每分钟燃烧0.5kg (燃烧值为4.2×107J /kg )的燃料,其功率可达180kw 。
您认为这项发明可靠吗?为什么?解:在温度为T 1=600K ,T 2=300K 之间工作的卡诺热机效率(效率最高)η=1-T 2/T 1=1-300/600=50%假定燃料燃烧放出热量全部被题目所说热机吸收Q =0.5kg ×4.2×107J /kg =2.1×107(J)做功A =60×180×103J =1.08×107(J)其效率η'=A /Q =51%因为η'>η所以,这是不可能的。
3、从热力学第二定律出发证明一条绝热线与一条等温线不可能二次相交。
证明:(反证法)如果一条等温线和一条绝热线相交于两点A 和B (如图),则它们构成一个循环,在此循环中,只有单一热源(即在等温过程中吸热或放热,而在绝热过程中不吸热也不放热,)这是违反热力学第二定律的,所以一条等温线与一条绝热线不能两次相交。
VP4、一塑料盘内装3张可互相区分的硬纸片,每张纸片均为一面白,一面黑。
若将3张纸片看成一系统,并将纸片的黑白看成是“微观态”,将盘内多少张为黑多少张为白看成“宏观态”。
问:(1)该系统共有多少种“宏观态”?(2)该系统共有多少种“微观态”?解:(1)共有4种“宏观态”:三张均为黑;三张均为白;二张白,一张黑;一张白,两张黑。