2016年优质生源招生数学试卷-问题版
- 格式:doc
- 大小:128.16 KB
- 文档页数:4
○382016年四川某师大一中招生入学数学真卷(二)面试(1-18题为语文、英语题)一、选择题19.(导学号 90672152)在一幅比例尺是1:6000000地图上,量得A 城到B 城的距离是4.5厘米。
甲、乙两辆汽车同时从A 、B 两地相向出发,经过2小时相遇。
已知甲车每小时行70千米。
乙车每小时行( )千米。
A.65B.80C.60D.75E.70F.8520.=+⨯-÷)]31%20(5.4435[2073( )。
A.2B.53C.1D.23E.54F.4321.=÷+⨯-215)2925.4(217A.43B.1C.1157D.22133E.211F.22153 22.某个数加上61,乘以61,减去61,除以61,其结果等于61,那么这个数是( )。
A.361B.121C.61D.0E.1F.241 23.一个最简真分数,分子分母的和是50,如果把这个分数的分子、分母都减去5,所得分数的值是32,原来的分数是( )。
A.1733B.1931C.2129D.2327E.2723F.2921 24.如图是一个4×4的方格图案,则图中有( )个正方形。
A.36 B.25 C.30 D.32 E.26 F.2825.(导学号 90672153)若a:b=2:3,b:c=1:2,且a+b+c=66。
则a=( )。
A.16 B.12 C.18 D.15 E.21 F.926.我们规定一种运算“#”:#2=1×2×3,#3=2×3×4,#4=3×4×5,#5=4×5×6,…,如果A ⨯=-7#17#16#1,那么数A=( )。
A.32 B.53 C.3 D.61 E.65 F.74 27.一根钢丝,先用去35米,又用去余下长度的139,这时余下的钢丝正好是原来总长度的51,这根钢丝原来长( )米。
2016年河南省普通高中招生数学试题及答案解析一、选择题(每小题3分,共24分)1.-13的相反数是( )A . -13 B. 13C.-3 D .3【答案】:B【解析】:根据相反数的定义,很容易得到-13的相反数是13,选B 。
2.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为( )A.9.5×10-7B. 9.5×10-8C.0.95×10-7 D . 95×10-8【答案】:A【解析】: 科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n为整数。
确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。
当原数绝对值>1时,n是正数; 当原数的绝对值<1时,n 是负数。
将0.00000095用科学记数法表示9.5×10-7,选A 。
3.下面几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )DCBA【答案】:C【解析】:本题考查了三视图的知识,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,C 。
4.下列计算正确的是( )A B.(-3)2=6 C.3a4-2a 2=a 2 D.(-a3)2=a5【答案】:A 【解析】:根据有理数的定义幂的运算性质,运算正确的是A,选A。
5.如图,过反比例函数y=kx(x>0)的图像上一点A 作AB ⊥x 轴于点B,连根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A.甲B.乙 C.丙 D.丁【答案】:A【解析】:本题考查了平均数与方差对运动员发挥稳定性的因素,方差越小越稳定,故选A 。
8.如图,已知菱形OABC 的顶点是O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转450,则第60秒时,菱形的对角线交点D 的坐标为( )A .(1,-1)B .(-1,-1) C.,0) D.(0,【答案】:B。
2021届九年级|下学期入学数学试卷一.选择题(共8小题)1.假设关于x的方程x2 +3x +a =0有一个根为﹣1 ,那么另一个根为()A.﹣2 B.2 C.4 D.﹣32.假设一次函数y =kx +b的图象经过第二、三、四象限,那么反比例函数y =的图象在() A.一、三象限B.二、四象限C.一、二象限D.三、四象限3.二次函数y =x2 +bx +c的图象如下图,假设y>0 ,那么x的取值范围是()A.﹣1<x<3 B.﹣1<x<4 C.x<﹣1或x>3 D.x<﹣1或x>44.两个相似三角形对应中线的比2:3 ,周长的和是20 ,那么两个三角形的周长分别为() A.8和12 B.9和11 C.7和13 D.6和145.以下各组中的四条线段成比例的是()A.a =1 ,b =3 ,c =2 ,d =4 B.a =4 ,b =6 ,c =5 ,d =10C.a =2 ,b =4 ,c =3 ,d =6 D.a =2 ,b =3 ,c =4 ,d =16.在三角形ABC中,∠C为直角,sinA =,那么tanB的值为()A.B.C.D.7.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC ,能够完全覆盖这个三角形的最|小圆面半径是()A.B.C.2 D.8.丽华根据演讲比赛中九位评委所给的分数作了如下表格平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最|高分和一个最|低分,那么表中数据一定不发生变化的是()A.平均数B.众数 C.方差 D.中位数二.填空题(共8小题)9.如图1 ,是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20° (即图2中∠ACB =20° )时最|为适宜,货车车厢底部到地面的距离AB =1.5m ,木板超出车厢局部AD =0.5m ,那么木板CD的长度为.(参考数据:sin20°≈0.3420 ,cos20°≈0.9397 ,精确到0.1m ).10.如图,在直角坐标系中,△ABC的各顶点坐标为A (﹣1 ,1 ) ,B (2 ,3 ) ,C (0 ,3 ).现以坐标原点为位似中|心,作△A′B′C′ ,使△A′B′C′与△ABC的位似比为.那么点A的对应点A′的坐标为.11.如图,在平面直角坐标系中,点A的坐标(﹣2 ,0 ) ,△ABO是直角三角形,∠AOB =60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,那么此时边OB扫过的面积为.12.二次函数y =ax2 +bx的图象如图,假设一元二次方程ax2 +bx +m =0有实数根,那么m的最|大值为.13.如图,在平面直角坐标系中,过点M (﹣3 ,2 )分别作x轴、y轴的垂线与反比例函数y =的图象交于A ,B两点,那么四边形MAOB的面积为.14.小明设计了一个魔术盒,当任意实数对(a ,b )进入其中,会得到一个新的实数a2﹣2b +3.假设将实数(x ,﹣2x )放入其中,得到﹣1 ,那么x =.15.如图,PA ,PB是⊙O的两条切线,切点分别是A、B ,PA =10 ,CD是⊙O的切线,交PA于点C ,交PB于点D ,那么△PCD的周长是.16.如图,点A1 ,A2 ,… ,A2021在函数y =x2位于第二象限的图象上,点B1 ,B2 ,… ,B2021在函数y =x2位于第|一象限的图象上,点C1 ,C2 ,… ,C2021在y轴的正半轴上,假设四边形OA1C1B1、C1A2C2B2 ,… ,C2021A2021C2021B2021都是正方形,那么正方形C2021A2021C2021B2021的边长为.三.解答题(共10小题)17.用公式法解以下方程2x2 +6 =7x.18.计算:sin45° +cos230°﹣+2sin60°.19.如图,△ABC是直角三角形,∠ACB =90°.(1 )尺规作图:作⊙C ,使它与AB相切于点D ,与AC相交于点E ,保存作图痕迹,不写作法,请标明字母.(2 )在你按(1 )中要求所作的图中,假设BC =3 ,∠A =30° ,求的长.20.y =y1 +y2 ,y1与x成正比例,y2与x +2成反比例,且当x =﹣1时,y =3;当x =3时,y =7.求x =﹣3时,y的值.21.如图是一种躺椅及其简化结构示意图,扶手AB与座板CD都平行于地面,靠背DM与支架OE 平行,前支架OE与后支架OF分别与CD交于点G和点D ,AB与DM交于点N ,量得∠EOF=90° ,∠ODC =30° ,ON =40cm ,EG=30cm.(1 )求两支架落点E、F之间的距离;(2 )假设MN =60cm ,求躺椅的高度(点M到地面的距离,结果取整数).(参考数据:sin60° =,cos60° =,tan60° =≈1.73 ,可使用科学计算器)22.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A ,B ,C ,D四个等级| ,其中相应等级|的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答以下问题:(1 )问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2 )估计这种电动汽车一次充电后行驶的平均里程数为多少千米?23.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O ,弦CD与AB交于点F ,过点D作∠CDE ,使∠CDE =∠DFE ,交AB的延长线于点E.过点A作⊙O的切线交ED的延长线于点G.(1 )求证:GE是⊙O的切线;(2 )假设OF:OB =1:3 ,求AG的长.24."铁路建设助推经济开展〞,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1 )渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2 )专家建议:从平安的角度考虑,实际运行时速要比设计时速减少m% ,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m小时,求m的值.25.在图1﹣﹣图4中,菱形ABCD的边长为3 ,∠A =60° ,点M是AD边上一点,且DM =AD ,点N是折线AB﹣BC上的一个动点.(1 )如图1 ,当N在BC边上,且MN过对角线AC与BD的交点时,那么线段AN的长度为.(2 )当点N在AB边上时,将△AMN沿MN翻折得到△A′MN ,如图2 ,①假设点A′落在AB边上,那么线段AN的长度为;②当点A′落在对角线AC上时,如图3 ,求证:四边形AM A′N是菱形;③当点A′落在对角线BD上时,如图4 ,求的值.26.如图,二次函数y =ax2 +x +c的图象与y轴交于点A (0 ,4 ) ,与x轴交于点B、C ,点C坐标为(8 ,0 ) ,连接AB、AC.(1 )请直接写出二次函数y =ax2 +x +c的表达式;(2 )判断△ABC的形状,并说明理由;(3 )假设点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4 )假设点N在线段BC上运动(不与点B、C重合) ,过点N作NM∥AC ,交AB于点M ,当△AMN 面积最|大时,求此时点N的坐标.2021届九年级|下学期入学数学试卷参考答案与试题解析一.选择题(共8小题)1.假设关于x的方程x2 +3x +a =0有一个根为﹣1 ,那么另一个根为()A.﹣2 B.2 C.4 D.﹣3【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【解答】解:设一元二次方程的另一根为x1 ,那么根据一元二次方程根与系数的关系,得﹣1 +x1 =﹣3 ,解得:x1 =﹣2.应选A.【点评】此题考查了一元二次方程根与系数的关系,方程ax2 +bx +c =0的两根为x1 ,x2 ,那么x1 +x2 =﹣,x1•x2 =.2.假设一次函数y =kx +b的图象经过第二、三、四象限,那么反比例函数y =的图象在()A.一、三象限B.二、四象限C.一、二象限D.三、四象限【考点】反比例函数的性质;一次函数的性质.【分析】先由一次函数的性质判断出k ,b的正负,再根据反比例函数的性质即可得出结果.【解答】解:∵一次函数y =kx +b的图象经过第二、三、四象限,∴k<0 ,b<0 ,kb>0 ,反比例函数y =中,kb>0 ,∴图象在一、三象限.应选A.【点评】此题考查了反比例函数的性质,应注意y =中k的取值.3.二次函数y =x2 +bx +c的图象如下图,假设y>0 ,那么x的取值范围是()A.﹣1<x<3 B.﹣1<x<4 C.x<﹣1或x>3 D.x<﹣1或x>4【考点】二次函数与不等式(组).【分析】求y>0时x的取值范围,就是二次函数的图象在x轴下方时对应的x的范围.【解答】解:根据图象可得x的范围是x<﹣1或x>3.应选C.【点评】此题考查了二次函数与不等式的关系,理解求y>0时x的取值范围,就是二次函数的图象在x轴下方时对应的x的范围是关键.4.两个相似三角形对应中线的比2:3 ,周长的和是20 ,那么两个三角形的周长分别为() A.8和12 B.9和11 C.7和13 D.6和14【考点】相似三角形的性质.【专题】计算题.【分析】根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比得到两个相似三角形的周长的比为2:3 ,设这两个三角形的周长分别为2x ,3x ,那么2x +3x =20 ,然后解方程求出x后计算2x和3x即可.【解答】解:∵两个相似三角形对应中线的比2:3 ,∴两个相似三角形的周长的比为2:3 ,设这两个三角形的周长分别为2x ,3x ,那么2x +3x =20 ,解得x =4 ,∴2x =8 ,3x =12 ,即两个三角形的周长分别8和12.应选A.【点评】此题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.5.以下各组中的四条线段成比例的是()A.a =1 ,b =3 ,c =2 ,d =4 B.a =4 ,b =6 ,c =5 ,d =10C.a =2 ,b =4 ,c =3 ,d =6 D.a =2 ,b =3 ,c =4 ,d =1【考点】比例线段.【分析】根据比例线段的概念,让最|小的和最|大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A.1×4≠3×2 ,故本选项错误;B.4×10≠6×5 ,故本选项错误;C.4×3 =2×6 ,故本选项正确;D.2×3≠1×4 ,故本选项错误;应选C.【点评】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最|小的和最|大的相乘,另外两条相乘,看它们的积是否相等进行判断.6.在三角形ABC中,∠C为直角,sinA =,那么tanB的值为()A.B.C.D.【考点】互余两角三角函数的关系.【分析】根据sinA =,可设BC =5x ,AB =13x ,利用勾股定理求出AC =12x ,再利用锐角三角函数的定义得出tanB的值.【解答】解:∵在Rt△ABC中,∠C =90° ,sinA =,∴可设BC =5x ,AB =13x ,∴AC ==12x ,∴tanB ===.应选C.【点评】此题考查的是锐角三角函数的定义及勾股定理的应用,正确得出各边之间的关系是解决问题的关键.7.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC ,能够完全覆盖这个三角形的最|小圆面半径是()A.B.C.2 D.【考点】三角形的外接圆与外心.【专题】网格型.【分析】根据题意得出△ABC的外接圆的圆心位置,进而利用勾股定理得出能够完全覆盖这个三角形的最|小圆面的半径.【解答】解:如下图:点O为△ABC外接圆圆心,那么AO为外接圆半径,故能够完全覆盖这个三角形的最|小圆面的半径是:.应选A.【点评】此题主要考查了三角形的外接圆与外心,得出外接圆圆心位置是解题关键.8.丽华根据演讲比赛中九位评委所给的分数作了如下表格平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最|高分和一个最|低分,那么表中数据一定不发生变化的是()A.平均数B.众数 C.方差 D.中位数【考点】统计量的选择.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最|高分和一个最|低分不影响中位数.【解答】解:去掉一个最|高分和一个最|低分对中位数没有影响,应选D.【点评】此题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.二.填空题(共8小题)9.如图1 ,是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20° (即图2中∠ACB =20° )时最|为适宜,货车车厢底部到地面的距离AB =1.5m ,木板超出车厢局部AD =0.5m ,那么木板CD的长度为4.9m.(参考数据:sin20°≈0.3420 ,cos20°≈0.9397 ,精确到0.1m ).【考点】解直角三角形的应用-坡度坡角问题.【专题】应用题.【分析】根据∠ACB的正弦函数和AB的长度求AC的长,再加上AD即可.【解答】解:由题意可知:AB⊥BC.∴在Rt△ABC中,sin∠ACB =,∴AC ===≈4.39 ,∴CD =AC +AD =4.39 +0.5 =4.89≈4.9 (m ).故答案为:4.9m.【点评】此题考查锐角三角函数的应用,属于理论联系实际的题目,难度不大,关键是根据三角函数值得到所求线段的相应的线段的长度.10.如图,在直角坐标系中,△ABC的各顶点坐标为A (﹣1 ,1 ) ,B (2 ,3 ) ,C (0 ,3 ).现以坐标原点为位似中|心,作△A′B′C′ ,使△A′B′C′与△ABC的位似比为.那么点A的对应点A′的坐标为(﹣,)或(,﹣).【考点】位似变换;坐标与图形性质.【分析】位似是特殊的相似,假设两个图形△ABC和△A′B′C′以原点为位似中|心,相似比是k ,△ABC上一点的坐标是(x ,y ) ,那么在△A′B′C′中,它的对应点的坐标是(kx ,ky )或(﹣kx ,﹣ky ).【解答】解:∵在△A′B′C′中,它的对应点的坐标是(kx ,ky )或(﹣kx ,﹣ky )∴A'的坐标为:(﹣,)或(,﹣).故答案为:(﹣,)或(,﹣).【点评】此题主要考查了位似变换,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.11.如图,在平面直角坐标系中,点A的坐标(﹣2 ,0 ) ,△ABO是直角三角形,∠AOB =60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,那么此时边OB扫过的面积为π.【考点】扇形面积的计算;坐标与图形性质;旋转的性质.【分析】根据点A的坐标(﹣2 ,0 ) ,可得OA =2 ,再根据含30°的直角三角形的性质可得OB的长,再根据性质的性质和扇形的面积公式即可求解.【解答】解:∵点A的坐标(﹣2 ,0 ) ,∴OA =2 ,∵△ABO是直角三角形,∠AOB =60° ,∴∠OAB =30° ,∴OB =OA =1 ,∴边OB扫过的面积为:=π.故答案为:π.【点评】此题考查了扇形的面积公式:S =,其中n为扇形的圆心角的度数,R为圆的半径) ,或S =lR ,l为扇形的弧长,R为半径.12.二次函数y =ax2 +bx的图象如图,假设一元二次方程ax2 +bx +m =0有实数根,那么m的最|大值为3.【考点】抛物线与x轴的交点.【分析】先根据抛物线的开口向上可知a>0 ,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2 +bx +m =0有实数根可得到关于m的不等式,求出m的取值范围即可.【解答】解:∵抛物线的开口向上,顶点纵坐标为﹣3 ,∴a>0.﹣=﹣3 ,即b2 =12a ,∵一元二次方程ax2 +bx +m =0有实数根,∴△ =b2﹣4am≥0 ,即12a﹣4am≥0 ,即12﹣4m≥0 ,解得m≤3 ,∴m的最|大值为3 ,故答案为3.【点评】此题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.13.如图,在平面直角坐标系中,过点M (﹣3 ,2 )分别作x轴、y轴的垂线与反比例函数y =的图象交于A ,B两点,那么四边形MAOB的面积为10.【考点】反比例函数系数k的几何意义.【分析】设点A 的坐标为 (a ,b ) ,点B 的坐标为 (c ,d ) ,根据反比例函数y =的图象过A ,B 两点 ,所以ab =4 ,cd =4 ,进而得到S △AOC =|ab| =2 ,S △BOD =|cd| =2 ,S 矩形MCDO =3×2 =6 ,根据四边形MAOB 的面积 =S △AOC +S △BOD +S 矩形MCDO ,即可解答.【解答】解:如图 ,设点A 的坐标为 (a ,b ) ,点B 的坐标为 (c ,d ) ,∵反比例函数y =的图象过A ,B 两点 ,∴ab =4 ,cd =4 ,∴S △AOC =|ab| =2 ,S △BOD =|cd| =2 ,∵点M (﹣3 ,2 ) ,∴S 矩形MCDO =3×2 =6 ,∴四边形MAOB 的面积 =S △AOC +S △BOD +S 矩形MCDO =2 +2 +6 =10 ,故答案为:10.【点评】此题主要考查反比例函数的对称性和k 的几何意义 ,根据条件得出S △AOC =|ab| =2 ,S △BOD =|cd| =2是解题的关键 ,注意k 的几何意义的应用.14.小明设计了一个魔术盒 ,当任意实数对 (a ,b )进入其中 ,会得到一个新的实数a 2﹣2b +3.假设将实数 (x ,﹣2x )放入其中 ,得到﹣1 ,那么x = ﹣2 .【考点】解一元二次方程 -配方法.【专题】新定义.【分析】根据新定义得到x 2﹣2• (﹣2x ) +3 =﹣1 ,然后把方程整理为一般式 ,然后利用配方法解方程即可.【解答】解:根据题意得x 2﹣2• (﹣2x ) +3 =﹣1 ,整理得x 2 +4x +4 =0 ,(x +2 )2 =0 ,所以x 1 =x 2 =﹣2.故答案为﹣2.【点评】此题考查了解一元二次方程﹣配方法:将一元二次方程配成 (x +m )2 =n 的形式 ,再利用直接开平方法求解 ,这种解一元二次方程的方法叫配方法.15.如图,PA ,PB是⊙O的两条切线,切点分别是A、B ,PA =10 ,CD是⊙O的切线,交PA于点C ,交PB于点D ,那么△PCD的周长是20.【考点】切线长定理.【分析】根据切线长定理得出PA =PB =10 ,CA =CE ,DE =DB ,求出△PCD的周长是PC +CD +PD =PA +PB ,代入求出即可.【解答】解:∵PA、PB切⊙O于点A、B ,CD切⊙O于点E ,∴PA =PB =10 ,CA =CE ,DE =DB ,∴△PCD的周长是PC +CD +PD=PC +AC +DB +PD=PA +PB=10 +10=20.故答案为:20.【点评】此题考查了切线长定理的应用,关键是求出△PCD的周长=PA +PB.16.如图,点A1 ,A2 ,… ,A2021在函数y =x2位于第二象限的图象上,点B1 ,B2 ,… ,B2021在函数y =x2位于第|一象限的图象上,点C1 ,C2 ,… ,C2021在y轴的正半轴上,假设四边形OA1C1B1、C1A2C2B2 ,… ,C2021A2021C2021B2021都是正方形,那么正方形C2021A2021C2021B2021的边长为2021.【考点】二次函数综合题.【分析】根据正方形对角线平分一组对角可得OB1与y轴的夹角为45° ,然后表示出OB1的解析式,再与抛物线解析式联立求出点B1的坐标,然后求出OB1的长,再根据正方形的性质求出OC1 ,表示出C1B2的解析式,与抛物线联立求出B2的坐标,然后求出C1B2的长,再求出C1C2的长,然后表示出C2B3的解析式,与抛物线联立求出B3的坐标,然后求出C2B3的长,从而根据边长的变化规律解答即可.【解答】解:∵OA1C1B1是正方形,∴OB1与y轴的夹角为45° ,∴OB1的解析式为y =x联立,解得或,∴点B1 (1 ,1 ) ,OB1 ==,∵OA1C1B1是正方形,∴OC1 =OB1 =×=2 ,∵C1A2C2B2是正方形,∴C1B2的解析式为y =x +2 ,联立,解得,或,∴点B2 (2 ,4 ) ,C1B2 ==2,∵C1A2C2B2是正方形,∴C1C2 =C1B2 =×2=4 ,∴C2B3的解析式为y =x + (4 +2 ) =x +6 ,联立,解得,或,∴点B3 (3 ,9 ) ,C2B3 ==3,… ,依此类推,正方形C2021A2021C2021B2021的边长C2021B2021 =2021.故答案为:2021.【点评】此题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.三.解答题(共10小题)17.用公式法解以下方程2x2 +6 =7x.【考点】解一元二次方程-公式法.【专题】计算题.【分析】方程整理为一般形式,找出a ,b ,c的值,代入求根公式即可求出解.【解答】解:方程整理得:2x2﹣7x +6 =0 ,这里a =2 ,b =﹣7 ,c =6 ,∵△ =49﹣48 =1 ,∴x =,解得:x1 =2 ,x2 =.【点评】此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解此题的关键.18.计算:sin45° +cos230°﹣+2sin60°.【考点】特殊角的三角函数值.【分析】先把各特殊角的三角函数值代入,再根据二次根式混合运算的法那么进行计算即可.【解答】解:原式=•+ ()2﹣+2×=+﹣+=1 +.【点评】此题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.19.如图,△ABC是直角三角形,∠ACB =90°.(1 )尺规作图:作⊙C ,使它与AB相切于点D ,与AC相交于点E ,保存作图痕迹,不写作法,请标明字母.(2 )在你按(1 )中要求所作的图中,假设BC =3 ,∠A =30° ,求的长.【考点】作图-复杂作图;切线的性质;弧长的计算.【专题】作图题.【分析】(1 )过点C作AB的垂线,垂足为点D ,然后以C点为圆心,CD为半径作圆即可;(2 )先根据切线的性质得∠ADC =90° ,那么利用互余可计算出∠DCE =90°﹣∠A =60° ,∠BCD =90°﹣∠ACD =30° ,再在Rt△BCD中利用∠BCD的余弦可计算出CD =,然后根据弧长公式求解.【解答】解:(1 )如图,⊙C为所求;(2 )∵⊙C切AB于D ,∴CD⊥AB ,∴∠ADC =90° ,∴∠DCE =90°﹣∠A =90°﹣30° =60° ,∴∠BCD =90°﹣∠ACD =30° ,在Rt△BCD中,∵cos∠BCD =,∴CD =3cos30° =,∴的长==π.【点评】此题考查了作图﹣复杂作图:复杂作图是在五种根本作图的根底上进行作图,一般是结合了几何图形的性质和根本作图方法;解决此类题目的关键是熟悉根本几何图形的性质,结合几何图形的根本性质把复杂作图拆解成根本作图,逐步操作.也考查了切线的性质和弧长公式.20.y =y1 +y2 ,y1与x成正比例,y2与x +2成反比例,且当x =﹣1时,y =3;当x =3时,y =7.求x =﹣3时,y的值.【考点】待定系数法求反比例函数解析式.【分析】首|先根据正比例和反比例的定义可得y =kx +,再把x =﹣1 ,y =3;x =3 ,y =7代入得到关于k、m的方程组,再解可得k、m的值,进而可得y与x的解析式,再把x =﹣3代入计算出y的值即可.【解答】解:∵y1与x成正比例,∴y1 =kx ,∵y2与x +2成反比例,∴y2 =,∵y =y1 +y2 ,∴y =kx +,∵当x =﹣1时,y =3;当x =3时,y =7 ,∴,解得:,∴y =2x +,当x =﹣3时,y =2× (﹣3 )﹣5 =﹣11.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是正确表示出y与x的关系式.21.如图是一种躺椅及其简化结构示意图,扶手AB与座板CD都平行于地面,靠背DM与支架OE 平行,前支架OE与后支架OF分别与CD交于点G和点D ,AB与DM交于点N ,量得∠EOF=90° ,∠ODC =30° ,ON =40cm ,EG=30cm.(1 )求两支架落点E、F之间的距离;(2 )假设MN =60cm ,求躺椅的高度(点M到地面的距离,结果取整数).(参考数据:sin60° =,cos60° =,tan60° =≈1.73 ,可使用科学计算器)【考点】解直角三角形的应用.【分析】(1 )利用平行线分线段成比例定理得出,利用平行四边形的判定与性质进而求出即可;(2 )利用四边形ONHE是平行四边形,进而得出NH =OE =50cm ,∠MHF =∠E =60° ,利用MP=110sin60°求出即可.【解答】解:(1 )连接EF.∵CD平行于地面,∴GD∥EF.∴.又∵AB∥EF ,∴AB∥CD.而OE∥DM ,那么四边形OGDN是平行四边形.∴OG =DN ,GD =ON.∵ON =40cm ,∠EOF =90° ,∠ODC =30° ,∴GD =40cm ,OG =GD =20cm ,又EG =30cm ,即,得EF =100cm.(2 )延长MD交EF于点H ,过点M作MP⊥EF于点P.∵四边形ONHE是平行四边形,∴NH =OE =50cm ,∠MHF =∠E =60°.由于MN =60cm ,∴MH =110cm.在Rt△MHP中,MP =MH•sin∠MHP ,即MP =110sin60° =110×=55≈95 (cm ).答:躺椅的高度约为95cm.【点评】此题主要考查了解直角三角形以及平行四边形的判定与性质等知识,熟练应用锐角三角函数关系是解题关键.22.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A ,B ,C ,D四个等级| ,其中相应等级|的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答以下问题:(1 )问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2 )估计这种电动汽车一次充电后行驶的平均里程数为多少千米?【考点】条形统计图;扇形统计图;加权平均数.【分析】(1 )根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级|的有30辆电动汽车,所占的百分比为30% ,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2 )用总里程除以汽车总辆数,即可解答.【解答】解:(1 )这次被抽检的电动汽车共有:30÷30% =100 (辆) ,C所占的百分比为:40÷100×100% =40% ,D所占的百分比为:20÷100×100% =20% ,A所占的百分比为:100%﹣40%﹣20%﹣30% =10% ,A等级|电动汽车的辆数为:100×10% =10 (辆) ,补全统计图如下图:(2 )这种电动汽车一次充电后行驶的平均里程数为:230 ) =217 (千米) ,∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.【点评】此题考查了条形统计图,以及扇形统计图,弄清题意是解此题的关键.23.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O ,弦CD与AB交于点F ,过点D作∠CDE ,使∠CDE =∠DFE ,交AB的延长线于点E.过点A作⊙O的切线交ED的延长线于点G.(1 )求证:GE是⊙O的切线;(2 )假设OF:OB =1:3 ,求AG的长.【考点】切线的判定与性质.【分析】(1 )连接OD ,进而利用等腰三角形的性质以及切线的性质得出∠CDO +∠CDE =90° ,进而得出答案;(2 )首|先利用勾股定理得出DE的长,再利用相似三角形的判定与性质得出AG的长.【解答】(1 )证明:连接OD.∵OC =OD ,∴∠C =∠ODC ,∵OC⊥AB ,∴∠COF =90°∴∠OCD +∠CFO =90° ,∴∠ODC +∠CFO =90° ,∵∠EFD =∠FDE ,∠EFD =∠CDE ,∴∠CDO +∠CDE =90° ,∴DE为⊙O的切线;(2 )解:∵OF:OB =1:3 ,⊙O的半径为3 ,∴OF =1 ,∵∠EFD =∠EDF ,∴EF =ED ,在Rt△ODE中,OD =3 ,DE =x ,那么EF =x ,OE =1 +x ,∵OD2 +DE2 =EO2 ,∴32 +x2 = (x +1 )2 ,解得:x =4 ,∴DE =4 ,OE =5 ,∵AG为⊙O的切线,∴AG⊥AE ,∴∠GAE =90° ,∵∠OED =∠GEA ,∴Rt△EOD∽Rt△EGA ,∴==,即=,解得:AG =6.【点评】此题主要考查了相似三角形的判定与性质以及切线的判定与性质,正确得出Rt△EOD∽Rt△EGA是解题关键.24."铁路建设助推经济开展〞,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1 )渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2 )专家建议:从平安的角度考虑,实际运行时速要比设计时速减少m% ,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m小时,求m的值.【考点】一元二次方程的应用;二元一次方程组的应用.【分析】(1 )利用"从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时〞,分别得出等式组成方程组求出即可;(2 )根据题意得出:(80 +120 ) (1﹣m% ) (8 +m ) =1600进而求出即可.【解答】解:(1 )设原时速为xkm/h ,通车后里程为ykm ,那么有:,解得:,答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2 )由题意可得出:(80 +120 ) (1﹣m% ) (8 +m ) =1600 ,解得:m1 =20 ,m2 =0 (不合题意舍去) ,答:m的值为20.【点评】此题主要考查了二元一次方程组的应用以及一元二次方程的应用,根据题意得出正确等量关系是解题关键.25.在图1﹣﹣图4中,菱形ABCD的边长为3 ,∠A =60° ,点M是AD边上一点,且DM =AD ,点N是折线AB﹣BC上的一个动点.(1 )如图1 ,当N在BC边上,且MN过对角线AC与BD的交点时,那么线段AN的长度为.(2 )当点N在AB边上时,将△AMN沿MN翻折得到△A′MN ,如图2 ,①假设点A′落在AB边上,那么线段AN的长度为1;②当点A′落在对角线AC上时,如图3 ,求证:四边形AM A′N是菱形;③当点A′落在对角线BD上时,如图4 ,求的值.【考点】四边形综合题.【分析】(1 )过点N作NG⊥AB于G ,构造直角三角形,利用勾股定理解决问题;(2 )①利用线段中垂线的性质得到AN =A′N ,再由三角函数求得;②利用菱形的性质得到对角线平分每一组对角,得到∠DAC =∠CAB =30° ,根据翻折的性质得到AC⊥MN ,AM =A′M ,AN =A′N ,∠AMN =∠ANM =60° ,AM =AN ,AM =A′M =AN =A′N ,四边形AM A′N是菱形;③根据菱形的性质得到AB =AD ,∠ADB =∠ABD =60° ,求得∠NA′M =∠DMA′ +∠ADB ,证得A′M =AM =2 ,∠NA′M =∠A =60° ,得到∠NA′B =∠DMA′ ,利用三角形相似得到结果.【解答】解:(1 )如图1 ,过点N作NG⊥AB于G ,∵四边形ABCD是菱形,∴AD∥BC ,OD =OB ,∴==1 ,∴BN =DM =AD =1 ,∵∠DAB =60° ,∴∠NBG =60°∴BG =,GN =,∴AN ===;故答案为:;(2 )①当点A′落在AB边上,那么MN为AA′的中垂线, ∵∠DAB =60°AM =2 ,∴AN =AM =1 ,故答案为:1;②在菱形ABCD中,AC平分∠DAB ,∵∠DAB =60° ,∴∠DAC =∠CAB =30° ,∵△AMN沿MN翻折得到△A′MN ,∴AC⊥MN ,AM =A′M ,AN =A′N ,∴∠AMN =∠ANM =60° ,∴AM =AN ,∴AM =A′M =AN =A′N ,∴四边形AM A′N是菱形;③在菱形ABCD中,AB =AD ,∴∠ADB =∠ABD =60° ,∴∠BA′M =∠DMA′ +∠ADB ,∴A′M =AM =2 ,∠NA′M =∠A =60° ,∴∠NA′B =∠DMA′ ,∴△DMA′∽△BA′N ,∴=,∵MD =AD =1 ,A′M =2 ,∴=.【点评】此题考查了菱形的判定和性质,翻折的性质,线段垂直平分线的性质,相似三角形的判定和性质,角平分线的性质,关键是利用翻折的性质得到线段、角相等、三角形相似.26.如图,二次函数y =ax2 +x +c的图象与y轴交于点A (0 ,4 ) ,与x轴交于点B、C ,点C坐标为(8 ,0 ) ,连接AB、AC.(1 )请直接写出二次函数y =ax2 +x +c的表达式;(2 )判断△ABC的形状,并说明理由;(3 )假设点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4 )假设点N在线段BC上运动(不与点B、C重合) ,过点N作NM∥AC ,交AB于点M ,当△AMN 面积最|大时,求此时点N的坐标.【考点】二次函数综合题.【专题】压轴题.【分析】(1 )根据待定系数法即可求得;(2 )根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2 =20 ,AC2 =80 ,BC10 ,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3 )分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4 )设点N的坐标为(n ,0 ) ,那么BN =n +2 ,过M点作MD⊥x轴于点D ,根据三角形相似对应边成比例求得MD =(n +2 ) ,然后根据S△AMN =S△ABN﹣S△BMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1 )∵二次函数y =ax2 +x +c的图象与y轴交于点A (0 ,4 ) ,与x轴交于点B、C ,点C 坐标为(8 ,0 ) ,。
本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分 参考公式:如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立, P(A ∪B)=P(A)+P(B). P(AB)=P(A) P(B). 柱体的体积公式V 柱体=Sh , 圆锥的体积公式V =31Sh 其中 S 表示柱体的底面积其中 其中S 表示锥体的底面积,h 表示圆锥的高. h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则AB =( )(A ){1}(B ){4} (C ){1,3}(D ){1,4}【答案】D 【解析】试题分析:{1,4,7,10},A B {1,4}.B ==选D . 考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.(2)设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩则目标函数25z x y =+的最小值为( )(A )4- (B )6 (C )10 (D )17【答案】B考点:线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围. (3)在△ABC中,若AB ,120C ∠= ,则AC = ( )(A )1(B )2(C )3(D )4【答案】A 【解析】试题分析:由余弦定理得213931AC AC AC =++⇒=,选A. 考点:余弦定理【名师点睛】1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的. (4)阅读右边的程序框图,运行相应的程序,则输出S 的值为( )(A )2(B )4(C )6(D )8【答案】B 【解析】试题分析:依次循环:8,n 2;S 2,n 3;S 4,n 4S ======结束循环,输出S 4=,选B.考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.(5)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C 【解析】试题分析:由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C. 考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.(6)已知双曲线2224=1x y b-(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )(A )22443=1y x - (B )22344=1y x - (C )2224=1x y b -(D )2224=11x y - 【答案】D考点:双曲线渐近线【名师点睛】求双曲线的标准方程关注点:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论. ①若双曲线的焦点不能确定时,可设其方程为Ax 2+By 2=1(AB <0). ②若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).(7)已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则⋅的值为( ) (A )85- (B )81 (C )41 (D )811【答案】B 【解析】试题分析:设BA a =,BC b =,∴11()22DE AC b a ==-,33()24DF DE b a ==-, 1353()2444AF AD DF a b a a b =+=-+-=-+,∴25353144848AF BC a b b ⋅=-⋅+=-+=,故选B.考点:向量数量积【名师点睛】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.(8)已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )(A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34} 【答案】C 【解析】试题分析:由()f x 在R 上递减可知3401331,0134a a a a -≥⎧⇒≤≤⎨≥<<⎩,由方程|()|2f x x =-恰好有两个不相等的实数解,可知132,12a a ≤-≤,1233a ≤≤,又∵34a =时,抛物线2(43)3y x a x a=+-+与直线2y x =-相切,也符合题意,∴实数a 的去范围是123[,]{}334,故选C. 考点:函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 第Ⅱ卷 注意事项:1、用黑色墨水的钢笔或签字笔将答案写在答题卡上.2、本卷共12小题,共计110分.二、填空题:本大题共6小题,每小题5分,共30分. (9)已知,a b ∈R ,i 是虚数单位,若(1)(1)i bi a +-=,则ab的值为_______. 【答案】2 【解析】试题分析:(1)(1)1(1)i bi b b i a +-=++-=,则110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.考点:复数相等【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈,a bi c di ac bd ad bc i a b c d R22()(),(,,.)+++-=∈++,a bi ac bd bc ad ia b c d R c di c d . 其次要熟悉复数相关基本概念,如复数(,)+∈a bi a b R 的实部为a 、虚部为b .-a bi(10)281(x x-的展开式中x 2的系数为__________.(用数字作答)【答案】56-考点:二项式定理【名师点睛】1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r);第二步是根据所求的指数,再求所求解的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.(11)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_______m3.【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形的底为2,高为1,因此体积为1(21)32V=⨯⨯⨯=.故答案为2.3考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.(12)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为__________.【解析】试题分析:设CE x =,则由相交弦定理得DE CE AE BE ⋅=⋅,2DE x =,又2BD DE x ==,所以1AC AE ==,因为AB 是直径,则BC =AD =在圆中BCE DAE ∆∆:,则BC EC AD AE =1x=,解得x =考点:相交弦定理【名师点睛】1.解决与圆有关的成比例线段问题的两种思路(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握.2.应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.(13)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足1(2)(a f f ->,则a 的取值范围是______.【答案】13(,)22考点:利用函数性质解不等式【名师点睛】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效.(2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化.(14) 设抛物线222x pt y pt ⎧=⎨=⎩,(t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C (72p ,0),AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE的面积为p 的值为_________.【解析】试题分析:抛物线的普通方程为22y px =,(,0)2p F ,7322pCF p p =-=,又2CF AF =,则32AF p =,由抛物线的定义得32AB p =,所以A x p =,则||A y =,由//CF AB 得EF CFEA AB =,即2EF CFEA AF ==,所以2CEF CEA S S ∆∆==ACF AEC CFE S S S ∆∆∆=+=132p ⨯=,p = 考点:抛物线定义【名师点睛】1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若P (x 0,y 0)为抛物线y 2=2px (p >0)上一点,由定义易得|PF |=x 0+p2;若过焦点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则弦长为|AB |=x 1+x 2+p ,x 1+x 2可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.三、解答题:本大题共6小题,共80分.(15)已知函数f(x)=4tanxsin(2x π-)cos(3x π-(Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f(x)在区间[,44ππ-]上的单调性. 【答案】(Ⅰ),2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,.π(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦上单调递减. 【解析】试题分析:(Ⅰ)先利用诱导公式、两角差余弦公式、二倍角公式、配角公式将函数化为基本三角函数:()()=2sin 23f x x π-,再根据正弦函数性质求定义域、周期()II 根据(1)的结论,研究三角函数在区间[,44ππ-]上单调性 试题解析:()I 解:()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭. ()4tan cos cos 4sin cos 33f x x x x x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭21=4sin cos 2sin cos 2x x x x x x ⎛⎫=+ ⎪ ⎪⎝⎭)()=sin 21-cos 2sin 22=2sin 23x x x x x π+=-.所以, ()f x 的最小正周期2.2T ππ== ()II 解:令2,3z x π=-函数2sin y z =的单调递增区间是2,2,.22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈ 设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦.所以, 当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦上单调递减. 考点:三角函数性质,诱导公式、两角差余弦公式、二倍角公式、配角公式【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为y =Asin(ωx +φ)+k 的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式.(16) (本小题满分13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,.现从这10人中随机选出2人作为该组代表参加座谈会.(I )设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (II )设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望. 【答案】(Ⅰ)13(Ⅱ)详见解析试题解析:解:()I 由已知,有()1123442101,3C C C P A C +== 所以,事件A 发生的概率为13. ()∏随机变量X 的所有可能取值为0,1,2.()2223342100C C C P X C ++==415=, ()111133342107115C C C C P X C +===, ()11342104215C C P X C ===. 所以,随机变量X 分布列为随机变量X 的数学期望()0121151515E X =⨯+⨯+⨯=. 考点:概率,概率分布与数学期望 【名师点睛】求均值、方差的方法1.已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;2.已知随机变量ξ的均值、方差,求ξ的线性函数η=a ξ+b 的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;3.如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.(17) (本小题满分13分)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(I)求证:EG∥平面ADF;(II)求二面角O-EF-C的正弦值;(III)设H为线段AF上的点,且AH=23HF,求直线BH和平面CEF所成角的正弦值.【答案】(Ⅰ)详见解析(Ⅱ)3(Ⅲ)7()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0) A B C D E F G-------,.(I )证明:依题意,()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则110n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(II )解:易证,()1,1,0OA =-为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面CEF 的法向量,则220n EF n CF ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩ .不妨设1x =,可得()21,1,1n =-.因此有222cos ,OA n OA n OA n ⋅<>==-⋅,于是23sin,3OA n <>=,所以,二面角O EF C --的(III )解:由23AH HF =,得25A H A =.因为()1,1,2AF =-,所以2224,,5555AH AF ⎛⎫==- ⎪⎝⎭,进而有334,,555H ⎛⎫- ⎪⎝⎭,从而284,,555BH ⎛⎫= ⎪⎝⎭,因此222cos ,BH n BH n BH n ⋅<>==-⋅所以,直线BH 和平面CEF 考点:利用空间向量解决立体几何问题【名师点睛】1.利用数量积解决问题的两条途径 :一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.2.利用数量积可解决有关垂直、夹角、长度问题. (1)a ≠0,b ≠0,a ⊥b ⇔a ·b =0;(2)|a |=a 2; (3)cos 〈a ,b 〉=a ·b|a ||b |.(18) 已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】试题分析:(Ⅰ)先根据等比中项定义得:21n n n b a a +=,从而22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此根据等差数列定义可证:()212122n n n n c c d a a d +++-=-=(Ⅱ) 对数列不等式证明一般以算代证先利用分组求和化简()2211nnn n k T b ==-∑()()()2222221234212n n b b b b b b -=-++-++-+()221d n n =+,再利用裂项相消法求和()222111111111111212121nn n k k k kT d k k d k k d n ===⎛⎫⎛⎫==-=⋅- ⎪ ⎪+++⎝⎭⎝⎭∑∑∑,易得结论.考点:等差数列、等比中项、分组求和、裂项相消求和 【名师点睛】分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.(19)(本小题满分14分)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.【答案】(Ⅰ)22143x y +=(Ⅱ)),46[46,(+∞--∞ 【解析】试题分析:(Ⅰ)求椭圆标准方程,只需确定量,由113||||||c OF OA FA +=,得113()cc a a a c +=-,再利用2223a c b -==,可解得21c =,24a =(Ⅱ)先化简条件:MOA MAO ∠=∠⇔||||MA MO =,即M 再OA 中垂线上,1M x =,再利用直线与椭圆位置关系,联立方程组求B ;利用两直线方程组求H ,最后根据HF BF ⊥,列等量关系解出直线斜率.取值范围 试题解析:(1)解:设(,0)F c ,由113||||||c O F O A F A +=,即113()c c a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=. (2)(Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k.设),(M M y x M ,由方程组⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M .在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(MMMM y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k . 所以,直线l 的斜率的取值范围为),46[]46,(+∞--∞ . 考点:椭圆的标准方程和几何性质,直线方程【名师点睛】在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围.(20)(本小题满分14分)设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈, (I)求)(x f 的单调区间;(II) 若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41. 【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)详见解析 【解析】试题分析:(Ⅰ)先求函数的导数:a x x f --=2)1(3)(',再根据导函数零点是否存在情况,分类讨论:①当0a ≤时,有()0f x '≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,存在三个单调区间(Ⅱ)由题意得3)1(20a x =-,计算可得00(32)()f x f x -=再由)()(01x f x f =及单调性可得结论(Ⅲ)实质研究函数)(x g 最大值:主要比较(1),(1)f f -,||,|(|f f 的大小即可,分三种情况研究①当3a ≥时,33120331aa +≤<≤-,②当334a ≤<时,3321233133103321a a a a +≤<+<-<≤-,③当304a <<时,23313310<+<-<aa .试题解析:(Ⅰ)解:由b ax x x f ---=3)1()(,可得a x x f --=2)1(3)('. 下面分两种情况讨论:(1)当0≤a 时,有0)1(3)('2≥--=a x x f 恒成立,所以)(x f 的单调递增区间为),(+∞-∞. (2)当0>a 时,令0)('=x f ,解得331ax +=,或331a x -=.当x 变化时,)('x f ,)(x f 的变化情况如下表:333),33+∞a. (Ⅱ)证明:因为)(x f 存在极值点,所以由(Ⅰ)知0>a ,且10≠x ,由题意,得0)1(3)('200=--=a x x f ,即3)1(20a x =-, 进而b ax a b ax x x f ---=---=332)1()(00300. 又b a ax x ab x a x x f --+-=----=-32)1(38)22()22()23(000300 )(33200x f b ax a =---=,且0023x x ≠-,由题意及(Ⅰ)知,存在唯一实数满足 )()(01x f x f =,且01x x ≠,因此0123x x -=,所以3201=+x x ;(Ⅲ)证明:设)(x g 在区间]2,0[上的最大值为M ,},max{y x 表示y x ,两数的最大值.下面分三种情况同理:(1)当3≥a 时,33120331aa +≤<≤-,由(Ⅰ)知,)(x f 在区间]2,0[上单调递减,所以)(x f 在区间]2,0[上的取值范围为)]0(),2([f f ,因此|}1||,21max{||})0(||,)2(max{|b b a f f M ----== |})(1||,)(1max{|b a a b a a +--++-=⎩⎨⎧<++--≥+++-=0),(10),(1b a b a a b a b a a ,所以2||1≥++-=b a a M .(2)当343<≤a 时,3321233133103321aa a a +≤<+<-<≤-,由(Ⅰ)和(Ⅱ)知,331(3321()0(a f a f f +=-≥,331()3321()2(a f a f f -=+≤, 所以)(x f 在区间]2,0[上的取值范围为331(331([a f a f -+,因此 |}392||,392max{||})331(||,331(max{|b a a ab a a a a f a f M -----=-+=|}21||,1max{||})2(||,)0(max{|b a b f f M ----== |})(1||,)(1max{|b a a b a a +--++-=41||1>++-=b a a . 综上所述,当0>a 时,)(x g 在区间]2,0[上的最大值不小于41. 考点:导数的运算,利用导数研究函数的性质、证明不等式 【名师点睛】1.求可导函数单调区间的一般步骤(1)确定函数f (x )的定义域(定义域优先); (2)求导函数f ′(x );(3)在函数f (x )的定义域内求不等式f ′(x )>0或f ′(x )<0的解集.(4)由f ′(x )>0(f ′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.2.由函数f (x )在(a ,b )上的单调性,求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,要注意“=”是否可以取到.。
2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2021 -2021年九年级|| (下)入学考试数学试卷一、选择题:(本大题12个小题,每题4分,共48分)每个小题都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡上对应位置中.1.△ABC中,AC =4 ,BC =3 ,AB =5 ,那么sinA = ()A.B.C.D.2.用配方法解方程x2+4x﹣5 =0 ,以下配方正确的选项是()A.(x +2 )2=1 B.(x +2 )2=5 C.(x +2 )2=9 D.(x +4 )2=9 3.以下式子,正确的选项是()A.3 +=3B.(+1 ) (﹣1 ) =1C.2﹣1=﹣2 D.x2+2xy﹣y2= (x﹣y )24.在▱ABCD中,假设∠A:∠B =1:2 ,那么∠A的度数是()A.60°B.90°C.120°D.150°5.一个等腰三角形的两条边长分别为3和8 ,那么这个等腰三角形的周长为()A.11 B.14 C.19 D.14或196.二次函数y =﹣2 (x﹣4 )2﹣5的开口方向、对称轴分别是()A.开口向上、直线x =﹣4 B.开口向上、直线x =4C.开口向下、直线x =﹣4 D.开口向下、直线x =47.如图,在⊙O中,∠AOB =50° ,那么∠ACB = ()A.30°B.25°C.50°D.40°8.如图,在△ABC中,AB =BC ,∠B =30° ,DE垂直平分BC ,那么∠ACD的度数为()A.30°B.45°C.55°D.75°9.某校九年级|| (1 )班有7个合作学习小组,各学习小组的人数分别为:5 ,6 ,6 ,x ,7 ,8 ,9 ,这组数据的平均数是7 ,那么这组数据的中位数是()A.6 B.7 C.8 D.910.以下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,… ,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.2611.如图,在平面直角坐标系中,将矩形OABC沿对角线OB对折,使点A (,0 )落在点A1处,点B的坐标是(,1 ) ,那么点A1的坐标是()A.(,) B.(,) C.(,2 ) D.(,)12.如图,在平面直角坐标系系中,直线y =k1x +2与x轴交于点A ,与y轴交于点C ,与反比例函数y =在第|一象限内的图象交于点B ,连接B0.假设S△OBC=1 ,tan∠BOC =,那么k2的值是()A.﹣3 B.1 C.2 D.3二.填空(本大题6个小题,每题4分共24分)13.方程(x﹣2 )2=4的根是.14.计算:2cos60°﹣tan45°=.15.一个菱形的两条对角线长分别为6cm和8cm ,那么这个菱形的面积为cm2.16.在某时刻的阳光照耀下,身高160cm的阿美的影长为80cm ,她身旁的旗杆影长5m ,那么旗杆高为m.17.从﹣1 ,0 ,1 ,2 ,3这五个数中,随机抽取一个数记为m ,那么使关于x的不等式组有解,并且使函数y = (m﹣1 )x2+2mx +m +2与x轴有交点的概率为.18.在▱ABCD中,AB<BC ,∠B =30° ,AB =2,将△ABC沿AC翻折至||△AB′C ,使点B′落在▱ABCD所在的平面内,连接B′D.假设△AB′D是直角三角形,那么BC的长为.三.解答题(本大题2小题,每题7分,共14分)解答时每题必须给出必要的演算过程或推理步骤.19.解二元一次方程组.20.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级||篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.九年级||一班在8场比赛中得到13分,问九年级||一班胜、负场数分别是多少?四、解答题:(本大题4个小题,每题10分,共40分,解答题时每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线). )21.先化简,再求值:(﹣)÷,其中x =tan60°+2.22.2021年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心开展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级||全体学生中随机抽取了假设干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答以下问题:(1 )本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2 )被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.23."村村通公路〞工程是国|家为支持新农村建设的一项重大举措,为了落实这一举措,重庆潼南县政府方案在南北方向的A、B两村之间建一条公路AB.公路AB的一侧有C村,在公路AB上的M处测得C村在M的南偏东37°方向上,从M向南走270米到达N处,测得C村在N的东南方向上,且C村周围800米范围内为油菜花田,那么方案修建的公路AB 是否会穿过油菜花田,请说明理由(参考数据:sin37°≈0.8 ,cos37°≈0.8 ,tan37°≈0.75 )24.长宽比为(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G 处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A ,点D分别落在边AB ,CD上,折痕为EF.那么四边形BCEF为矩形.证明:设正方形ABCD的边长为1 ,那么BD =.由折叠性质可知BG =BC =1 ,∠AFE =∠BFE =90° ,那么四边形BCEF为矩形.∴∠A =∠BFE.∴EF∥AD.∴,即,∴.∴.∴四边形BCEF为矩形.阅读以上内容,答复以下问题:(1 )在图①中,所有与CH相等的线段是,tan∠HBC的值是;(2 )四边形BCEF为矩形,模仿上述操作,得到四边形BCMN ,如图② ,求证:四边形BCMN为矩形;(3 )将图②中的矩形BCMN沿用(2 )中的方式操作3次后,得到一个"矩形〞,那么n的值是.五、解答题(本大题2个小题,每题12分,共24分)解答时每题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.:四边形ABCD中,AD∥BC ,AD =AB =CD ,∠BAD =120° ,点E是射线CD上的一个动点(与C、D不重合) ,将△ADE绕点A顺时针旋转120°后,得到△ABE′ ,连接EE′.(1 )如图1 ,∠AEE′=°;(2 )如图2 ,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F ,过点E作EM∥AD 交直线AF于点M ,写出线段DE、BF、ME之间的数量关系;(3 )如图3 ,在(2 )的条件下,如果CE =2 ,AE =,求ME的长.26.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D ,E为BC的中点,A (0 ,4 )、C (5 ,0 ) ,二次函数y =x2+bx +c的图象抛物线经过A ,C两点.(1 )求该二次函数的表达式;(2 )F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG ,求四边形DEFG周长的最||小值;(3 )抛物线上是否在点P ,使△ODP的面积为12 ?假设存在,求出点P的坐标;假设不存在,请说明理由.2021 -2021年九年级|| (下)入学考试数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每题4分,共48分)每个小题都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡上对应位置中.1.△ABC中,AC =4 ,BC =3 ,AB =5 ,那么sinA = ()A.B.C.D.【考点】锐角三角函数的定义;勾股定理的逆定理.【分析】先根据直角三角形的三边长判断出三角形的形状,再根据锐角三角函数的定义求解即可.【解答】解:∵△ABC中,AC =4 ,BC =3 ,AB =5 ,即42+32=52 ,∴△ABC是直角三角形,∠C =90°.sinA ==.应选A.2.用配方法解方程x2+4x﹣5 =0 ,以下配方正确的选项是()A.(x +2 )2=1 B.(x +2 )2=5 C.(x +2 )2=9 D.(x +4 )2=9 【考点】解一元二次方程-配方法.【分析】先将原方程进行配方,然后选项进行对照,即可得到正确选项.【解答】解:x2+4x﹣5 =0 ,配方,得(x +2 )2=9.应选C.3.以下式子,正确的选项是()A.3 +=3B.(+1 ) (﹣1 ) =1C.2﹣1=﹣2 D.x2+2xy﹣y2= (x﹣y )2【考点】二次根式的乘除法;负整数指数幂.【分析】根据二次根式的加减、负整数指数幂和完全平方公式判断.【解答】解:A、不是同类二次根式,不能相加,故错误;B、正确;C、原式=,故错误;D、与完全平方公式不符,故错误.应选B.4.在▱ABCD中,假设∠A:∠B =1:2 ,那么∠A的度数是()A.60°B.90°C.120°D.150°【考点】平行四边形的性质.【分析】根据平行四边形的根本性质可知,平行四边形的邻角互补,由可得,∠A、∠B是邻角,故∠A可求解.【解答】解:∵▱ABCD ,∴∠A +∠B =180° ,而∠A:∠B =1:2∴∠A =60° ,∠B =120°∴∠A =60°.应选A.5.一个等腰三角形的两条边长分别为3和8 ,那么这个等腰三角形的周长为() A.11 B.14 C.19 D.14或19【考点】等腰三角形的性质;三角形三边关系.【分析】分3是腰长与底边长两种情况讨论求解即可.【解答】解:①3是腰长时,三角形的三边分别为3、3、8 ,∵3 +3 =6<8 ,∴此时不能组成三角形;②3是底边长时,三角形的三边分别为3、8、8 ,此时能组成三角形,所以,周长=3 +8 +8 =19 ,综上所述,这个等腰三角形的周长是19.应选C.6.二次函数y =﹣2 (x﹣4 )2﹣5的开口方向、对称轴分别是()A.开口向上、直线x =﹣4 B.开口向上、直线x =4C.开口向下、直线x =﹣4 D.开口向下、直线x =4【考点】二次函数的性质.【分析】抛物线解析式为顶点式,可根据顶点式求抛物线的开口方向,对称轴.【解答】解:由y =﹣2 (x﹣4 )2﹣5可知,二次项系数为﹣2<0 ,∴抛物线开口向下,对称轴为直线x =4 ,应选D.7.如图,在⊙O中,∠AOB =50° ,那么∠ACB = ()A.30°B.25°C.50°D.40°【考点】圆周角定理.【分析】直接根据圆周角定理求解即可.【解答】解:∠ACB =∠AOB =×50°=25°.应选:B.8.如图,在△ABC中,AB =BC ,∠B =30° ,DE垂直平分BC ,那么∠ACD的度数为()A.30°B.45°C.55°D.75°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形的性质得到∠A =∠ACB =75° ,根据线段垂直平分线的性质得到BD =CD ,求得∠DCE =∠B =30° ,即可得到结论.【解答】解:∵AB =BC ,∠B =30° ,∴∠A =∠ACB =75° ,∵DE垂直平分BC ,∴BD =CD ,∴∠DCE =∠B =30° ,∴∠ACD =∠ACB =∠DCB =45° ,应选B.9.某校九年级|| (1 )班有7个合作学习小组,各学习小组的人数分别为:5 ,6 ,6 ,x ,7 ,8 ,9 ,这组数据的平均数是7 ,那么这组数据的中位数是()A.6 B.7 C.8 D.9【考点】中位数;算术平均数.【分析】根据题意首||先求出x的值,再利用中位数的定义求出答案.【解答】解:∵5 ,6 ,6 ,x ,7 ,8 ,9 ,这组数据的平均数是7 ,∴5 +6 +6 +x +7 +8 +9 =7×7 ,解得:x =8 ,故这组数据按从小到大排列:5 ,6 ,6 ,7 ,8 ,8 ,9 ,那么这组数据的中位数是:7.应选:B.10.以下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,… ,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.26【考点】规律型:图形的变化类.【分析】仔细观察图形,找到图形的个数与黑色正方形的个数的通项公式后代入n =11后即可求解.【解答】解:观察图形发现:图①中有2个黑色正方形,图②中有2 +3× (2﹣1 ) =5个黑色正方形,图③中有2 +3 (3﹣1 ) =8个黑色正方形,图④中有2 +3 (4﹣1 ) =11个黑色正方形,… ,图n中有2 +3 (n﹣1 ) =3n﹣1个黑色的正方形,当n =10时,2 +3× (10﹣1 ) =29 ,应选B.11.如图,在平面直角坐标系中,将矩形OABC沿对角线OB对折,使点A (,0 )落在点A1处,点B的坐标是(,1 ) ,那么点A1的坐标是()A.(,) B.(,) C.(,2 ) D.(,)【考点】翻折变换(折叠问题);坐标与图形性质.【分析】由可得∠AOB =30° ,翻折后找到相等的角及相等的边,在直角三角形中,利用勾股定理可求得答案.【解答】解:过A1作A1D⊥OA ,∵A (,0 ) ,B的坐标是(,1 ) ,∴OA =,AB =1 ,在Rt△OAB中,OB ==2 ,AB =1 ,∴AB =OB ,∵△AOB是直角三角形,∴∠AOB =30° ,OB为折痕,∴∠A1OB =∠AOB =30° ,OA1=OA =,Rt△OA1D中,∠OA1D =30° ,∴OD =×=,A1D =×=,∴点A1的坐标(,).应选B.12.如图,在平面直角坐标系系中,直线y =k1x +2与x轴交于点A ,与y轴交于点C ,与反比例函数y =在第|一象限内的图象交于点B ,连接B0.假设S△OBC=1 ,tan∠BOC =,那么k2的值是()A.﹣3 B.1 C.2 D.3【考点】反比例函数与一次函数的交点问题.【分析】首||先根据直线求得点C的坐标,然后根据△BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论.【解答】解:∵直线y =k1x +2与x轴交于点A ,与y轴交于点C ,∴点C的坐标为(0 ,2 ) ,∴OC =2 ,∵S△OBC=1 ,∴BD =1 ,∵tan∠BOC =,∴=,∴OD =3 ,∴点B的坐标为(1 ,3 ) ,∵反比例函数y =在第|一象限内的图象交于点B ,∴k2=1×3 =3.应选D.二.填空(本大题6个小题,每题4分共24分)13.方程(x﹣2 )2=4的根是 4 ,0.【考点】解一元二次方程-直接开平方法.【分析】根据方程的特点,用直接开平方法解一元二次方程即可.【解答】解:(x﹣2 )2=4 ,x﹣2 =±2 ,解得:x1=4 ,x2=0.故答案为:4 ,0.14.计算:2cos60°﹣tan45°=0.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值直接代入即可求解.【解答】解:2cos60°﹣tan45°=2×﹣1 =0.15.一个菱形的两条对角线长分别为6cm和8cm ,那么这个菱形的面积为24cm2.【考点】菱形的性质.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:∵一个菱形的两条对角线长分别为6cm和8cm ,∴这个菱形的面积=×6×8 =24 (cm2 ).故答案为:24.16.在某时刻的阳光照耀下,身高160cm的阿美的影长为80cm ,她身旁的旗杆影长5m ,那么旗杆高为10m.【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:根据相同时刻的物高与影长成比例,设旗杆的高度为x m ,那么160:80 =x:5 ,解得x =10.故答案是:10.17.从﹣1 ,0 ,1 ,2 ,3这五个数中,随机抽取一个数记为m ,那么使关于x的不等式组有解,并且使函数y = (m﹣1 )x2+2mx +m +2与x轴有交点的概率为.【考点】概率公式;解一元一次不等式组;抛物线与x轴的交点.【分析】首||先解不等式以及利用二次函数与x轴交点个数和△的关系分别得出m的取值范围,进而利用概率公式求出即可.【解答】解:∵x +1≤m ,解得;x≤m﹣1 ,2﹣x≤2m ,解得:x≥2﹣2m ,∴使关于x的不等式组有解,那么m﹣1≥2﹣2m ,解得:m≥1 ,∵使函数y = (m﹣1 )x2+2mx +m +2与x轴有交点,∴b2﹣4ac4m2﹣4 (m﹣1 ) (m +2 ) =﹣4m +8≥0 ,解得:m≤2 ,∴m的取值范围是:1≤m≤2 ,∴从﹣1 ,0 ,1 ,2 ,3这五个数中,随机抽取一个数记为m ,符合题意的有1 ,2 ,故使关于x的不等式组有解,并且使函数y = (m﹣1 )x2+2mx +m +2与x 轴有交点的概率为.故答案为:.18.在▱ABCD中,AB<BC ,∠B =30° ,AB =2,将△ABC沿AC翻折至||△AB′C ,使点B′落在▱ABCD所在的平面内,连接B′D.假设△AB′D是直角三角形,那么BC的长为4或6.【考点】翻折变换(折叠问题);平行四边形的性质.【分析】在▱ABCD中,AB<BC ,要使△AB′D是直角三角形,有两种情况:∠B′AD =90°或∠AB′D =90° ,画出图形,分类讨论即可.【解答】解:当∠B′AD =90°AB<BC时,如图1 ,∵AD =BC ,BC =B′C ,∴AD =B′C ,∵AD∥BC ,∠B′AD =90° ,∴∠B′GC =90° ,∵∠B =30° ,AB =2,∴∠AB′C =30° ,∴GC =B′C =BC ,∴G是BC的中点,在Rt△ABG中,BG =AB =×2=3 ,∴BC =6;当∠AB′D =90°时,如图2 ,∵AD =BC ,BC =B′C ,∴AD =B′C ,∵由折叠的性质:∠BAC =90° ,∴AC∥B′D ,∴四边形ACDB′是等腰梯形,∵∠AB′D =90° ,∴四边形ACDB′是矩形,∴∠BAC =90° ,∵∠B =30° ,AB =2,∴BC =AB÷=2×=4 ,∴当BC的长为4或6时,△AB′D是直角三角形.故答案为:4或6.三.解答题(本大题2小题,每题7分,共14分)解答时每题必须给出必要的演算过程或推理步骤.19.解二元一次方程组.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:5y =5 ,即y =1 ,把y =1代入①得:x =3 ,那么方程组的解为.20.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级||篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.九年级||一班在8场比赛中得到13分,问九年级||一班胜、负场数分别是多少?【考点】一元一次方程的应用.【分析】设胜了x场,那么负了(8﹣x )场,根据得分为13分可列方程求解.【解答】解:设胜了x场,那么负了(8﹣x )场,根据题意得:2x +1• (8﹣x ) =13 ,x =5 ,8﹣5 =3.答:九年级||一班胜、负场数分别是5和3.四、解答题:(本大题4个小题,每题10分,共40分,解答题时每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线). )21.先化简,再求值:(﹣)÷,其中x =tan60°+2.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最||简结果,把x的值代入计算即可求出值.【解答】解:原式=[﹣]•=•=•=,当x =tan60°+2 =+2时,原式=.22.2021年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心开展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级||全体学生中随机抽取了假设干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答以下问题:(1 )本次抽取的学生人数是30;扇形统计图中的圆心角α等于144°;补全统计直方图;(2 )被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】列表法与树状图法;扇形统计图;利用频率估计概率.【分析】(1 )根据题意列式求值,根据相应数据画图即可;(2 )根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1 )6÷20% =30 , (30﹣3﹣7﹣6﹣2 )÷30×360 =12÷30×26 =144° ,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30 ,144°;补全统计图如下列图:(2 )根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,小红小花 1 2 3 4 51 (2 ,1 ) (3 ,1 ) (4 ,1 ) (5 ,1 )2 (1 ,2 ) (3 ,2 ) (4 ,2 ) (5 ,2 )3 (1 ,3 ) (2 ,3 ) (4 ,3 ) (5 ,3 )4 (1 ,4 ) (2 ,4 ) (3 ,4 ) (5 ,4 )5 (1 ,5 ) (2 ,5 ) (3 ,5 ) (4 ,5 )记小红和小花抽在相邻两道这个事件为A ,∴.23."村村通公路〞工程是国|家为支持新农村建设的一项重大举措,为了落实这一举措,重庆潼南县政府方案在南北方向的A、B两村之间建一条公路AB.公路AB的一侧有C村,在公路AB上的M处测得C村在M的南偏东37°方向上,从M向南走270米到达N处,测得C村在N的东南方向上,且C村周围800米范围内为油菜花田,那么方案修建的公路AB 是否会穿过油菜花田,请说明理由(参考数据:sin37°≈0.8 ,cos37°≈0.8 ,tan37°≈0.75 )【考点】解直角三角形的应用-方向角问题.【分析】此题要求的实际上是C到AB的距离,过C点作CD⊥AB ,CD就是所求的线段,由于CD是条公共直角边,可用CD表示出MD ,ND ,然后根据MN的长,来求出CD的长.【解答】解:如图,过C点作CD⊥AB于D ,由题可知:∠CND =45° ,∠CMD =37°.设CD =x千米,tan∠CMD =,那么MD =.tan∠CND =,那么ND ==x ,∵MN =270米,∴MD﹣ND =MN ,即tan37°x﹣x =270 ,∴﹣x =270 ,解得x =810.∵810米>800米,∴方案修建的公路AB是不会穿过油菜花田.答:方案修建的公路AB是不会穿过油菜花田.24.长宽比为(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G 处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A ,点D分别落在边AB ,CD上,折痕为EF.那么四边形BCEF为矩形.证明:设正方形ABCD的边长为1 ,那么BD =.由折叠性质可知BG =BC =1 ,∠AFE =∠BFE =90° ,那么四边形BCEF为矩形.∴∠A =∠BFE.∴EF∥AD.∴,即,∴.∴.∴四边形BCEF为矩形.阅读以上内容,答复以下问题:(1 )在图①中,所有与CH相等的线段是GH、DG,tan∠HBC的值是﹣1;(2 )四边形BCEF为矩形,模仿上述操作,得到四边形BCMN ,如图② ,求证:四边形BCMN为矩形;(3 )将图②中的矩形BCMN沿用(2 )中的方式操作3次后,得到一个"矩形〞,那么n的值是6.【考点】几何变换综合题.【分析】(1 )设CH =GH =DG =x ,根据DC =DH +CH =1 ,列出方程即可求出HC ,然后运用三角函数的定义求出tan∠HBC的值.(2 )只需借鉴阅读中证明"四边形BCEF为矩形〞的方法就可解决问题.(3 )利用(2 )中结论,寻找规律可得到n的值.【解答】解:(1 )如图①中,由折叠可得:DG =HG ,GH =CH ,∴DG =GH =CH.设HC =x ,那么DG =GH =x.∵∠DGH =90° ,∴DH =x ,∴DC =DH +CH =x +x =1 ,解得x =﹣1.∴tan∠HBC ===﹣1.故答案为:GH、DG ,;(2 )如图②中,∵BC =1 ,EC =BF =,∴BE ==由折叠可得BP =BC =1 ,∠FNM =∠BNM =90° ,∠EMN =∠CMN =90°.∵四边形BCEF是矩形,∴∠F =∠FEC =∠C =∠FBC =90° ,∴四边形BCMN是矩形,∠BNM =∠F =90° ,∴MN∥EF ,∴=,即BP•BF =BE•BN ,∴1×=BN ,∴BN =,∴BC:BN =1:=:1 ,∴四边形BCMN是的矩形;(3 )同理可得:将矩形沿用(2 )中的方式操作1次后,得到一个"矩形〞,将矩形沿用(2 )中的方式操作1次后,得到一个"矩形〞,将矩形沿用(2 )中的方式操作1次后,得到一个"矩形〞,所以将图②中的矩形BCMN沿用(2 )中的方式操作3次后,得到一个"矩形〞.故答案为6.五、解答题(本大题2个小题,每题12分,共24分)解答时每题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.:四边形ABCD中,AD∥BC ,AD =AB =CD ,∠BAD =120° ,点E是射线CD上的一个动点(与C、D不重合) ,将△ADE绕点A顺时针旋转120°后,得到△ABE′ ,连接EE′.(1 )如图1 ,∠AEE′=30°;(2 )如图2 ,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F ,过点E作EM∥AD 交直线AF于点M ,写出线段DE、BF、ME之间的数量关系;(3 )如图3 ,在(2 )的条件下,如果CE =2 ,AE =,求ME的长.【考点】几何变换综合题.【分析】(1 )根据旋转性质以及三角形内角和定理即可解决.(2 )根据EM∥FE′可以得==,再根据AN =NE ,BE′=DE即可得到线段DE、BF、ME之间的关系.(3 )通过辅助线求出线段E′F =7 ,E′Q =9 ,再由(2 )的结论得到ME的长.【解答】解:(1 )∵△ABE′是由△ADE绕点A顺时针旋转120°得到,∴∠EAE′=120° ,AE =AE′ ,∴∠E′=∠AEE′==30° ,故答案为30°.(2 )①当点E在CD上时,DE +BF =2ME ,理由如下:如图1 ,当点E在线段CD上,AF交EE′于N ,∵∠EAF =30° ,∠EAE′=120 ,∴∠E′AN =90° ,∴E′N =2AN ,∵∠NAE =∠NEA =30° ,∴NA =NE ,E′N =2EN ,∵EM∥FE′ ,∴==,∵BE′=DE ,∴E′F =2ME ,∴DE +BF =2ME.②当点E在CD延长线上,0°<∠EAD∠30°时,BF﹣DE =2ME ,理由如下:如图2 ,∵∠EAF =30° ,∠EAE′=120 ,∴∠E′AN =90° ,∴E′N =2AN ,∵∠NAE =∠NEA =30° ,∴NA =NE ,E′N =2EN ,∵EM∥FE′ ,∴==,∵BE′=DE ,∴E′F =2ME ,∴BF﹣DE =2ME.③当30°<∠EAD∠90°时,DE +BF =2ME ,理由如下:如图3 ,∵∠EAM =30° ,∠EAE′=120 ,∴∠E′AN =90° ,∴E′N =2AN ,∵∠NAE =∠NEA =30° ,∴NA =NE ,E′N =2EN ,∵EM∥FE′ ,∴==,∵BE′=DE ,∴E′F =2ME ,∴BF +DE =2ME.④当90°<∠EAD<120°时,DE﹣BF =2ME ,理由如下:如图4 ,∵∠EAM =30° ,∠EAE′=120 ,∴∠E′AN =90° ,∴E′N =2AN ,∵∠NAE =∠NEA =30° ,∴NA =NE ,E′N =2EN ,∵EM∥FE′ ,∴==,∵BE′=DE ,∴E′F =2ME ,∴DE﹣BF =2ME.(3 )如图5 ,作AG⊥BC于点G ,DH⊥BC于H ,AP⊥EE′于P ,EQ⊥BC于Q ,∵AD∥BC ,AD =AB =CD ,∠BAD =120° ,易知四边形AGHD是矩形,在△AGB和△DHC中,,∴△AGB≌△DHC ,∴BG =HC ,AD =GH ,∵∠ABE′=∠ADC =120° ,∴点E′、B、C共线,设AD =AB =CD =x ,那么GH =x ,BG =CH =x , 在RT△EQC中,CE =2 ,∠ECQ =60° ,∴CQ =EC =1 ,EQ =,∴E′Q =BC +BE′﹣CQ =3x﹣3 ,在RT△APE中,AE =2,∠AEP =30° ,∴AP =,PE =,∵AE =AE′ ,AP⊥EE′ ,∴PE =PE′=,∴EE′=2,在RT△E′EQ中,E′Q ==9 ,∴3x﹣3 =9 ,∴x =4 ,∴DE =BE′=2 ,BC =8 ,BG =2 ,∴E′G =4 ,∵∠AE′G =′AE′F ,∠AGE′=∠FAE′ ,∴△AGE′∽△FAE′ ,∴,∴,∴E′F =7 ,∴BF =E′F﹣E′B =7﹣2 =5 ,∵DE +BF =2ME ∴ME =.26.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D ,E为BC的中点,A (0 ,4 )、C (5 ,0 ) ,二次函数y =x2+bx +c的图象抛物线经过A ,C两点.(1 )求该二次函数的表达式;(2 )F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG ,求四边形DEFG周长的最||小值;(3 )抛物线上是否在点P ,使△ODP的面积为12 ?假设存在,求出点P的坐标;假设不存在,请说明理由.【考点】二次函数综合题.【分析】(1 )根据待定系数法,可得函数解析式;(2 )延长EC至||E′ ,使E′C =EC ,延长DA至||D′ ,使D′A =DA ,连接D′E′ ,交x轴于F点,交y轴于G点,那么有:GD =GD′ ,EF =E′F ,从而得:(DG +GF +EF +ED )的最||小值=D′E′+DE ,求出D′E′与DE的长即可得到答案.(3 )根据三角形的面积,首||先求得点P到OD的距离,然后过点O作OF⊥OD ,使OF等于点P到OD的距离,过点F作FG∥OD ,求得FG的解析式,然后再求直线FG与抛物线交点的坐标即可得到点P的坐标.【解答】解:(1 )将A (0 ,4 )、C (5 ,0 )代入二次函数y =x2+bx +c ,得,解得.故二次函数的表达式y =x2﹣x +4;(2 )如图:延长EC至||E′ ,使E′C =EC ,延长DA至||D′ ,使D′A =DA ,连接D′E′ ,交x轴于F点,交y 轴于G点,GD =GD′EF =E′F ,=D′E′+DE ,(DG +GF +EF +ED )最||小由E点坐标为(5 ,2 ) ,BC的中点;D (4 ,4 ) ,直角的角平分线上的点;得D′ (﹣4 ,4 ) ,E (5 ,﹣2 ).由勾股定理,得DE ==,D′E′==,=D′E′+DE =+;(DG +GF +EF +ED )最||小(3 )如以下列图:OD =.∵S△ODP的面积=12 ,∴点P到OD的距离==3.过点O作OF⊥OD ,取OF =3,过点F作直线FG∥OD ,交抛物线与点P1 ,P2 ,在Rt△OGF中,OG ===6 ,∴直线GF的解析式为y =x﹣6.将y =x﹣6代入y =得:x﹣6 =,解得:,,将x1、x2的值代入y =x﹣6得:y1=,y2=∴点P1 (,) ,P2 (,)如以下列图所示:过点O作OF⊥OD ,取OF =3,过点F作直线FG交抛物线与P3 ,P4 ,在Rt△PFO中,OG ==6∴直线FG的解析式为y =x +6 ,将y =x +6代入y =得:x +6 =解得:,y1=x1+6 =,y2=x2+6 =∴p3 (,) ,p4 (,)综上所述:点P的坐标为:(,)或(,)或(,)或(,).2021年4月15日。
重庆市2016年初中毕业曁高中招生考试数学试题(B 卷)(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:1.4的倒数是 ( D ) A.-4 B.4 C.41-D.412.下列交通指示标识中,不是轴对称图形的是( C )3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( B )A.0.1636×104B.1.636×103C.16.36×102D.163.6×104.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( C )A.35°B.45°C.55°D.125°5.计算(x 2y )3的结果是( A )A.x 6y 3B.x 5y 3C.x 5y 3D.x 2y36.下列调查中,最适合采用全面调查(普查)方式的是 ( D ) A.对重庆市居民日平均用水量的调查 B.对一批LED 节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查7.若二次根式2-a 有意义,则a 的取值范围是( A )A.a ≥2B.a ≤2C.a>2D.a ≠28.若m=-2,则代数式m 2-2m-1的值是( B ) A.9 B.7 C.-1 D.-99.观察下列一组图形,其中图形1中共有2颗星,图形2中共有6颗星,图形3中共有11颗星,图形4中共有17颗星,。
,按此规律,图形8中星星的颗数是( C )A.43B.45C.51D.5310.如图,在边长为6的菱形ABCD 中,∠DAB=60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图形阴影部分的面积是( A ) A.π9-318 B.π3-18 C.29-39πD.π3-31811.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i=1:3,则大楼AB 的高度约为(精确到0.1米,参考数据:45.2673.1341.12≈≈≈,,) ( D )A.30.6米B.32.1 米C.37.9米D.39.4米12.如果关于x 的分式方程1131+-=-+x xx a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2xxxxa的解集为x<-2,那么符合条件的所有整数a的积是(D)A.-3B.0C.3D.9二、填空题13.在21-,0,-1,1这四个数中,最小的数是__-1___.14.计算:02-3)1(318--+⎪⎭⎫⎝⎛+π=____8______.15.如图,CD是○O的直径,若AB⊥CD,垂足为B,∠OAB=40°,则∠C=__25__度.16.点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是_51____.17.为增强学生体质,某中学在体育课中加强了学生的长跑训练。
2016年河南省普通高中招生考试试卷数学一、选择题:(每小题3分,共24分)1.31-的相反数是( )A .31- B .31 C .-3 D .32.某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为( ) A .9.5×10-7 B .9.5×10-8 C .0.95×10-7 D .95×10-5 3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )A .B .C .D .4.下列计算正确的是( )A .228=-B .(-3)2=6C .3a 4-2a 2=a 2D .(-a 3)2=a 5 5.如图,过反比例函数)0(>=x xky 的图像上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )A .2B .3C .4D .56.如图,在△ABC 中,∠ACB =90°,AC =8,AB =10.DE 垂直平分AC 交AB 于点E ,则DE 的长为( )A .6B .5C .4D .37.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:( ) A.甲B.乙C.丙D.丁8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( )A.(1,-1) B.(-1,-1) C.(2,0) D.(0,-2)二、填空题(每小题3分,共21分)9.计算:(-2)0-38=.10.如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是.11.若关于x的一元二次方程x2+3x-k=0有两个不相等的实数根,则k的取值范围.12.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是.13.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是.14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作弧OC交弧AB 于点C.若OA=2,则阴影部分的面积为.15.如图,已知AD //BC ,AB ⊥BC ,AB =3.点E 为射线BC 上一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于点M 、N .当点B ′为线段MN 的三等分点时,BE 的长为 .三、解答题:(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取.17.(9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 7453 7446 6754 7638 6834 7326 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题: (1)填空:m = ,n = ; (2)补全频数统计图;(3)这20名“健步走运动”团队成员一天步行步数的中位数落在 组; (4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.(9分)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC、BM于点D、E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=;②连接OD、OE,当∠A的度数为时,四边形ODME是菱形.19.(9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°.升旗时,国旗上端悬挂在距地面2.25米处.若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)20.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.(10分)某班“数学兴趣小组”对函数y=x2-2|x|的图像和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:=.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图像的一部分,请画出该图像的另一部分.(3)观察函数图像,写出两条函数的性质:(4)进一步探究函数图像发现:①函数图像与x轴有个交点,所以对应方程x2-2|x|=0有个实数根;②方程x2-2|x|=2有个实数根;③关于x的方程x2-2|x|=a有4个实数根,a的取值范围是.22.(10分)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为.(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1.如图2所示,分别以AB、AC为边,作等边三角形ABD和等边三角形ACE,连接CD、BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且P A=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.23.(11分)如图1,直线n x y +-=34交x 轴于点A ,交y 轴于点C (0,4).抛物线c bx x y ++=232经过点A ,交y 轴于点B (0,-2).点P 为抛物线上一个动点,经过点P 作x 轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m . (1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图2,将△BDP 绕点B 逆时针旋转,得到△BD ′P ′,且旋转角∠PBP ′=∠OAC ,当点P 的对应点P ′落在坐标轴上时,请直接写出点P 的坐标.2016年河南省普通高中招生考试 数学试题参考答案及评分标准说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半. 3.评分标准中,如无特殊说明,均为累计给分. 4.评分过程中,只给整数分数. 一、选择题每小题3分,共24分.16.原式=22)1()1)(1()1(+-+÷+-x x x x x x …………………………………………3分 =111-+∙+-x x x x =1--x x ………………………………………………5分 解⎩⎨⎧<-≤-4121x x 得251<≤-x ,所以不等式组的整数解为-1,0,1,2 ………7分若使分式有意义,只能取x =2,∴原式=2122-=--…………………8分 17.1.4,1; ……………………………………………………………………2分 2.按人数为4和1正确补全直方图.; ……………………………………4分 3.B ; …………………………………………………………………………6分 4.)(4820134120人=++⨯. …………………………………………………8分 18. 1.在Rt △ABC 中,点M 是AC 的中点,∴MA =MB ,∴∠A =∠MBA . …………………………………………………2分 ∵四边形ABED 是圆内接四边形,∴∠ADE +∠ABE =180°, 又∠ADE +∠MDE =180°, ∴∠MDE =∠MBA .同理可证:∠MED =∠A . ……………………………………………………4分 ∴∠MDE =∠MED , ∴MD =ME . ……………………………………………5分 2.①2; ………………………………………………………………………7分 ②60°(或60). ……………………………………………………………………9分19. 过点C 作CD ⊥AB ,垂足为D ,则DB =9. …………………………1分 在Rt △CBD 中,∠BCD =45°, ∴CD =945tan =DB. ……………………………………………………………3分在Rt △ACD 中,∠ACD =37.5°,∴AD =CD ·tan 37.5°=9×0.75=6.75. …………………………………6分 ∴AB =AD +DB =6.75+9=15.75. …………………………………………7分 15.75-2.25.÷45=0.3米/秒..∴国旗应以约0.3米/秒的速度匀速上升. ……………………………………9分20.1.设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元. 1分依题意得⎩⎨⎧=+=+2923263y x y x ,解得⎩⎨⎧==75y x . …………………………………………3分所以一只A 型节能灯的售价是5元,一只B 型节能灯的售价是7元. ……4分2.设购进A 型节能灯m 只,总费用为w 元.依题意得w =5m +750m -.=3502+-m .……………………………………5分 ∵02<-,∴当m 取最大值时w 有最小值. …………………………………6分 又∵)50(3m m -≤,∴5.37≤m而m 为正整数,∴当m =37时,w 最小=276350372=+⨯-.…………………8分 此时133750=-.所以最省钱的购买方案是购进37只A 型节能灯,13只B 型节能灯. ………9分21. 1.0; 2.正确补全图像.;3.可从函数的最值,增减性,图像的对称性等方面阐述,答案不惟一,合理即可. 4.① 3,3;② 2;③01<<-a .注:本题不累计给分,除3.中每条性质为2分外,其他每空1分.22. 1.CB 延长线上,b a +; …………………………………………………2分 2.① DC =BE .理由如下: ∵△ABD 和△ACE 为等边三角形,∴AD =AB ,AC =AE , ∠BAD =∠CAE =60°.∴∠BAD +∠BAC =∠CAE +∠BAC ,即∠CAD =∠EAB . ………………………5分 ∴△CAD ≌△EAB . ∴DC =BE ……………………………………………6分 ② BE 长的最大值是4. …………………………………………………………8分 3.AM 的最大值为223+,点P 的坐标为)2,22(-. …………………10分【提示】如图1,构造△BNP ≌△MAP ,则NB =AM .由1.知,当点N 在BA 的延长线上时,NB 有最大值如图2.,易得AN =22,∴AM =NB =223+.过点P 作PE ⊥x 轴于E ,PE =AE =2,∴P )2,22(-23.1.由直线n x y +-=34过点C 0,4.,得n =4. ∴434+-=x y当y =0时,4340+-=x ,解得x =3. ∴A 3,0.. ……………………1分∵抛物线c bx x y ++=232经过点A 3,0.、B 0,-2.,∴⎪⎩⎪⎨⎧=-++⨯=c c b 2333202,∴⎪⎩⎪⎨⎧-=-=234c b . ∴抛物线的解析式为234322--=x x y . ………………………………………3分 2.∵点P 的横坐标为m ,∴P 23432,2--m m m .,D m ,2-.. ……………4分若△BDP 为等腰直角三角形,则PD =BD .①当点P 在直线BD 上方时,PD =m m 34322-.I .若点P 在y 轴左侧,则m <0,BD =m -.∴m m 34322-=m -,∴m 1=0舍去.,m 2=21舍去.. ………………………5分 II .若点P 在y 轴右侧,则m >0,BD =m .∴m m 34322-=m ,∴m 1=0舍去.,m 2=27. ………………………………6分 ②当点P 在直线BD 下方时,m >0,BD =m ,PD =m m 34322+-.∴m m 34322+-=m ,∴m 1=0舍去.,m 2=21. ……………………………7分综上,m =27或21. 即当△BDP 为等腰直角三角形,PD 的长为27或21.…8分3.)3454,5(1+-P ,)3454,5(2+-P ,)3211,825(3P . ………………………11分【提示】∵∠PBP ′=∠OAC ,OA =3,OC =4,∴AC =5, ∴sin ∠PBP ′=54,cos ∠PBP ′=53.①当点P ′落在x 轴上时,过点D ′作D ′N ⊥x 轴,垂足为N , 交BD 于点M ,∠DBD ′=∠ND ′P ′=∠PBP ′.如图1,ND ′- MD ′=2,即2)54()3432(532=---m m m .如图2,ND ′+ MD ′=2,即2)54()3432(532=-+-m m m .∴)3454,5(1+-P ,)3454,5(2+-P . ②当点P ′落在y 轴上时,如图3,过点D ′作D ′M ⊥x 轴,bb 交BD 于点M ,过点P ′作P ′N ⊥y 轴,交MD ′的延长线于点N , ∠DBD ′=∠ND ′P ′=∠PBP ′.∵P ′N =BM ,即m m m 53)3432(542=- ∴)3211,825(3P .。
2016年普通高等学校招生全国统一考试〔天津卷〕数学〔理科〕参考公式:• 如果事件A ,B 互斥,那么()()()P AB P A P B =+;• 如果事件A ,B 相互独立,那么()()()P AB P A P B =;• 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高;• 锥体体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高.第Ⅰ卷〔共40分〕一、选择题:本大题共8小题,每题5分,在每题给出的四个选项中,只有一项是符合题目要求的. 〔1〕【2016年天津,理1,5分】已知集合}{1,2,3,4A =,}{32,B y y x x A ==-∈,则AB =〔 〕〔A 〕}{1 〔B 〕}{4 〔C 〕{}1,3 〔D 〕{}1,4 【答案】D 【解析】把1,2,3,4x =分别代入32y x =-得:1,4,7,10y =,即{}1,4,7,10B =,∵{}1,2,3,4A =,∴{}1,4AB =,故选D .【点评】此题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基此题,难点系数较小.一要注意培养良好的答题习惯,防止出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.〔2〕【2016年天津,理2,5分】设变量x ,y 满足约束条件2023603290x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则目标函数25z x y =+的最小值为〔 〕〔A 〕4- 〔B 〕6 〔C 〕10 〔D 〕17 【答案】B【解析】作出不等式组2023603290x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩表示的可行域,如右图中三角形的区域,作出直线0:250l x y +=,图中的虚线,平移直线0l ,可得经过点()3,0时,25z x y =+取得最小值6,故选B .【点评】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围. 〔3〕【2016年天津,理3,5分】在ABC ∆中,假设13AB =,3BC =,120C ∠=,则AC =〔 〕〔A 〕1 〔B 〕2 〔C 〕3 〔D 〕4 【答案】A【解析】在ABC ∆中,假设13AB =,3BC =,120C ∠=,2222cos AB BC AC AC BC C =+-⋅,得:21393AC AC =++,解得1AC =或4AC =-〔舍去〕,故选A .【点评】〔1〕正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.〔2〕利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而到达知三求三的目的.(4)〔4〕【2016年天津,理4,5分】阅读右边的程序框图,运行相应的程序,则输出S 的值为〔 〕 〔A 〕2 〔B 〕4 〔C 〕6 〔D 〕8 【答案】B【解析】第一次判断后:不满足条件,248S =⨯=,2n =,4i >;第二次判断不满足条件3n >;第三次判断满足条件:6S >,此时计算862S =-=,3n =,第四次判断3n >不满足条件,第五次判断6S >不满足条件,4S =.4n =,第六次判断满足条件3n >,故输出4S =,故选B .【点评】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.〔5〕【2016年天津,理5,5分】设{}n a 是首项为正数的等比数列,公比为q 则“0q <”是“对任意的正整数n ,2120n n a a -+<”的〔 〕〔A 〕充要条件 〔B 〕充分而不必要条件 〔C 〕必要而不充分条件 〔D 〕既不充分也不必要条件 【答案】C【解析】{}n a 是首项为正数的等比数列,公比为q ,假设“0q <”是“对任意的正整数n ,2120n n a a -+<”不一定成立,例如:当首项为2,12q =-时,各项为2,1-,12,14-,…,此时()2110+-=>,1110244⎛⎫+-=> ⎪⎝⎭; 而“对任意的正整数n ,2120n n a a -+<”,前提是“0q <”,则“0q <”是“对任意的正整数n ,2120n n a a -+<” 的必要而不充分条件,故选C .【点评】充分、必要条件的三种判断方法.〔1〕定义法:直接判断“假设p 则q ”、“假设q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.〔2〕等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否认式的命题,一般运用等价法.〔3〕集合法:假设A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;假设A =B ,则A 是B 的充要条件.〔6〕【2016年天津,理6,5分】已知双曲线()222104x y b b-=>,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为〔 〕 〔A 〕223144x y -= 〔B 〕224143x y -= 〔C 〕222144x y -= 〔D 〕221412x y -= 【答案】D【解析】以原点为圆心,双曲线的实半轴长为半径长的圆的方程为224x y +=,双曲线两条渐近线方程为2by x =±,设,2b A x x ⎛⎫ ⎪⎝⎭,则∵四边形ABCD 的面积为2b ,∴22x bx b ⋅=,∴1x =±,将1,2b A ⎛⎫⎪⎝⎭代入224x y +=,可得2144b +=,∴212b =,∴双曲线的方程为221412x y -=,故选D .【点评】求双曲线的标准方程关注点:〔1〕确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.〔2〕利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以防止讨论.①假设双曲线的焦点不能确定时,可设其方程为()2210Ax By AB =<+.②假设已知渐近线方程为0mx ny +=,则双曲线方程可设为()22220m x n y λλ-=≠.〔7〕【2016年天津,理7,5分】已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅的值为〔 〕〔A 〕58- 〔B 〕18 〔C 〕14 〔D 〕118【答案】B【解析】由DD 、E 分别是边AB 、BC 的中点,2DE EF =,()()AF BC AD DF AC AB ⋅=+⋅-()()2213133112224442AB DE AC AB AB AC AC AB AC AB AC AB ⎛⎫⎛⎫=+⋅-=+⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭,311111144228=-⋅⋅⋅-=,故选B .【点评】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.〔8〕【2016年天津,理8,5分】已知函数2(43)3,0()log (1)1,0a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩〔0a >,且1a ≠〕在R 上单调递减,且关于x 的方程()2f x x =-恰好有两个不相等的实数解,则a 的取值范围是〔 〕〔A 〕20,3⎛⎤ ⎥⎝⎦ 〔B 〕23,34⎡⎤⎢⎥⎣⎦〔C 〕123,334⎡⎤⎧⎫⎨⎬⎢⎥⎣⎦⎩⎭ 〔D 〕123,334⎡⎫⎧⎫⎨⎬⎪⎢⎣⎭⎩⎭【答案】C【解析】()log 11a y x =++在[)0,+∞递减,则01a <<,函数()f x 在R 上单调递减,则()()234020104303log 011a a a a a -⎧≥⎪⎪<<⎨⎪+-⋅+≥++⎪⎩;解得,1334a ≤≤;由图象可知,在[)0,+∞上,()2f x x =-有且仅有一个解,故在(),0-∞上,()2f x x =-同样有且仅有一个解,当32a >即23a >时,联立()24332x a a x +-+=-,则()()2424320a a ∆=---=,解得34a =或1〔舍去〕,当132a ≤≤时,由图象可知,符合条件,综上:a 的取值范围为123,334⎡⎤⎧⎫⎨⎬⎢⎥⎣⎦⎩⎭,故选C .【点评】已知函数有零点求参数取值范围常用的方法和思路:〔1〕直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围〔2〕别离参数法:先将参数别离,转化成求函数值域问题加以解决;〔3〕数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.第II 卷〔共110分〕二、填空题:本大题共6小题,每题5分,共30分.〔9〕【2016年天津,理9,5分】已知a ,R b ∈,i 是虚数单位,假设()()1i 1i b a +-=,则ab的值为 . 【答案】2【解析】∵()()()1i 1i 11i b b b a +-=++-=,,R a b ∈,∴110b a b +=⎧⎨-=⎩,解得:21a b =⎧⎨=⎩,∴2a b =.【点评】此题重点考查复数的基本运算和复数的概念,属于基此题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(i)(i)()()i,(,,.)++=-++∈a b c d ac bd ad bc a b c d R ,22i ()()ii +++-=++a b ac bd bc ad c d c d(,,.)∈a b c d R ,其次要熟悉复数相关基本概念,如复数i(,)+∈a b a b R 的实部为a 、虚部为b 、模为22+a b 、共轭为i -a b .〔10〕【2016年天津,理10,5分】821x x ⎛⎫- ⎪⎝⎭的展开式中7x 的系数为 .〔用数字作答〕【答案】56-【解析】()()8216318811r rr r r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令1637r -=,解得3r =.∴821x x ⎛⎫- ⎪⎝⎭的展开式中7x 的系数为()338156C -=-.【点评】〔1〕求特定项系数问题可以分两步完成:第一步是根据所给出的条件〔特定项〕和通项公式,建立方程来确定指数〔求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n r ≥〕;第二步是根据所求的指数,再求所求解的项.〔2〕有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.〔11〕【2016年天津,理11,5分】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如下图〔单位:m 〕,则该四棱锥的体积为 3m .【答案】2【解析】由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,棱锥的底面是底为2,高为1的平行四边形,故底面面积2212m S =⨯=,棱锥的高3m h =,312m 3V Sh ==.【点评】〔1〕解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.〔2〕三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图 的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.〔12〕【2016年天津,理12,5分】如图,AB 是圆的直径,弦CD 与AB 相交于点E ,22BE AE ==,BD ED =,则线段CE 的长为 .【答案】233【解析】过D 作DH AB ⊥于H ,∵22BE AE ==,BD ED =,∴1BH HE ==,2AH =,1BH =, ∴2•2DH AH BH ==,则2DH =,在Rt DHE ∆中,则 22213DE DH HE =+=+=,由相交弦定理得:CE DE AE EB ⋅=⋅,∴122333AE EB CE DE ⋅⨯===. 【点评】1、解决与圆有关的成比例线段问题的两种思路:〔1〕直接应用相交弦、切割线定理及其推论;〔2〕当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相 似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握.2、应用相交 弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关 的相似三角形等.〔13〕【2016年天津,理13,5分】已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增.假设实数a 满足()()122a f f ->-,则a 的取值范围是 .【答案】13,22⎛⎫ ⎪⎝⎭【解析】∵()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增,∴()f x 在区间()0,+∞上单调递减,则()()122a f f ->-,等价为()()122a f f ->,即1222a --<<,则112a -<,即1322a <<.【点评】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:〔1〕借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效.〔2〕借助 函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代 数式的几何意义实现“数”向“形”的转化.〔14〕【2016年天津,理14,5分】设抛物线222x pt y pt ⎧=⎨=⎩〔t 为参数,0p >〕的焦点F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设7,02C p ⎛⎫⎪⎝⎭,AF 与BC 相交于点E .假设2CF AF =,且ACE ∆的面积为32,则p 的值为 . 【答案】6【解析】抛物线222x pt y pt⎧=⎨=⎩〔t 为参数,0p >〕的普通方程为:22y px =焦点为,02p F ⎛⎫⎪⎝⎭,如图:过抛物线上一点A 作l 的垂线,垂足为B ,设7,02C p ⎛⎫⎪⎝⎭,AF 与BC 相交于点E .2CF AF =,3CF p =,32AB AF p ==,(),2A p p ,ACE ∆的面积为32,12AE AB EF CF ==,可得13AFC ACE S S ∆∆=.即:11323232p p ⨯⨯⨯=,解得6p =.【点评】〔1〕凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.〔2〕假设()00,P x y 为抛物线()220y px p =>上一点,由定义易得02pPF x =+;假设过焦点的弦AB 的端点坐标为()11,A x y ,()22,B x y ,则弦长为12AB x x p =++,12x x +可由根与系数的关系整体求出;假设遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.〔15〕【2016年天津,理15,13分】已知函数()4tan sin cos 23f x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭〔1〕求()f x 的定义域与最小正周期;〔2〕讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调性.解:〔1〕()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.()4tan cos cos 4sin cos 33f x x x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭214sin cos 2sin cos 2x x x x x x ⎛⎫=+- ⎪ ⎪⎝⎭)()sin 21-cos2sin 2=2sin 23x x x x x π==-.所以, ()f x 的最小正周期22T ππ==. 〔2〕令23z x π=-,函数2sin y z =的单调递增区间是2,2,.22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦. 所以,当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增,在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 【点评】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为()sin y A x k ωϕ=++的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的表达;降次是一种三角变换的常用技巧,要灵活运用降次公式.〔16〕【2016年天津,理16,13分】某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会. 〔1〕设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;〔2〕设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.解:〔1〕由已知,有()1123442101,3C C C P A C +==所以,事件A 发生的概率为13. 〔2〕随机变量X 的所有可能取值为0,1,2.()2223342104015C C C P X C ++===,()111133342107115C C C C P X C +===, ()113424215C C P X C ===.所以,随机变量X 分布列为: 随机变量X 的数学期望()0121151515E X =⨯+⨯+⨯=.【点评】求均值、方差的方法〔1〕已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;〔2〕已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b 的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;〔3〕如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.〔17〕【2016年天津,理17,13分】如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,2AB BE ==. 〔1〕求证://EG 平面ADF ;〔2〕求二面角O EF C --的正弦值;〔3〕设H 为线段AF 上的点,且23AH HF =,求直线BH 和平面CEF 所成角的正弦值.解:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),A B C ----(11,0),D ,(1,1,2),E --(0,0,2),F (1,0,0)G -.〔1〕()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则1100n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面. 〔2〕易证,()1,1,0OA =-为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面CEF 的法向量,则2200n EF n CF ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩.不妨设1x =,可得()21,1,1n =-.因此有2226cos ,3OA n OA n OA n ⋅<>==-⋅,于是23sin ,3OA n <>=,所以,二面角O EF C --的正弦值为33. 〔3〕由23AH HF =,得25AH AF =.因为()1,1,2AF =-,所以2224,,5555AH AF ⎛⎫==- ⎪⎝⎭,进而有334,,555H ⎛⎫- ⎪⎝⎭, 从而284,,555BH ⎛⎫= ⎪⎝⎭,因此2227cos ,21BH n BH n BH n ⋅<>==-⋅.直线BH 和平面CEF 所成角的正弦值为721.【点评】1、利用数量积解决问题的两条途径 :一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.2、利用数量积可解决有关垂直、夹角、长度问题.〔1〕0a ≠,0b ≠,·0a b a b ⊥⇔=;〔2〕2a a =;〔3〕cos ,a ba b a b ⋅=.〔18〕【2016年天津,理18,13分】已知{}n a 是各项均为正数的等差数列,公差为d .对任意的N n *∈,n b 是na和1n a +的等比中项.〔1〕设221n n n c b b +=-,N n *∈,求证:数列}{n c 是等差数列;〔2〕设1a d =,221(1)nk n k k T b ==-∑,N n *∈,求证21112nk kT d =<∑. 解:〔1〕由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.〔2〕()()()2222221234212n n n T b b b b b b -=-++-++-+()()()22224222212n n n a a d a a a d d n n +=+++=⋅=+所以()222211111111111112121212nnnk k k kT d k k d k k dn d===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 【点评】分组转化法求和的常见类型〔1〕假设n n n a b c ±=,且{}n b ,{}n c 为等差或等比数列,可采用分组求和法求{}n a 的前n 项和.〔2〕通项公式为n a =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{}n b ,{}n c 是等比数列或等差数列,可采用分组求和法求和.〔19〕【2016年天津,理19,14分】设椭圆22213x y a +=(a >的右焦点为F ,右顶点为A .已知113e OF OA FA+=,其中O 为原点,e 为椭圆的离心率.〔1〕求椭圆的方程;〔2〕设过点A 的直线l 与椭圆交于点B 〔B 不在x 轴上〕,垂直于l 的直线与l 交于点M ,与y 轴交于点H .假设BF HF ⊥,且MOA ∠≤MAO ∠,求直线l 的斜率的取值范围.解:〔1〕设(),0F c ,由113cOF OA FA+=,即113()c c a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=.〔2〕设直线l 的斜率为k ()0k ≠,则直线l 的方程为()2y k x =-.设(),B B B x y ,由方程组()221432x y y k x ⎧+=⎪⎨⎪=-⎩, 消去y ,整理得()2222431616120k x k x k +-+-=.解得2x =,或228643k x k -=+,由题意得228643B k x k -=+,从而21243B ky k -=+.由〔1〕知,()1,0F ,设()0,H H y ,有()1,H FH y =-,2229412,4343k k BF k k ⎛⎫-= ⎪++⎝⎭.由BF HF ⊥,得0BF HF ⋅=,所以222129404343H ky k k k -+=++,解得29412H k y k-=.因此直线MH 的方程为219412k y x k k -=-+.设(),M M M x y ,由方程组219412(2)k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩消去y ,解得2220912(1)M k x k +=+.在MAO ∆中,||||MOA MAO MA MO ∠≤∠⇔≤,即()22222M MMMx y x y -+≤+,化简得1M x ≥,即22209112(1)k k +≥+,解得k ≤或k ≥l的斜率的取值范围为6,,4⎛⎡⎫-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭. 【点评】在利用代数法解决最值与范围问题时常从以下五个方面考虑:〔1〕利用判别式来构造不等关系,从而确定参数的取值范围;〔2〕利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间 建立等量关系;〔3〕利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;〔4〕利用基本 不等式求出参数的取值范围;〔5〕利用函数的值域的求法,确定参数的取值范围.〔20〕【2016年天津,理20,14分】设函数()3()1f x x ax b =---,x ∈R ,其中a ,b ∈R .〔1〕求()f x 的单调区间;〔2〕假设()f x 存在极值点0x ,且()()10f x f x =,其中10x x ≠,求证:1023x x +=;〔3〕设0a >,函数()()g x f x =,求证:()g x 在区间[]0,2上的最大值不小于...14. 解:〔1〕由()()31f x x ax b =---,可得()()2'31f x x a =--.下面分两种情况讨论:①当0a ≤时,有()()2'310f x x a =--≥恒成立,所以()f x 的单调递增区间为(),-∞+∞. ②当0a >时,令()'0fx =,解得1x =+1x = 当x 变化时,()'f x ,()f x 的变化情况如下表:所以⎝⎭⎝⎭⎫+∞⎪⎪⎝⎭. 〔2〕因为()f x 存在极值点,所以由〔1〕知0a >,且01x ≠,由题意,得()()200'310f x x a =--=,即()2013a x -=,进而()()300002133a a f x x axb x b =---=---. ()()()()()3000000082322222123333a a a f x x a xb x ax a b x b f x -=----=-+--=---=,且0032x x -≠,由题意及〔1〕知,存在唯一实数满足()()10f x f x =,且10x x ≠,因此1032x x =-,所以1023x x +=.〔3〕设()g x 在区间[]0,2上的最大值为M ,{}max ,x y 表示,x y 两数的最大值.下面分三种情况同理:①当3a ≥时,1021≤<≤,由〔1〕知,()f x 在区间[]0,2上单调递减,所以()f x 在区间 []0,2上的取值范围为()()2,0f f ⎡⎤⎣⎦,因此()(){}{}max 2,0max 12,1M f f a b b ==----{}max 1(),1()a a b a a b =-++--+1(),01(),0a a b a b a a b a b -+++≥⎧=⎨--++<⎩,所以12M a a b =-++≥.②当334a ≤<时,101121≤<<+<≤+1〕和〔2〕知,()011f f f ⎛⎛≥-=+ ⎝⎭⎝⎭,()211f f f ⎛⎛≤+= ⎝⎭⎝⎭,所以()f x 在区间[]0,2上的取值范围为1,1ff ⎡⎤⎛⎛+⎢⎥ ⎢⎥⎝⎭⎝⎭⎣⎦,max 1,1M f f ⎧⎫⎛⎫⎛⎪⎪=+- ⎪ ⎨⎬ ⎪ ⎝⎭⎝⎭⎪⎪⎩⎭max a b a b ⎧⎫=---⎨⎬⎩⎭()()max a b a b ⎧⎫=++⎨⎬⎩⎭231944a b =+≥⨯=.③当304a <<时,0112<<<,由〔1〕和〔2〕知,()011f f f ⎛⎛<=+ ⎝⎭⎝⎭,()211f f f ⎛⎛>=- ⎝⎭⎝⎭,所以()f x 在区间[]0,2上的取值范围为()()0,2f f ⎡⎤⎣⎦,因此 ()(){}{}max 0,2max 1,12M f f b a b ==----()(){}max 1,1a a b a a b =-++--+11||4a ab =-++>. 综上所述,当0a >时,()g x 在区间[]0,2上的最大值不小于14. 【评析】1、求可导函数单调区间的一般步骤:〔1〕确定函数()f x 的定义域〔定义域优先〕;〔2〕求导函数()f x ';〔3〕在函数()f x 的定义域内求不等式()0f x '>或()0f x '<的解集.〔4〕由()()()00f x f x >'<'的解集确定函数()f x 的单调增〔减〕区间.假设遇不等式中带有参数时,可分类讨论求得单调区间.2、由函数()f x 在(),a b 上的单调性,求参数范围问题,可转化为()0f x '≥ 〔或()0f x '≤〕恒成立问题,要注意“=”是否可以取到.。
2017学年九年级第一届启航杯学科知识竞赛
数学预赛试卷
满分:100分 时量:70分钟
一、选择题(每题5分,共30分)
1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩
的解的个数为( ) A .1 B .2 C .3 D .4
2.如图,⊙O 1的半径为1,正方形ABCD 的边长为6,点O 2为正方形ABCD 的中心,O 1O 2垂直AB 于P 点,O 1O 2=8.若将⊙O 1绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 1与正方形ABCD 的边只有一个公共点的情况一共出现(
)
A .3次
B .5次
C .6次
D .7次
3.函数y =ax -2(a ≠0)与y =ax 2(a ≠0)在同一平面直角坐标系中的图象可能是( )
A .
B .
C .
D .
4.已知函数y =()⎪⎩⎪⎨⎧>--≤--)3(1)5(31)1(22x x x x ,若使y =k 成立的x 值恰好有三个,则k 的值为( )
A .0
B .1
C .2
D .3
5、若︒<<︒900α,那么以αsin 、αcos 、ααcot tan ⋅为三边的△ABC 的内切圆,外接圆的半径之和为( )
A .)cos (sin 21αα+
B .)cot (tan 21αα+
C .ααcos sin 2
D .α
αcos sin 1⋅ 6.如果实数x ,y 满足122=+y x ,那么)1)(1(xy xy +-有( )
A .最小值
21和最大值1 B .最小值4
3,而无最大值 C .最大值1,而无最小值 D .最大值1和最小值43 二、填空题(每题5分,共30分)
7.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .
8.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;
再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB 于点H ,则AH AB
的值为
9.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,
4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是
10.不等式2
2125a x x +<-+与不等式042>-a x 同解,则a 的值等于_______ 11.已知方程1||+=ax x 有一负根,而没有正根,那么a 的取值范围是
12已知a 、b 、c 均不为0,且0=++c b a ,则2
2222222111c b a b a c a c b -++-++-+2= 三、解答题(每题10分,共40分)
13.实数x ,y ,z ,满足:x +y +z =a ,x 2+y 2+z 2=22
a (a >0),求证:a z 320≤≤.
14.如图,直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,且∠ABC =60°,AB =BC ,△ACD 的外接圆⊙O 交BC 于E 点,连接DE 并延长,交AC 于P 点,交AB 延长线于F .
(1)求证:CF =DB ;
(2)当AD =时,试求E 点到CF 的距离.
15.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.
(1)试说明四边形EFCG是矩形;
(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,
①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;
②求点G移动路线的长.
16.已知抛物线C1:y=a(x+1)2﹣2的顶点为A,且经过点B(﹣2,﹣1).
(1)求A点的坐标和抛物线C1的解析式;
(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;
(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.。