四川省德阳市2012高考数学难点9 指数函数、对数函数问题
- 格式:doc
- 大小:487.50 KB
- 文档页数:6
高考数学中的指数函数与对数函数题详解指数函数和对数函数是高考数学中的重要内容,涉及到的题型和考点较多。
本文将对指数函数和对数函数的基本定义、性质以及解题方法进行详细解析。
一、指数函数指数函数是以指数为自变量的函数,其一般形式为y = a^x (其中a>0且a≠1)。
下面,我们来讨论指数函数的基本性质。
1. 指数函数的定义域和值域指数函数的定义域为实数集R,值域为正实数集(0, +∞)。
2. 指数函数的图像特点当指数a>1时,指数函数的图像在x轴的右侧逐渐增大,形状呈现递增趋势;当0<a<1时,指数函数的图像在x轴的右侧逐渐减小,形状呈现递减趋势。
3. 指数函数的性质(1) 指数函数在定义域内具有严格单调性,即当a>1时为严格递增函数,当0<a<1时为严格递减函数。
(2) 指数函数在定义域内具有连续性,无间断点。
(3) 指数函数在定义域内具有无界性,即当x趋向于正无穷时,函数值也趋向于正无穷。
(4) 指数函数具有经过点(0, 1)的特点。
接下来,我们通过解题的方式来进一步认识指数函数。
例题1:已知方程2^x = 4的解为x = 2,则方程e^(x-1) = 1的解为多少?解题思路:首先,根据指数函数的性质可知,2^x = 4 等价于 x = 2。
然后,代入方程e^(x-1) = 1,得到e^(2-1) = 1,即e^1 = 1,因此方程e^(x-1) = 1的解为x = 1。
二、对数函数对数函数是指以对数为自变量的函数,其一般形式为y = loga(x)(其中a>0且a≠1,x>0)。
下面,我们来探讨对数函数的基本性质。
1. 对数函数的定义域和值域对数函数的定义域为正实数集(0, +∞),值域为实数集R。
2. 对数函数的图像特点当0<a<1时,对数函数的图像在x轴的右侧逐渐减小,形状呈现递减趋势;当a>1时,对数函数的图像在x轴的右侧逐渐增大,形状呈现递增趋势。
高中数学难点解析教案——指数函数、对数函数问题一、教学目标1. 理解指数函数、对数函数的定义及性质。
2. 掌握指数函数、对数函数的图象和性质。
3. 学会运用指数函数、对数函数解决实际问题。
4. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 指数函数的定义与性质2. 对数函数的定义与性质3. 指数函数、对数函数的图象4. 指数函数、对数函数的应用5. 难点解析与例题讲解三、教学重点与难点1. 教学重点:指数函数、对数函数的定义、性质、图象及应用。
2. 教学难点:指数函数、对数函数的图象特点,以及实际问题的解决方法。
四、教学方法1. 采用问题驱动法,引导学生主动探究指数函数、对数函数的性质。
2. 利用数形结合法,让学生直观地理解指数函数、对数函数的图象。
3. 运用实例讲解法,培养学生运用数学知识解决实际问题的能力。
4. 组织小组讨论,提高学生的合作交流能力。
五、教学过程1. 导入:通过回顾初中阶段学习的指数函数、对数函数知识,引发学生对高中阶段深入学习这些内容的兴趣。
2. 新课讲解:(1)讲解指数函数的定义与性质,让学生通过实例理解指数函数的单调性、奇偶性等性质。
(2)讲解对数函数的定义与性质,让学生了解对数函数与指数函数的互化关系,以及对数函数的单调性、奇偶性等性质。
(3)结合图象,讲解指数函数、对数函数的图象特点,以及它们之间的关系。
3. 应用拓展:通过实例让学生学会运用指数函数、对数函数解决实际问题,如人口增长、放射性衰变等。
4. 难点解析:针对学生在学习过程中遇到的难点,如指数函数、对数函数的图象特点,以及实际问题的解决方法,进行详细讲解和分析。
5. 课堂练习:布置相关练习题,让学生巩固所学知识,提高解题能力。
6. 总结:对本节课的主要内容进行总结,强调指数函数、对数函数的性质和应用。
7. 课后作业:布置适量作业,让学生进一步巩固所学知识。
六、教学评价1. 课堂讲解:观察学生在课堂上的参与程度、提问回答情况,了解学生对指数函数、对数函数概念和性质的理解程度。
对数函数的常见问题和答案对数函数是高中数学中比较重要的一种函数,它在数学、物理、工程等领域中应用广泛。
由于对数函数有着自身的独特性质,因此在学习中也容易遇到各种问题与难点。
下面,我们将介绍对数函数的常见问题以及相应的解答。
一、对数函数的定义和性质1. 对数函数的定义是什么?对数函数是指以某个正数为底,使得另一个正数成为这个底数的几次方的值成为自变量,结果是次数的函数。
比如,以底数为2,x为自变量的对数函数就是y=log2x。
2. 对数函数有哪些基本性质?对数函数的基本性质包括:①定义域为正实数集,值域为实数集;②对于任意正数x,y和任意实数a,b,都有以下性质成立:(1)loga(xy)=logax+logay;(2)loga(x/y)=logax-logay;(3)loga xn=nlogax;(4)logax=loga1/x)二、常见问题及解答1. 对数函数和指数函数有何区别?对数函数和指数函数是数学中比较基本的两种函数,但它们的性质是不同的。
指数函数的自变量是底数,常常表示为y=ax,其中a为大于零且不等于1的实数。
对数函数的自变量是指数,常常表示为 y=logax,其中a(a>0,且a!=1)是底数,x是指数。
对数函数和指数函数是互逆函数。
2. 对数函数有什么应用?对数函数在数学中有很多应用。
比如,对数函数可以用来解决幂指数方程及在财务中的利率计算问题;在物理学中,对数函数常用于描述分布趋势及解决物理学中的质量、电势等计算以及存储问题;在工程中,对数函数常用于处理信号和噪声的比较以及平均功率计算等方面。
3. 如何求对数函数的反函数?对于对数函数y=logax,其反函数是指数函数y=ax。
可以通过先将对数函数转化为指数形式,然后将自变量和因变量交换位置并解出自变量来得到对数函数的反函数。
4. 对数函数的定义域和值域?对数函数的定义域为正实数集,值域为实数集。
因为对于任意定义域中的正实数x,对数函数的值均可以用实数表示。
高中数学难点解析教案——指数函数、对数函数问题一、教学目标:1. 理解指数函数、对数函数的定义及其性质。
2. 掌握指数函数、对数函数的图像和应用。
3. 能够解决实际问题中涉及指数函数、对数函数的问题。
二、教学内容:1. 指数函数的定义与性质2. 对数函数的定义与性质3. 指数函数、对数函数的图像4. 指数函数、对数函数在实际问题中的应用5. 常见指数函数、对数函数问题的解法及技巧三、教学重点与难点:1. 教学重点:指数函数、对数函数的定义、性质、图像及其应用。
2. 教学难点:指数函数、对数函数问题的解法及技巧。
四、教学方法:1. 采用讲授法,讲解指数函数、对数函数的定义、性质、图像及其应用。
2. 利用例题,讲解指数函数、对数函数问题的解法及技巧。
3. 开展小组讨论,引导学生主动探究、发现规律。
4. 利用信息技术辅助教学,展示指数函数、对数函数的图像。
五、教学过程:1. 导入:通过复习初中阶段学习的指数函数、对数函数知识,为新课的学习做好铺垫。
2. 讲解:详细讲解指数函数、对数函数的定义、性质、图像及其应用。
3. 例题解析:分析、解答典型例题,讲解解题思路与技巧。
4. 练习与讨论:学生自主完成练习题,小组内讨论解题过程,交流心得。
5. 总结与拓展:对本节课内容进行总结,提出拓展性问题,激发学生课后思考。
6. 课后作业:布置适量作业,巩固所学知识。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评估:1. 课后收集学生的作业,评估学生对指数函数、对数函数知识的掌握程度。
2. 在下一节课开始时,进行课堂测试,测试学生对指数函数、对数函数知识的掌握情况。
3. 观察学生在课堂讨论中的表现,了解学生对指数函数、对数函数问题的理解和应用能力。
七、作业布置:1. 请学生完成课后练习题,包括选择题、填空题和解答题。
2. 请学生准备一篇关于指数函数、对数函数应用的案例分析,下节课分享。
八、课后反思:1. 总结本节课的教学效果,包括学生的参与度、理解程度和作业完成情况。
高考数学难点突破_难点09__指数对数函数指数对数函数是高考数学中的一个重要的难点,也是学生普遍认为比较难理解和掌握的内容之一、本文将从基本概念、性质、解题技巧等方面进行详细介绍,帮助学生突破这一难点。
一、基本概念1.指数函数:指数函数是以指数为自变量,以底数为底的函数。
比如y=2^x就是一个指数函数,其中2是底数,x是指数。
2. 对数函数:对数函数是指数函数的逆运算,也就是说,指数函数和对数函数互为反函数。
比如 y = log2(x) 就是一个对数函数,其中 2 是底数,y 是对数。
二、性质1.指数函数的性质:(1)底数为正数且不等于1;(2)指数为任意实数;(3)当底数小于1时,指数函数是递减函数;(4)当底数大于1时,指数函数是递增函数。
2.对数函数的性质:(1)底数为正数且不等于1;(2)对数为任意正数;(3)对数函数的定义域是正数集合,值域是实数集合;(4)对数函数图象是一条过点(1,0)的上凸曲线。
三、解题技巧1.指数函数的解题技巧:(1)利用指数函数的性质进行函数图象的绘制;(2)将指数转化为对数的形式,利用对数的性质简化计算;(3)注意指数函数的定义域和值域,避免出现无解的情况;(4)利用指数函数的性质解决等式、不等式,注意正确应用换底公式。
2.对数函数的解题技巧:(1)利用对数函数的性质进行函数图象的绘制;(2)利用对数函数的反函数性质化简等式、不等式的解;(3)根据定义域和值域限制,判断函数是否有解;(4)注意合理利用换底公式,化简对数运算。
四、经典题型1. 解对数方程:如 log2(x+3) + log2(x-2) = 3,将对数方程转化为指数方程求解。
2.判断函数性质:如f(x)=5^(x-3),要求判断指数函数f(x)的增减性和定义域。
3.运用指数对数函数求最值:如y=3^x-3^(1-x),通过化简求函数的最值。
4. 判断指数函数与对数函数的关系:如 f(x) = 2^x 和 g(x) = log2(x),要求判断两个函数的值域和定义域。
指数函数巧解对数函数问题摘要:函数问题是高中数学中的重点内容,同时也是重点与难点。
在实际教学的过程中,应做到函数知识的巧妙运用,进而实现解题效率的提升。
基于此,本文对加强函数题型间转换训练的方法加以分析,并借助实际的例题探讨具体的解题过程,进而提升对指数函数与对数函数知识点的掌握,最终实现知识的融会贯通。
关键词:指数函数;对数函数;解题技巧引言:指数函数与对数函数都属于基本初等函数,这两部分内容都是高考考察的重点,相关知识点的出现形式既包括主观题也包括客观题,对于学生的综合能力提出了较高的要求。
在解答相关问题的时候,学生应做到对指数函数以及对数函数知识的灵活运用,并将技巧应用到解题过程中,促进正确率和解题效率的提升。
1.指数函数与对数函数解题转换的方法学生在学习指数函数和对数函数的过程中,应掌握相应的知识点,同时保证可以将这两类函数的基本性质、定义域、值域、图象等灵活应用于解题过程当中。
教师针对这部分内容也可以开展相应的专题训练,进而有效提高学生的问题分析能力和逻辑思维能力。
在实际解题的过程中,教师应有效引导学生进行思考,分析两种函数知识点中的共同之处,并在活跃学生思维的基础上尝试通过指数函数与对数函数知识点找到正确的解题思路。
学生在学习指数函数和对数函数的时候应重点对其基本性质、定义域、值域、图象以及特殊点等进行研究,进而实现对相关内容的转换应用。
考虑到两种函数在转换以及应用过程中的联系,在学习数学的时候常常将其而二者合并学习,并通过一种一种知识完成对另一种习题的解决。
值得注意的是,培养学生的转换思维也是学习的重点内容,例如将指数函数的运算法则、单调性、导数等灵活应用于对数函数相关问题的解答当中,进而获取更加简便的解题方法,实现解题效率的提升[1]。
1.指数函数与对数函数转换的例题分析对数函数是六大基本初等函数之一,是继指数函数之后另外一个十分关键的幻术。
相较于指数函数,对数函数题目具有更丰富、更灵活的特点,但在实际解题的过程中二者之间又存在着十分密切的联系,在知识运用和思想方法上存在着相应的共同之处[2]。
剖析对数函数中的三大难点对数函数是高中数学中的一个重要函数,也是高考的热点知识之一.学习对数函数时会遇到一些难点,使解题思维陷入困境,究其原因主要有三大难点.难点一:底数不统一对数的运算性质及相关的知识都是建立在底数相同的基础上的,但在实际问题中,对数的运算、变形却经常要遇到底数不相同的情况,出现这种情形,该如何来突破呢?主要有三种处理方法:① 化指数式.对数函数与指数函数互为反函数,所以它们之间有着密切的关系:log a N b =即为b a N =,因此在处理有关对数中遇到的问题时,经常将对数式化为指数式来帮助解决. ②利用换底公式统一底数.换底公式的主要功能就是将底数不相同的对数通过换底把底数统一起来,然后再运用相关的性质与法则进行求解. ③ 利用函数图象.函数的图象是函数的另一重要方面,它可以将函数的有关性质直观显现,因此,当对数的底数不相同时,可以借助对数函数的图象的直观性来加以理解和寻求解题的思路.例1 若1100a b a b ≠≠>>,,,,且满足关系式2log 2log 4log 3a a b ==,求a b,的值.分析:已知关系式中包含三个别底数不相同的对数式, 因此可设2log 2log 4log 3a a b m ===,转化为指数式来解决.解:设2log 2log 4log 3a a b m ===,则2m a =,42ma ⎛⎫= ⎪⎝⎭, 22mm a a ⎛⎫∴= ⎪⎝⎭,即22m m m a a =. 由于0m a >,122m ∴=,1m ∴=-. log 2log 31a b ∴==-,1123a b ∴==,. 例2 设2log 3a =,3log 7b =,求42log 56的值.分析:两个已知对数式的底数不相同,无法直接进行计算,所以应该首先考虑统一底数,从条件看应该把底数统一为3.解:由2log 3a =,可得31log 2a =, 所以,33342333log 56log 73log 23log 56log 42log 2log 711ab ab a ++===++++. 例3 若log 2log 20a b <<,则a b ,满足的关系是( )A.1a b << B.1b a << C.01a b <<< D.01b a <<< 分析:此题由于两个对数式底数不同,但是真数相同,所以可以把两个对数式看成是两个对数函数在自变量取同一个值时的两个不同的函数值,可通过图象来分析.解:log 2log 2a b ,可以看成是对数函数log a y x =,log b y x =在2x =时的两个函数值,画出它们的大致图象(如右图),显然a b ,均小于1,根据对数函数的底数和图象的关系可得:01b a <<<,故选(D).难点二:真数是和差的形式 对数的运算性质的主要功能是将运算级别较高的降低为级别较低的运算,而和与差是运算中的最低级别,所以在处理真数是和差形式的对数问题时,难度就较大,主要有两种处理方法:①整体考虑;②对真数因式分解.例4 若实数x 满足222log (21)log (24)3x x +--=,求x 的值.分析:已知关系式既有对数的相乘,又有真数的差,要将此式进行转化,可以把2log (21)x -看成整体,再对22log (24)x +-的真数因式分解.解:由222log (21)log (24)3x x +--=,得22log (21)log 4(21)3x x ⎡⎤--=⎣⎦,所以22log (21)2log (21)3x x ⎡⎤-+-=⎣⎦,所以222log (21)2log (21)30x x -+--=,解得2log (21)1x -=,或2log (21)3x -=-,故有2log 3x =,或29log 8x =. 难点三:对数与对数相乘对于对数与对数相乘,运用对数的运算性质是很难解决的.因此,在解决此类问题时,要根据所给的关系式认真分析其结构特点.其求解主要有三种方法:①利用换底公式;②整体考虑;③化各对数为和差的形式.例5 设23456783log 3log 4log 5log 6log 7log 8log log 27m =,求m 的值. 分析:已知等式是七个对数之积,其特点是:从第二个对数开始的每一个对数的底数是前一个对数的真数,因此,我们可以采用换底公式将各对数换成以2为底的两个对数的商,然后约分达到目的.解:2345678log 3log 4log 5log 6log 7log 8log m22222222222222log 4log 5log 6log 7log 8log log 3log log 3log 4log 5log 6log 7log 8m m ==. 23log log 273m ∴==,8m ∴=.例6 已知2222(log )7log 30x x -+≤,求函数22log log 24x x y ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭的值域. 分析:所求函数的解析式是两个对数的积的形式,可利用对数的运算性质将其化为两个差的积.解:由2222(log )7log 30x x -+≤,得21log 32x ≤≤. 函数22222231log log (log 1)(log 2)log 2424x x y x x x ⎛⎫⎛⎫⎛⎫==--=-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. 当23log 2x =,即x =min 14y =-; 当2log 3x =,即8x =时,max 2y =.所以函数的值域为124⎡⎤-⎢⎥⎣⎦,.。
难点36 函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.●难点磁场1.(★★★★★)关于x的不等式2·32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为.2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)(1)若a=1,b=–2时,求f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B 关于直线y=kx+对称,求b的最小值.●案例探究[例1]已知函数f(x)=logm(1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明;(2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目.知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组.错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根.技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题.解:(1)x<–3或x>3.∵f(x)定义域为[α,β],∴α>3设β≥x1>x2≥α,有当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数.(2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)]∵0<m<1, f(x)为减函数.∴即即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根∴∴0<m<故当0<m<时,满足题意条件的m存在.[例2]已知函数f(x)=x2–(m+1)x+m(m∈R)(1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m ≥5;(2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3;(3)在(2)的条件下,若函数f(sinα)的最大值是8,求m.命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属★★★★★级题目.知识依托:一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式.错解分析:第(1)问中易漏掉Δ≥0和tan(A+B)<0,第(2)问中如何保证f(x)在[1,3]恒小于等于零为关键.技巧与方法:深挖题意,做到题意条件都明确,隐性条件注意列.列式要周到,不遗漏. (1)证明:f(x)+4=0即x2–(m+1)x+m+4=0.依题意:又A、B锐角为三角形内两内角∴<A+B<π∴tan(A+B)<0,即∴∴m≥5(2)证明:∵f(x)=(x–1)(x–m)又–1≤cosα≤1,∴1≤2+cosα≤3,恒有f(2+cosα)≤0即1≤x≤3时,恒有f(x)≤0即(x–1)(x–m)≤0∴m≥x但xmax=3,∴m≥xmax=3(3)解:∵f(sinα)=sin2α–(m+1)sinα+m=且≥2,∴当sinα=–1时,f(sinα)有最大值8.即1+(m+1)+m=8,∴m=3●锦囊妙计函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化.考生应做到:(1)深刻理解一般函数y=f(x)、y=f–1(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.●歼灭难点训练一、选择题1.(★★★★★)已知函数f(x)=loga[–(2a)2]对任意x∈[,+∞]都有意义,则实数a的取值范围是( )A.(0,B.(0,)C.[,1D.(,)2.(★★★★★)函数f(x)的定义域为R,且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2–x+1,那么当x>1时,f(x)的递减区间是( )A.[,+∞B.(1,C.[,+∞D.(1,]二、填空题3.(★★★★)关于x的方程lg(ax–1)–lg(x–3)=1有解,则a的取值范围是.4.(★★★★★)如果y=1–sin2x–mcosx的最小值为–4,则m的值为.三、解答题5.(★★★★)设集合A={x|4x–2x+2+a=0,x∈R}.(1)若A中仅有一个元素,求实数a的取值集合B;(2)若对于任意a∈B,不等式x2–6x<a(x–2)恒成立,求x的取值范围.6.(★★★★)已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x–1)=f(3–x)且方程f(x)=2x有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n=,使f(x)定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值;如果不存在,说明理由.7.(★★★★★)已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=f[g1(x)], g3(x)=f [g2(x)], …gn(x)=f[gn–1(x)],…(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立;(2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点;(3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=f[g1(x)]=f(0)<0,且n≥2时,gn(x)<0.试问是否存在区间B(A∩B≠),对于区间内任意实数x,只要n≥2,都有gn(x)<0.8.(★★★★)已知函数f(x)= (a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.参考答案●难点磁场1.解析:设t=3x,则t∈[1,3],原不等式可化为a2–a–3>–2t2+t,t∈[1,3].等价于a2–a–3大于f(t)=–2t2+t在[1,3]上的最大值.答案:(–∞,–1)∪(2,+∞)2.解:(1)当a=1,b=–2时,f(x)=x2–x–3,由题意可知x=x2–x–3,得x1=–1,x2=3.故当a=1,b=–2时,f(x)的两个不动点为–1,3.(2)∵f(x)=ax2+(b+1)x+(b–1)(a≠0)恒有两个不动点,∴x=ax2+(b+1)x+(b–1),即ax2+bx+(b–1)=0恒有两相异实根∴Δ=b2–4ab+4a>0(b∈R)恒成立.于是Δ′=(4a)2–16a<0解得0<a<1故当b∈R,f(x)恒有两个相异的不动点时,0<a<1.(3)由题意A、B两点应在直线y=x上,设A(x1,x1),B(x2,x2)又∵A、B关于y=kx+对称.∴k=–1.设AB的中点为M(x′,y′)∵x1,x2是方程ax2+bx+(b–1)=0的两个根.∴x′=y′=,又点M在直线上有,即∵a>0,∴2a+≥2当且仅当2a=即a=∈(0,1)时取等号,故b≥–,得b的最小值–.●歼灭难点训练一、1.解析:考查函数y1=和y2=(2a)x的图象,显然有0<2a<1.由题意得a=,再结合指数函数图象性质可得答案.答案:A2.解析:由题意可得f(–x+1)=–f(x+1).令t=–x+1,则x=1–t,故f(t)=–f(2–t),即f(x)=–f(2–x).当x>1,2–x<1,于是有f(x)=–f(2–x)=–2(x–)2–,其递减区间为[,+∞).答案:C3.解析:显然有x>3,原方程可化为故有(10–a)·x=29,必有10–a>0得a<10又x=>3可得a>.答案:<a<104.解析:原式化为.当<–1,ymin=1+m=–4m=–5.当–1≤≤1,ymin==–4m=±4不符.当>1,ymin=1–m=–4m=5.答案:±5二、5.解:(1)令2x=t(t>0),设f(t)=t2–4t+a.由f(t)=0在(0,+∞)有且仅有一根或两相等实根,则有①f(t)=0有两等根时,Δ=016–4a=0a=4验证:t2–4t+4=0t=2∈(0,+∞),这时x=1②f(t)=0有一正根和一负根时,f(0)<0a<0③若f(0)=0,则a=0,此时4x–4·2x=02x=0(舍去),或2x=4,∴x=2,即A中只有一个元素综上所述,a≤0或a=4,即B={a|a≤0或a=4}(2)要使原不等式对任意a∈(–∞,0]∪{4}恒成立.即g(a)=(x–2)a–(x2–6x)>0恒成立.只须<x≤26.解:(1)∵方程ax2+bx=2x有等根,∴Δ=(b–2)2=0,得b=2.由f(x–1)=f(3–x)知此函数图象的对称轴方程为x=–=1得a=–1,故f(x)=–x2+2x.(2)f(x)=–(x–1)2+1≤1,∴4n≤1,即n≤而抛物线y=–x2+2x的对称轴为x=1∴n≤时,f(x)在[m,n]上为增函数.若满足题设条件的m,n存在,则又m<n≤,∴m=–2,n=0,这时定义域为[–2,0],值域为[–8,0].由以上知满足条件的m、n存在,m=–2,n=0.7.(1)证明:当n=1时,g1(x0)=x0显然成立;设n=k时,有gk(x0)=x0(k∈N)成立,则gk+1(x0)=f[gk(x0)]=f(x0)=g1(x0)=x0即n=k+1时,命题成立.∴对一切n∈N,若g1(x0)=x0,则gn(x0)=x0.(2)解:由(1)知,稳定不动点x0只需满足f(x0)=x0由f(x0)=x0,得6x0–6x02=x0,∴x0=0或x0=∴稳定不动点为0和.(3)解:∵f(x)<0,得6x–6x2<0x<0或x>1.∴gn(x)<0f[gn–1(x)]<0gn–1(x)<0或gn–1(x)>1要使一切n∈N,n≥2,都有gn(x)<0,必须有g1(x)<0或g1(x)>1.由g1(x)<06x–6x2<0x<0或x>1由g1(x)>06x–6x2>1故对于区间()和(1,+∞)内的任意实数x,只要n≥2,n∈N,都有gn(x)<0.8.(1)证明:任取x1>x2>0,f(x1)–f(x2)=∵x1>x2>0,∴x1x2>0,x1–x2>0,∴f(x1)–f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是增函数.(2)解:∵≤2x在(0,+∞)上恒成立,且a>0,∴a≥在(0,+∞)上恒成立,令(当且仅当2x=即x=时取等号),要使a≥在(0,+∞)上恒成立,则a≥.故a的取值范围是[,+∞).(3)解:由(1)f(x)在定义域上是增函数.∴m=f(m),n=f(n),即m2–m+1=0,n2–n+1=0故方程x2–x+1=0有两个不相等的正根m,n,注意到m·n=1,故只需要Δ=()2–4>0,由于a>0,则0<a<.。
难点5 求解函数解析式求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力.●难点磁场(★★★★)已知f (2-cos x )=cos2x +cos x ,求f (x -1).●案例探究[例1](1)已知函数f (x )满足f (log a x )=)1(12x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式.(2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x ).命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目.知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.技巧与方法:(1)用换元法;(2)用待定系数法.解:(1)令t=log a x (a >1,t >0;0<a <1,t <0),则x =a t .因此f (t )=12-a a (a t -a -t ) ∴f (x )=12-a a (a x -a -x )(a >1,x >0;0<a <1,x <0) (2)由f (1)=a +b +c ,f (-1)=a -b +c ,f (0)=c 得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a 并且f (1)、f (-1)、f (0)不能同时等于1或-1,所以所求函数为:f (x )=2x 2-1或f (x )=-2x 2+1或f (x )=-x 2-x +1或f (x )=x 2-x -1或f (x )=-x 2+x +1或f (x )=x 2+x -1.[例2]设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象.命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属★★★★题目. 知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线.错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱.技巧与方法:合理进行分类,并运用待定系数法求函数表达式.解:(1)当x ≤-1时,设f (x )=x +b∵射线过点(-2,0).∴0=-2+b 即b =2,∴f (x )=x +2.(2)当-1<x <1时,设f (x )=ax 2+2.∵抛物线过点(-1,1),∴1=a ·(-1)2+2,即a =-1∴f (x )=-x 2+2.(3)当x ≥1时,f (x )=-x +2综上可知:f (x )=⎪⎩⎪⎨⎧≥+-<<---≤+1,211,21,12x x x x x x 作图由读者来完成.●锦囊妙计本难点所涉及的问题及解决方法主要有1.待定系数法,如果已知函数解析式的构造时,用待定系数法;2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x );另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.●歼灭难点训练一、选择题1.(★★★★)若函数f (x )=34-x mx (x ≠43)在定义域内恒有f [f (x )]=x ,则m 等于( ) A.3 B.23 C.-23 D.-3 2.(★★★★★)设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x )等于( )A.f (x )=(x +3)2-1B.f (x )=(x -3)2-1C.f (x )=(x -3)2+1D.f (x )=(x -1)2-1二、填空题3.(★★★★★)已知f (x )+2f (x1)=3x ,求f (x )的解析式为_________. 4.(★★★★★)已知f (x )=ax 2+bx +c ,若f (0)=0且f (x +1)=f (x )+x +1,则f (x )=_________三、解答题5.(★★★★)设二次函数f (x )满足f (x -2)=f (-x -2),且其图象在y 轴上的截距为1,在x 轴上截得的线段长为2,求f (x )的解析式.6.(★★★★)设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间[2,3]上时,f (x )=-2(x -3)2+4,求当x ∈[1,2]时f (x )的解析式.若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值.7.(★★★★★)动点P 从边长为1的正方形ABCD 的顶点A出发顺次经过B 、C 、D 再回到A ,设x 表示P 点的行程,f (x )表示PA 的长,g (x )表示△ABP 的面积,求f (x )和g (x ),并作出g (x )的简图.8.(★★★★★)已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5.(1)证明:f (1)+f (4)=0;(2)试求y =f (x ),x ∈[1,4]的解析式;(3)试求y =f (x )在[4,9]上的解析式.参考答案难点磁场解法一:(换元法)∵f (2-cos x )=cos2x -cos x =2cos 2x -cos x -1令u =2-cos x (1≤u ≤3),则cos x =2-u∴f (2-cos x )=f (u )=2(2-u )2-(2-u )-1=2u 2-7u +5(1≤u ≤3)∴f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +4(2≤x ≤4)解法二:(配凑法)f (2-cos x )=2cos 2x -cos x -1=2(2-cos x )2-7(2-cos x )+5∴f (x )=2x 2-7x -5(1≤x ≤3),即f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +14(2≤x ≤4). 歼灭难点训练一、1.解析:∵f (x )=34-x mx . ∴f [f (x )]=334434--⋅-⋅x mx x mxm =x ,整理比较系数得m =3. 答案:A2.解析:利用数形结合,x ≤1时,f (x )= (x +1)2-1的对称轴为x =-1,最小值为-1,又y =f (x )关于x =1对称,故在x >1上,f (x )的对称轴为x =3且最小值为-1.答案:B二、3.解析:由f (x )+2f (x 1)=3x 知f (x 1)+2f (x ) =3x 1.由上面两式联立消去f (x1)可得f (x )=x2-x . 答案:f (x )= x2-x 4.解析:∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0.又f (x +1)=f (x )+x +1,∴a (x +1)2+b (x +1)+0=ax 2+bx +x +1,即(2a +b )x +a +b =bx +x +1.故2a +b =b +1且a +b =1,解得a =21,b =21,∴f (x )=21x 2+21x . 答案:21x 2+21x 三、5.解:利用待定系数法,设f (x )=ax 2+bx +c ,然后找关于a 、b 、c 的方程组求解,f (x )=178722++x x . 6.解:(1)设x ∈[1,2],则4-x ∈[2,3],∵f (x )是偶函数,∴f (x )=f (-x ),又因为4是f (x )的周期,∴f (x )=f (-x )=f (4-x )=-2(x -1)2+4.(2)设x ∈[0,1],则2≤x +2≤3,f (x )=f (x +2)=-2(x -1)2+4,又由(1)可知x ∈[0,2]时,f (x )=-2(x -1)2+4,设A 、B 坐标分别为(1-t ,0),(1+t ,0)(0<t ≤1),则|AB |=2t ,|AD |=-2t 2+4,S 矩形=2t (-2t 2+4)=4t (2-t 2),令S 矩=S ,∴82S =2t 2(2-t 2)·(2-t 2)≤(3222222t t t -+-+)3=2764,当且仅当2t 2=2-t 2,即t =36时取等号.∴S 2≤27864⨯即S ≤9616,∴S max =9616. 7.解:(1)如原题图,当P 在AB 上运动时,PA =x ;当P 点在BC 上运动时,由Rt △ABDPA =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得PA =2)3(1x -+;当P 点在DA 上运动时,PA =4-x ,故f (x )的表达式为:f (x )=⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤<+-≤≤)43( 4)32( 106)21( 22)10( 22x x x x x x x x x x (2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P 点的位置进行分类求解如原题图,当P 在线段AB 上时,△ABP 的面积S =0;当P 在BC 上时,即1<x ≤2时,S △ABP =21AB ·BP =21(x -1);当P 在CD 上时,即2<x ≤3时,S △ABP =21·1·1=21;当P 在DA 上时,即3<x ≤4时,S △ABP =21(4-x ). 故g (x )=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<-≤<≤<-≤≤)43( )4(21)32( 21)21( )1(21)10( 0x x x x x x8.(1)证明:∵y =f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1),又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.(2)解:当x ∈[1,4]时,由题意,可设f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0得a (1-2)2-5+a (4-2)2-5=0,解得a =2,∴f (x ) =2(x -2)2-5(1≤x ≤4).(3)解:∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=-f (-0),∴f (0)=0,又y =f (x ) (0≤x ≤1)是一次函数,∴可设f (x )=kx (0≤x ≤1),∵f (1)=2(1-2)2-5=-3,又f (1)=k ·1=k ,∴k =-3.∴当0≤x ≤1时,f (x )=-3x ,当-1≤x <0时,f (x )=-3x ,当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15,6<x ≤9时,1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5.∴f (x )=⎩⎨⎧≤<--≤≤+-)96( 5)7(2)64( 1532x x x x .。
难点19 解不等式不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式. ●难点磁场(★★★★)解关于x 的不等式2)1(--x x a >1(a ≠1).●案例探究[例1]已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m 、n ∈[-1,1],m+n≠0时n m n f m f ++)()(>0.(1)用定义证明f(x)在[-1,1]上是增函数;(2)解不等式:f(x+21)<f(11-x );(3)若f(x)≤t2-2at+1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围.命题意图:本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力,属★★★★★级题目.知识依托:本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用.错解分析:(2)问中利用单调性转化为不等式时,x+21∈[-1,1],11-x ∈[-1,1]必不可少,这恰好是容易忽略的地方.技巧与方法:(1)问单调性的证明,利用奇偶性灵活变通使用已知条件不等式是关键,(3)问利用单调性把f(x)转化成“1”是点睛之笔.(1)证明:任取x1<x2,且x1,x2∈[-1,1],则f(x1)-f(x2)=f(x1)+f(-x2)=2121)()(x x x f x f --+·(x1-x2)∵-1≤x1<x2≤1,∴x1+(-x2)≠0,由已知2121)()(x x x f x f --+>0,又 x1-x2<0,∴f(x1)-f(x2)<0,即f(x)在[-1,1]上为增函数. (2)解:∵f(x)在[-1,1]上为增函数,- 2 -∴⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤-≤-≤+≤-112111111211x x x x 解得:{x|-23≤x <-1,x ∈R} (3)解:由(1)可知f(x)在[-1,1]上为增函数,且f(1)=1,故对x ∈[-1,1],恒有f(x)≤1,所以要f(x)≤t2-2at+1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t2-2at+1≥1成立,故t2-2at ≥0,记g(a)=t2-2at ,对a ∈[-1,1],g(a)≥0,只需g(a)在[-1,1]上的最小值大于等于0,g(-1)≥0,g(1)≥0,解得,t ≤-2或t=0或t ≥2.∴t 的取值范围是:{t|t ≤-2或t=0或t ≥2}.[例2]设不等式x2-2ax+a+2≤0的解集为M ,如果M ⊆[1,4],求实数a 的取值 范围.命题意图:考查二次不等式的解与系数的关系及集合与集合之间的关系,属★★★★级题目.知识依托:本题主要涉及一元二次不等式根与系数的关系及集合与集合之间的关系,以及分类讨论的数学思想.错解分析:M=∅是符合题设条件的情况之一,出发点是集合之间的关系考虑是否全面,易遗漏;构造关于a 的不等式要全面、合理,易出错.技巧与方法:该题实质上是二次函数的区间根问题,充分考虑二次方程、二次不等式、二次函数之间的内在联系是关键所在;数形结合的思想使题目更加明朗.解:M ⊆[1,4]有n 种情况:其一是M=∅,此时Δ<0;其二是M ≠∅,此时Δ>0,分三种情况计算a 的取值范围.设f(x)=x2 -2ax+a+2,有Δ=(-2a)2-(4a+2)=4(a2-a -2) (1)当Δ<0时,-1<a <2,M=∅[1,4](2)当Δ=0时,a=-1或2.当a=-1时M={-1}1,4];当a=2时,m={2}[1,4]. (3)当Δ>0时,a <-1或a >2.设方程f(x)=0的两根x1,x2,且x1<x2,那么M=[x1,x2],M ⊆[1,4]⇔1≤x1<x2≤4⎩⎨⎧>∆≤≤>>⇔0,410)4(,0)1(且且a f f 即⎪⎪⎩⎪⎪⎨⎧>-<>>->+-210071803a a a a a 或,解得:2<a <718,∴M ⊆[1,4]时,a 的取值范围是(-1,718).●锦囊妙计解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的用心 爱心 专心- 3 -进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题: (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法.(2)掌握用序轴标根法解高次不等式和分式不等式,特别要注意因式的处理方法.(3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法. (4)掌握含绝对值不等式的几种基本类型的解法.(5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式.(6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论. ●歼灭难点训练 一、选择题1.(★★★★★)设函数f(x)=⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤+)1(11)11(22)1()1(2x x x x x x ,已知f(a)>1,则a 的取值范围是( )A.(-∞,-2)∪(-21,+∞)B.(-21,21)C.(-∞,-2)∪(-21,1)D.(-2,-21)∪(1,+∞)二、填空题2.(★★★★★)已知f(x)、g(x)都是奇函数,f(x)>0的解集是(a2,b),g(x)>0的解集是(22a ,2b ),则f(x)·g(x)>0的解集是__________.3.(★★★★★)已知关于x 的方程sin2x+2cosx+a=0有解,则a 的取值范围是__________. 三、解答题4.(★★★★★)已知适合不等式|x2-4x+p|+|x -3|≤5的x 的最大值为3. (1)求p 的值;(2)若f(x)=11+-xx p p ,解关于x 的不等式f--1(x)>k xp +1log (k ∈R+) 5.(★★★★★)设f(x)=ax2+bx+c ,若f(1)=27,问是否存在a 、b 、c ∈R ,使得不等式:x2+21≤f(x)≤2x2+2x+23对一切实数x 都成立,证明你的结论.6.(★★★★★)已知函数f(x)=x2+px+q ,对于任意θ∈R ,有f(sin θ)≤0,且f(sin θ+2)≥2.(1)求p 、q 之间的关系式; (2)求p 的取值范围;- 4 -(3)如果f(sin θ+2)的最大值是14,求p 的值.并求此时f(sin θ)的最小值.7.(★★★★)解不等式loga(x -x 1)>18.(★★★★★)设函数f(x)=ax 满足条件:当x ∈(-∞,0)时,f(x)>1;当x ∈(0,1]时,不等式f(3mx -1)>f(1+mx -x2)>f(m+2)恒成立,求实数m 的取值范围.参考答案 难点磁场解:原不等式可化为:2)2()1(--+-x a x a >0,即[(a -1)x+(2-a)](x -2)>0.当a >1时,原不等式与(x -12--a a )(x -2)>0同解.若12--a a ≥2,即0≤a <1时,原不等式无解;若12--a a <2,即a <0或a >1,于是a >1时原不等式的解为(-∞,12--a a )∪(2,+∞).当a <1时,若a <0,解集为(12--a a ,2);若0<a <1,解集为(2,12--a a )综上所述:当a >1时解集为(-∞,12--a a )∪(2,+∞);当0<a <1时,解集为(2,12--a a );当a=0时,解集为∅;当a <0时,解集为(12--a a ,2).歼灭难点训练一、1.解析:由f(x)及f(a)>1可得:⎩⎨⎧>+-≤1)1(12a a ① 或⎩⎨⎧>+<<-12211a a ② 或⎪⎩⎪⎨⎧>-≥1111a a ③解①得a <-2,解②得-21<a <1,解③得x ∈∅ ∴a 的取值范围是(-∞,-2)∪(-21,1)用心 爱心 专心- 5 -答案:C 二、2.解析:由已知b >a2∵f(x),g(x)均为奇函数,∴f(x)<0的解集是(-b ,-a2),g(x)<0的解集是(-2,22a b -).由f(x)·g(x)>0可得: ⎪⎩⎪⎨⎧-<<--<<-⎪⎩⎪⎨⎧<<<<⎩⎨⎧<<⎩⎨⎧>>2222,0)(0)(0)(0)(2222a x b a x b b x a b x a x g x f x g x f 或即或 ∴x ∈(a2,2b )∪(-2b,-a2) 答案:(a2,2b )∪(-2b,-a2)3.解析:原方程可化为cos2x -2cosx -a -1=0,令t=cosx ,得t2-2t -a -1=0,原问题转化为方程t2-2t -a -1=0在[-1,1]上至少有一个实根.令f(t)=t2-2t -a -1,对称轴t=1,画图象分析可得⎩⎨⎧≤≥-0)1(0)1(f f 解得a ∈[-2,2].答案:[-2,2] 三、4.解:(1)∵适合不等式|x2-4x+p|+|x -3|≤5的x 的最大值为3, ∴x -3≤0,∴|x -3|=3-x.若|x2-4x+p|=-x2+4x -p ,则原不等式为x2-3x+p+2≥0,其解集不可能为{x|x ≤3}的子集,∴|x2-4x+p|=x2-4x+p.∴原不等式为x2-4x+p+3-x ≤0,即x2-5x+p -2≤0,令x2-5x+p -2=(x -3)(x -m),可得m=2,p=8.(2)f(x)=1818+-xx ,∴f--1(x)=lo g8x x -+11 (-1<x <1),∴有log8x x -+11>log8k x+1,∴log8(1-x)<log8k ,∴1-x <k ,∴x >1-k.∵-1<x <1,k ∈R+,∴当0<k <2时,原不等式解集为{x|1-k <x <1};当k ≥2时,原不等式的解集为{x|-1<x <1}.5.解:由f(1)=27得a+b+c=27,令x2+21=2x2+2x+23x ⇒=-1,由f(x)≤2x2+2x+23推得 f(-1)≤23.- 6 -由f(x)≥x2+21推得f(-1)≥23,∴f(-1)=23,∴a -b+c=23,故 2(a+c)=5,a+c=25且b=1,∴f(x)=ax2+x+(25-a).依题意:ax2+x+(25-a)≥x2+21对一切x ∈R 成立,∴a ≠1且Δ=1-4(a -1)(2-a)≤0,得(2a -3)2≤0,∴f(x)=23x2+x+1易验证:23x2+x+1≤2x2+2x+23对x ∈R 都成立.∴存在实数a=23,b=1,c=1,使得不等式:x2+21≤f(x)≤2x2+2x+23对一切x ∈R 都成立.6.解:(1)∵-1≤sin θ≤1,1≤sin θ+2≤3,即当x ∈[-1,1]时,f(x)≤0,当x ∈[1,3]时,f(x )≥0,∴当x=1时f(x)=0.∴1+p+q=0,∴q=-(1+p) (2)f(x)=x2+px -(1+p),当sin θ=-1时f(-1)≤0,∴1-p -1-p ≤0,∴p ≥0(3)注意到f(x)在[1,3]上递增,∴x=3时f(x)有最大值.即9+3p+q=14,9+3p -1-p=14,∴p=3.此时,f(x)=x2+3x -4,即求x ∈[-1,1]时f(x)的最小值.又f(x)=(x+23)2-425,显然此函数在[-1,1]上递增.∴当x=-1时f(x)有最小值f(-1)=1-3-4=-6.7.解:(1)当a >1时,原不等式等价于不等式组⎪⎪⎩⎪⎪⎨⎧>->-a x x 11011由此得1-a >x 1.因为1-a <0,所以x <0,∴a -11<x <0.(2)当0<a <1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧<->-a x x 11011①②用心 爱心 专心- 7 -由 ①得x >1或x <0,由②得0 <x <a -11,∴1<x <a -11.综上,当a >1时,不等式的解集是{x|a -11<x <0},当0<a <1时,不等式的解集为{x|1<x <a -11}.8.解:由已知得0<a <1,由f(3mx -1)>f(1+mx -x2)>f(m+2),x ∈(0,1]恒成立.⎪⎩⎪⎨⎧+<-+-+<-⇔2111322m x mx x mx mx 在x ∈(0,1]恒成立.整理,当x ∈(0,1)时,⎪⎩⎪⎨⎧+<--<1)1(1222x x m x x 恒成立,即当x ∈(0,1]时,⎪⎪⎩⎪⎪⎨⎧-+>-<112122x x m xx m 恒成立,且x=1时,⎪⎩⎪⎨⎧+<--<1)1(1222x x m x mx 恒成立, ∵2121212-=-x x x 在x ∈(0,1]上为减函数,∴x x 212-<-1, ∴m <x x 212-恒成立⇔m <0.又∵2112)1(112+-+-=-+x x x x ,在x ∈(0,1]上是减函数, ∴112-+x x <-1.∴m >112-+x x 恒成立⇔m >-1当x ∈(0,1)时,⎪⎪⎩⎪⎪⎨⎧-+>-<112122x x m x x m 恒成立⇔m ∈(-1,0)① 当x=1时,⎪⎩⎪⎨⎧+<--<1)1(1222x x m x mx ,即是⎩⎨⎧<<100m ∴m <0②∴①、②两式求交集m ∈(-1,0),使x ∈(0,1]时,f(3mx -1)>f(1+mx -x2)>f(m+2)恒成立,m的取值范围是(-1,0)- 8 -。
本难点9 指数函数、对数函数问题指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.●难点磁场(★★★★★)设f (x )=log 2xx-+11,F (x )=x -21+f (x ).(1)试判断函数f (x )的单调性,并用函数单调性定义,给出证明; (2)若f (x )的反函数为f -1(x ),证明:对任意的自然数n (n ≥3),都有f -1(n )>1+n n; (3)若F (x )的反函数F -1(x ),证明:方程F -1(x )=0有惟一解. ●案例探究[例1]已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.(1)证明:点C 、D 和原点O 在同一条直线上; (2)当BC 平行于x 轴时,求点A 的坐标.命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力.属★★★★级题目.知识依托:(1)证明三点共线的方法:k OC =k OD .(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A 点坐标. 错解分析:不易考虑运用方程思想去解决实际问题.技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A 的坐标.(1)证明:设点A 、B 的横坐标分别为x 1、x 2,由题意知:x 1>1,x 2>1,则A 、B 纵坐标分别为log 8x 1,log 8x 2.因为A 、B 在过点O 的直线上,所以228118log log x x x x =,点C 、D 坐标分别为(x 1,log 2x 1),(x 2,log 2x 2),由于log 2x 1=2log log 818x ===2log log log ,log 38282218x x x 3log 8x 2,所以OC 的斜率:k 1=118212log 3log x x x x =, OD 的斜率:k 2=228222log 3log x x x x =,由此可知:k 1=k 2,即O 、C 、D 在同一条直线上. (2)解:由BC 平行于x 轴知:log 2x 1=log 8x 2 即:log 2x 1=31log 2x 2,代入x 2log 8x 1=x 1log 8x 2得:x 13log 8x 1=3x 1log 8x 1,由于x 1>1知log 8x 1≠0,∴x 13=3x 1.又x 1>1,∴x 1=3,则点A 的坐标为(3,log 83).[例2]在xOy 平面上有一点列P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n )…,对每个自然数n 点P n 位于函数y =2000(10a )x(0<a <1)的图象上,且点P n ,点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形.(1)求点P n 的纵坐标b n 的表达式;(2)若对于每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围;(3)设C n =lg(b n )(n ∈N *),若a 取(2)中确定的范围内的最小整数,问数列{C n }前多少项的和最大?试说明理由.命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级 题目.知识依托:指数函数、对数函数及数列、最值等知识.错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口.技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题.解:(1)由题意知:a n =n +21,∴b n =2000(10a )21+n .(2)∵函数y =2000(10a )x(0<a <10)递减,∴对每个自然数n ,有b n >b n +1>b n +2.则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2+b n +1>b n ,即(10a )2+(10a)-1>0,解得a <-5(1+2)或a >5(5-1).∴5(5-1)<a <10.(3)∵5(5-1)<a <10,∴a =7∴b n =2000(107)21+n .数列{b n }是一个递减的正数数列,对每个自然数n ≥2,B n =b n B n -1.于是当b n ≥1时,B n <B n -1,当b n <1时,B n ≤B n -1,因此数列{B n }的最大项的项数n 满足不等式b n≥1且b n +1<1,由b n =2000(107)21+n ≥1得:n ≤20.8.∴n =20.●锦囊妙计本难点所涉及的问题以及解决的方法有:(1)运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵活应用.(2)综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力. (3)应用题目.此类题目要求考生具有较强的建模能力. ●歼灭难点训练 一、选择题1.(★★★★)定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x+1),其中x ∈(-∞,+∞),那么( )A.g (x )=x ,h (x )=lg(10x +10-x+2)B.g (x )=21[lg(10x +1)+x ],h (x )= 21[lg(10x+1)-x ] C.g (x )=2x ,h (x )=lg(10x+1)-2xD.g (x )=-2x ,h (x )=lg(10x+1)+2x2.(★★★★)当a >1时,函数y =log a x 和y =(1-a )x 的图象只可能是( )二、填空题 3.(★★★★★)已知函数f (x )=⎩⎨⎧<<--≥)02()(log )0( 22x x x x .则f --1(x -1)=_________.4.(★★★★★)如图,开始时,桶1中有a L 水,t 分钟后剩余的水符合指数衰减曲线y =ae -nt ,那么桶2中水就是y 2=a -ae -nt ,假设过5分钟时,桶1和桶2的水相等,则再过_________分钟桶1中的水只有8a . 三、解答题5.(★★★★)设函数f (x )=log a (x -3a )(a >0且a ≠1),当点P (x ,y )是函数y =f (x )图象上的点时,点Q (x -2a ,-y )是函数y =g (x )图象上的点.(1)写出函数y =g (x )的解析式;(2)若当x ∈[a +2,a +3]时,恒有|f (x )-g (x )|≤1,试确定a 的取值范围.6.(★★★★)已知函数f (x )=log a x (a >0且a ≠1),(x ∈(0,+∞)),若x 1,x 2∈(0,+∞),判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明. 7.(★★★★★)已知函数x ,y 满足x ≥1,y ≥1.log a 2x +log a 2y =log a (ax 2)+log a (ay 2)(a >0且a ≠1),求log a (xy )的取值范围.8.(★★★★)设不等式2(log 21x )2+9(log 21x )+9≤0的解集为M ,求当x ∈M 时函数f (x )=(log 22x )(log 28x)的最大、最小值. 参考答案难点磁场 解:(1)由xx-+11>0,且2-x ≠0得F (x )的定义域为(-1,1),设-1<x 1<x 2<1,则F (x 2)-F (x 1)=(122121x x ---)+(11222211log 11log x x x x -+--+) )1)(1()1)(1(log )2)(2(212122112x x x x x x x x -++-+---=,∵x 2-x 1>0,2-x 1>0,2-x 2>0,∴上式第2项中对数的真数大于1. 因此F (x 2)-F (x 1)>0,F (x 2)>F (x 1),∴F (x )在(-1,1)上是增函数.(2)证明:由y =f (x )=xx -+11log 2得:2y =1212,11+-=-+y y x x x ,∴f -1(x )=1212+-x x ,∵f (x )的值域为R ,∴f --1(x )的定义域为R.当n ≥3时,f -1(n )>1221111221112121+>⇔+->+-⇔+>+-⇔+n n n n n n n n n n . 用数学归纳法易证2n>2n +1(n ≥3),证略.(3)证明:∵F (0)=21,∴F -1(21)=0,∴x =21是F -1(x )=0的一个根.假设F -1(x )=0还有一个解x 0(x 0≠21),则F -1(x 0)=0,于是F (0)=x 0(x 0≠21).这是不可能的,故F -1(x )=0有惟一解.歼灭难点训练一、1.解析:由题意:g (x )+h (x )=lg(10x+1) ①又g (-x )+h (-x )=lg(10-x +1).即-g (x )+h (x )=lg(10-x+1)②由①②得:g (x )=2x ,h (x )=lg(10x+1)-2x . 答案:C2.解析:当a >1时,函数y =log a x 的图象只能在A 和C 中选,又a >1时,y =(1-a )x 为减函数.答案:B二、3.解析:容易求得f- -1(x )=⎩⎨⎧<-≥)1(2)1(log 2x x x x ,从而:f -1(x -1)=⎩⎨⎧<-≥--).2( ,2)2(),1(log 12x x x x答案:⎩⎨⎧<-≥--)2(,2)2(),1(log 12x x x x4.解析:由题意,5分钟后,y 1=ae-nt,y 2=a -ae-nt,y 1=y 2.∴n =51l n 2.设再过t 分钟桶1中的水只有8a ,则y 1=ae -n (5+t )=8a ,解得t =10. 答案:10三、5.解:(1)设点Q 的坐标为(x ′,y ′),则x ′=x -2a ,y ′=-y .即x =x ′+2a ,y =-y ′. ∵点P (x ,y )在函数y =log a (x -3a )的图象上,∴-y ′=log a (x ′+2a -3a ),即y ′=log aax -21,∴g (x )=log aa x -1. (2)由题意得x -3a =(a +2)-3a =-2a +2>0;ax -1=a a -+)3(1>0,又a >0且a ≠1,∴0<a <1,∵|f (x )-g (x )|=|log a (x -3a )-log aax -1|=|log a (x 2-4ax +3a 2)|·|f (x )-g (x )|≤1,∴-1≤log a (x 2-4ax +3a 2)≤1,∵0<a <1,∴a +2>2a .f (x )=x 2-4ax +3a 2在[a +2,a +3]上为减函数,∴μ(x )=log a (x 2-4ax +3a 2)在[a +2,a +3]上为减函数,从而[μ(x )]max =μ(a +2)=log a (4-4a ),[μ(x )]mi n =μ(a +3)=log a (9-6a ),于是所求问题转化为求不等式组⎪⎩⎪⎨⎧≤--≥-<<1)44(log 1)69(log 10a a a aa 的解. 由log a (9-6a )≥-1解得0<a ≤12579-,由log a (4-4a )≤1解得0<a ≤54, ∴所求a 的取值范围是0<a ≤12579-.6.解:f (x 1)+f (x 2)=log a x 1+log a x 2=log a x 1x 2,∵x 1,x 2∈(0,+∞),x 1x 2≤(221x x +)2(当且仅当x 1=x 2时取“=”号), 当a >1时,有log a x 1x 2≤log a (221x x +)2,∴21l og a x 1x 2≤log a (221x x +),21(log a x 1+log a x 2)≤log a 221x x +, 即21[f (x 1)+f (x 2)]≤f (221x x +)(当且仅当x 1=x 2时取“=”号) 当0<a <1时,有log a x 1x 2≥log a (221x x +)2,∴21(log a x 1+log a x 2)≥log a 221x x +,即21[f (x 1)+f (x 2)]≥f (221x x +)(当且仅当x 1=x 2时取“=”号).7.解:由已知等式得:log a 2x +log a 2y =(1+2log a x )+(1+2log a y ),即(log a x -1)2+(log a y -1)2=4,令u =log a x ,v =log a y ,k =log a xy ,则(u -1)2+(v -1)2=4(uv ≥0),k =u +v .在直角坐标系uOv 内,圆弧(u -1)2+(v -1)2=4(uv ≥0)与平行直线系v =-u +k 有公共点,分两类讨论.(1)当u ≥0,v ≥0时,即a >1时,结合判别式法与代点法得1+3≤k ≤2(1+2); (2)当u ≤0,v ≤0,即0<a <1时,同理得到2(1-2)≤k ≤1-3.x 综上,当a >1时,log a xy 的最大值为2+22,最小值为1+3;当0<a <1时,log a xy 的最大值为1-3,最小值为2-22.8.解:∵2(21log x )2+9(21log x )+9≤0∴(221log x +3)( 21log x +3)≤0.∴-3≤21log x ≤-23. 即21log (21)-3≤21log x ≤21log (21)23-∴(21)23-≤x ≤(21)-3,∴22≤x ≤8即M ={x |x ∈[22,8]}又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8,∴23≤log 2x ≤3 ∴当log 2x =2,即x =4时y mi n =-1;当log 2x =3,即x =8时,y max =0.。