九年级数学二次函数5(整理2019年11月)
- 格式:pptx
- 大小:129.11 KB
- 文档页数:20
苏科版九年级下册数学第5章二次函数含答案一、单选题(共15题,共计45分)1、对于一个函数,当自变量取时,其函数值也等于我们称为这个函数的不动点.若二次函数为常数)有两个不相等且都小于的不动点,则的取值范围是()A. B. C. D.2、已知二次函数y=x²,当a≤x≤b时m≤y≤n,则下列说法正确的是( )A.当n-m=1时,b-a有最小值B.当n-m=1时,b-a有最大值C.当b-a=1时,n-m无最小值 D.当b-a=1时,n-m有最大值3、对于二次函数,下列说法正确的是()A.图象的开口向下B.图象与x轴的交点为(1,0)和(-3,0)C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣14、抛物线的顶点坐标()A.(-3,4)B.(-3,-4)C.(3,-4)D.(3,4)5、给出下列命题及函数y=x,y=x2和y= 的图像:①如果>a>a2,那么0<a<1;②如果a2>a>,那么a>1;③如果>a2>a,那么﹣1<a<0;④如果a2>>a,那么a<﹣1.A.正确的命题是①②B.错误的命题是②③④C.正确的命题是①④ D.错误的命题只有③6、如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加()A.1mB.2mC.3mD.6m7、如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②3a+c>0;③方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;④当y>3时,x的取值范围是0≤x<2;⑤当x<0时,y随x增大而增大;其中结论正确的个数是()A.1个B.2个C.3个D.4个8、在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:x ……-2 0 3 4 ……y ……-7 m n -7 ……则m、n的大小关系为( )A.m>nB.m<nC.m=nD.无法确定9、抛物线y=x2﹣4x+3的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为()A.(4,﹣1)B.(0,﹣3)C.(﹣2,﹣3)D.(﹣2,﹣1)10、如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y 轴交于点C,对称轴为直线x=1.直线y=-x+c与抛物线y=ax2+bx+c交于C,D 两点,D点在x轴下方且横坐标小于3,则下列结论:①a-b+c<0;②2a+b+c>0;③x(ax+b)≤a+b;④a<-1.其中正确的有()A.4个B.3个C.2个D.1个11、已知0<x<1,10<y<20,且y随x的增大而增大,则y与x的关系式不可以是()A.y=10x+10B.y=﹣10(x﹣1)2+20C.y=10x2+10 D.y=﹣10x+2012、已知抛物线(为常数,)的对称轴是直线,且与轴、轴分别交于两点,其中点A在点的右侧,直线经过两点.有下列结论:①;②;③.其中正确的结论是()A.①B.①②C.②③D.①②③13、抛物线的一部分如图所示,该抛物线在轴右侧部分与轴交点的坐标是( )A.(, 0)B.(1,0)C.(2,0)D.(3,0)14、二次函数图像的顶点坐标为( )A.(0,-2)B.(-2,0)C.(0,2)D.(2,0)15、将抛物线向左平移个单位,再向上平移个单位得到的抛物线,其解析式是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,直线AB交坐标轴于A(-2,0),B(0,-4),点P在抛物线上,则△ABP面积的最小值为________.17、请你写出一个顶点在轴上的二次函数表达式________.18、设抛物线y=x2﹣x﹣1与x轴的两交点为A,B,则线段AB的长为________.19、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:①abc<0;②2a﹣b=0;③a﹣b+c>0;④4a﹣2b+c<0.正确的是________.20、已知方程ax2+bx+cy=0(a,b,c是常数),请你通过变形把它写成你所熟悉的一个函数表达式的形式,则函数表达式为________ ,成立的条件是________ ,是________ 函数.21、若是二次函数,则m的值为________.22、已知关于x的方程(a+2)x2﹣2ax+a=0有两个不相等的实数根x1和x2,抛物线y=x2﹣(2a+1)x+2a﹣5与x轴的两个交点分别为位于点(2,0)的两旁,若|x1|+|x2|=2 ,则a的值为________.23、写出一个图象的顶点在原点,开口向下的二次函数的表达式________.24、已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:①;②;③,是关于的一元二次方程的两个实数根;④.其中正确结论是________(填写序号)25、飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣t2,则飞机着陆后滑行的最长时间为________秒.三、解答题(共5题,共计25分)26、已知抛物线的顶点为(2,3),且经过点(3,1),求此抛物线对应的函数解析式。
知识讲解考点1 二次函数的基础知识1.一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.当b=c=0时,二次函数y=ax 2是最简单的二次函数.2.二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的三种表达形式分别为:一般式:y=ax 2+bx+c ,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a (x -h )2+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c而言,其顶点坐标为(-2b a,244ac b a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点. 考点2 矩形的性质及判定1. 矩形定义:有一角是直角的平行四边形叫做矩形. 注意:矩形(1)是平行四边形;(2)四个角是直角.2. 矩形的性质性质1 矩形的四个角都是直角;性质2 矩形的对角线相等,具有平行四边形的所以性质。
; 3. 矩形的判定矩形判定方法1:对角线相等的平行四边形是矩形.注意此方法包括两个条件:(1)是一个平行四边形;(2)对角线相等矩形判定方法2:四个角都是直角的四边形是矩形. 矩形判断方法3:有一个角是直角的平行四边形是矩形。
考点3 菱形的性质及判定1.菱形定义:有一组邻边相等的平行四边形叫做菱形. 注意: 菱形(1)是平行四边形;(2)一组邻边相等. 2.菱形的性质性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;3.菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.菱形判定方法2:四边都相等的四边形是菱形.考点4 正方形的性质及判定1. 正方形是在平行四边形的前提下定义的,它包含两层意思:有一组邻边相等的平行四边形(菱形)有一个角是直角的平行四边形(矩形)都可以得到正方形;正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.2.正方形定义:有一组邻边相等.......的平行四边形.....叫做正方形.......并且有一个角是直角正方形是中心对称图形,对称中心是对角线的交点,正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;3. 因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,正方形的性质总结如下:边:对边平行,四边相等;角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.正方形具有矩形的性质,同时又具有菱形的性质.4. 正方形的判定方法:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.注意:1、正方形概念的三个要点:(1)是平行四边形;(2)有一个角是直角;(3)有一组邻边相等.2、要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.考点5 探究特殊平行四边形的一般思路解答特殊平行四边形的存在性问题时,要具备分类讨论的思想及数形结合思想,要先找出特殊平行四边形的分类标准,一般涉及到动态问题要以静制动,动中求静,由于特殊平行四边形分为矩形、菱形和正方形,故我们可以从这些特殊平行四边形的性质及题干信息入手,具体如下:(1)假设结论成立,分情况讨论,抓住每类图形的特殊性质入手,由于特殊的平行四边形也是平行四边形,可先证明出是平行四边形,在适当加入一些特征便可以得到矩形、菱形或是正方形。
苏科版九年级下册数学第5章二次函数含答案一、单选题(共15题,共计45分)1、下列说法错误的是()A.抛物线y=﹣x 2+x的开口向下B.两点之间线段最短C.角平分线上的点到角两边的距离相等D.一次函数y=﹣x+1的函数值随自变量的增大而增大2、二次函数y=a(x+k)2+k,无论k为何实数,其图象的顶点都在()A.直线y=x上B.直线y=﹣x上C.x轴上D.y轴上3、如图,是二次函数的部分图像,有图像可知:不等式的解集是()A. B. C. D.4、下列抛物线中,与轴有两个交点的是()A.y=5x 2-7x+5B.y=16x 2-24x+9C.y=2x 2+3x-4D.y=3x 2-2x+25、二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表给出了以下结论:x …﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y …12 5 0 ﹣3 ﹣4 ﹣3 0 5 12 …①二次函数y=ax2+bx+c有最小值,最小值为﹣3;②当﹣<x<2时,y<0;③二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴的两侧;④当x<1时,y随x的增大而减小.则其中正确结论有()A.4个B.3个C.2个D.1个6、定义:如果抛物线:y=a1x2+bx+c1(a1≠0)与抛物线y=a2x2+bx+c2(a2≠0)满足:a1+a2=0,c1+c2=0,则称这两条抛物线互为“同胞抛物线”.现有下列结论:①抛物线y=(x+1)2-2的同胞抛物线是抛物线y=(x+1)2+2;②若两条抛物线互为同胞抛物线,则它们的顶点关于原点对称;③已知抛物线C1与抛物线C2互为同胞抛物线,若点M(2,3)在抛物线C1上,则N(-3,-2)在抛物线C2上;④已知抛物线C1与抛物线C2互为同胞抛物线。
则它们一定有两个不同的交点.其中正确的个数是( )A.1B.2C.3D.47、二次函数y=x2﹣1的图象可由下列哪个函数图象向右平移1个单位,向下平移2个单位得到( )A.y=+1B.y=+1C.y=﹣3D.y=+38、二次函数y=-x2+bx+c的图象如图所示,下列几个结论:①对称轴为直线x=2;②当y≤0时,x < 0或x > 4;③函数解析式为y=-x2+4x;④当x≤0时,y随x的增大而增大.其中正确的结论有( )A.①②③④B.①②③C.②③④D.①③④9、在□6x□9的空格中,任意填上“+”或“-”,可组成若干个不同的二次函数,其中其图象的顶点在x轴上的概率为( )A. B. C. D.110、已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:x …0 3 4 …y …2 -1 2 …则方程ax2+bx+3=0的根是()A.0或4B.1或3C.-1或1D.无实根11、下列抛物线通过先向上平移2个单位,再向右平移3个单位,可得到抛物线y=3x2的是()A.y=3(x+3)2-2B.y=3(x+3)2+2C.y=3(x+2)2-3D.y=3(x-2)2+312、如图示是二次函数y=ax2+bx+c(a≠0)图象的一部分,图象经过A(3,0),二次函数图象对称轴为x=l,给出四个结论:①b2>4ac ②bc<0 ③2a+b=0 ④a+b+c=0.其中正确的是( )A.②④B.①③C.②③D.①④13、若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A.最小值2B.最小值﹣3C.最大值2D.最大值﹣314、二次函数 y=x2-2x-3 的图象如图所示.当y<0时,自变量x的取值范围是( )A.-1<x<3B.x<-1C.x>3D.x<-1或 x>315、某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x …-2 -1 0 1 2 …y …-11 -2 1 -2 -5 …由于粗心,他算错了其中一个y值,则这个错误的数值是 ( ) A.-11 B.-2 C.1 D.-5二、填空题(共10题,共计30分)16、利用二次函数的图象求一元二次方程x2+2x﹣10=0的根:(1)x ﹣4.1 ﹣4.2 ﹣4.3 ﹣4.4y ﹣1.39 ﹣0.76 ﹣0.11 0.56________是方程的一个近似根.(2)x 2.1 2.2 2.3 2.4y ﹣1.39 ﹣0.76 ﹣0.11 0.56________ 是方程的另一个近似根.17、二次函数的图象的顶点与原点的距离为5,则c=________。
专题05二次函数的三种表示方式高中必备知识点1:一般式形如下面的二次函数的形式称为一般式:y =ax 2+bx +c (a ≠0);典型考题【典型例题】已知抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,﹣3).(1)求抛物线的表达式.(2)已知点(m ,k )和点(n ,k )在此抛物线上,其中m ≠n ,请判断关于t 的方程t 2+mt +n =0是否有实数根,并说明理由.【答案】(1)y =x 2+2x ﹣3;(2)方程有两个不相等的实数根.【解析】(1)抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,3)9a ﹣3b +c =0930312a b c c b a⎧⎪-+=⎪=-⎨⎪⎪-=-⎩ 解得a =1,b =2,c =﹣3∴抛物线y =x 2+2x ﹣3;(2)∵点(m ,k ),(n ,k )在此抛物线上,∴(m ,k ),(n ,k )是关于直线x =﹣1的对称点, ∴ +2m n =﹣1 即m =﹣n ﹣2 b 2﹣4ac =m 2﹣4n =(﹣n ﹣2)2﹣4n =n 2+4>0∴此方程有两个不相等的实数根.【变式训练】抛物线的图象如下,求这条抛物线的解析式。
(结果化成一般式)【答案】【解析】由图象可知抛物线的顶点坐标为(1,4),设此二次函数的解析式为y=a(x-1)2+4把点(3,0)代入解析式,得:4a+4,即a=-1所以此函数的解析式为y=-(x-1)2+4故答案是y=-x2+2x+3.【能力提升】如图,在平面直角坐标系中,抛物线先向右平移2个单位,再向下平移2个单位,得到抛物线. (1)求抛物线的解析式(化为一般式);(2)直接写出抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.【答案】(1);(2)4. 【解析】(1)抛物线的顶点坐标为,把点先向右平移2个单位,再向下平移2个单位后得到的点的坐标为, 抛物线的解析式为; (2)顶点坐标为,且抛物线的对称轴与两段抛物线弧围成的阴影部分的面积, 抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.高中必备知识点2:顶点式形如下面的二次函数的形式称为顶点式:y =a (x -h )2+k (a ≠0),其中顶点坐标是(h ,k ).典型考题【典型例题】 已知二次函数21322y x x =-++. ⑴用配方法将此二次函数化为顶点式;⑵求出它的顶点坐标和对称轴方程.【答案】(1)()21122y x =--+;(2)(1,2),直线1x = 【解析】(1)21322y x x =-++ ()21232y x x =--- ()2121132y x x =--+-- ()212142y x x ⎡⎤=--+-⎣⎦ ()21142y x ⎡⎤=---⎣⎦ ()21122y x =--+ (2)∵()21122y x =--+ ∴顶点坐标为(1,2),对称轴方程为直线1x =.【变式训练】已知二次函数的图象的顶点是(﹣1,2),且经过(1,﹣6),求这个二次函数的解析式.【答案】二次函数的解析式为y=﹣2(x+1)2+2.【解析】∵二次函数的图象的顶点是(﹣1,2),∴设抛物线顶点式解析式y=a (x+1)2+2,将(1,﹣6)代入得,a (1+1)2+2=﹣6,解得a=﹣2,所以,这个二次函数的解析式为y=﹣2(x+1)2+2.【能力提升】二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.【答案】(1)322--=x x y ;(2)(1,-4);(3)5【解析】(1)设c bx ax y ++=2,把点(03)A -,,(23)B -,,(10)C -,代入得 ⎪⎩⎪⎨⎧=---=++-=03343b a c b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y ;(2)∵4)1(3222--=--=x x x y∴函数的顶点坐标为(1,-4);(3)∵|1-0|+|-4-0|=5∴二次函数的图象沿坐标轴方向最少平移5个单位,使得该图象的顶点在原点.高中必备知识点3:交点式形如下面的二次函数的形式称为交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.典型考题【典型例题】已知在平面直角坐标系中,二次函数 y =x 2+2x +2k ﹣2 的图象与 x 轴有两个交点.(1)求 k 的取值范围;(2)当 k 取正整数时,请你写出二次函数 y =x 2+2x +2k ﹣2 的表达式,并求出此二次函数图象与 x 轴的两个交点坐标.【答案】(1)k <;(2)(﹣2,0)和(0,0).【解析】(1)∵图象与x轴有两个交点,∴方程有两个不相等的实数根,∴解得(2)∵k 为正整数,∴k=1.∴令y=0,得解得∴交点为(﹣2,0)和(0,0).【变式训练】已知二次函数的图象经过点(3,-8),对称轴是直线x=-2,此时抛物线与x轴的两交点间距离为6.(1)求抛物线与x轴两交点坐标;(2)求抛物线的解析式.【答案】(1)(-5,0),(1,0);(2)y=-x2-2x+.【解析】(1) ∵因为抛物线对称轴为直线x=-2,且图象与x轴的两个交点的距离为6,∴点A、B到直线x=-2的距离为3,∴A为(-5,0),B为(1,0);(2)设y=a(x+5)(x-1).∵点(3,-8)在抛物线上,∴-8=a(3+5)(3-1),a=-,∴y=-x2-2x+.【能力提升】已知二次函数y=x2﹣4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.【答案】(1)二次函数与x轴的交点坐标为(1,0)(3,0),抛物线的顶点坐标为(2,﹣1);(2)图见详解;当y<0时,1<x<3.【解析】(1)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,所以该二次函数与x轴的交点坐标为(1,0)(3,0);因为y=x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,所以抛物线的顶点坐标为(2,﹣1);(2)函数图象如图:由图象可知,当y<0时,1<x<3.专题验收测试题1.将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为()A.y=﹣2(x﹣1)2+1 B.y=﹣2(x+3)2﹣5C.y=﹣2(x﹣1)2﹣5 D.y=﹣2(x+3)2+1【答案】B【解析】解:将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为:y=﹣2(x+3)2﹣5.故选:B.2.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【答案】A【解析】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选:A.3.若二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,则k的值为()A.1 B.2 C.﹣1 D.﹣2【答案】D【解析】∵二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,∴△=b2﹣4ac=0,即8﹣4k(k+1)=0,解得:k1=1,k2=﹣2,当k=1时,k+1>0,此时图象有最低点,不合题意舍去,则k的值为:﹣2.故选:D.4.已知二次函数为常数,且),()A.若,则的增大而增大;B.若,则的增大而减小;C.若,则的增大而增大;D.若,则的增大而减小;【答案】C【解析】解:∵y=ax2+(a+2)x-1对称轴直线为,x=-=-.由a<0得,->0.∴->-1.又∵a<0∴抛物线开口向下.故当x<-时,y随x增大而增大.又∵x<-1时,则一定有x<-.∴若a<0,则x<-1,y随x的增大而增大.故选:C.5.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)【答案】B【解析】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.6.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.7.把抛物线y=ax2+bx+c图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y=x2+5x+6,则a﹣b+c的值为()A.2 B.3 C.5 D.12【答案】B【解析】y=x2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣).故原抛物线的解析式是:y=(x+)2+=x2+x+3.所以a=b=1,c=3.所以a﹣b+c=1﹣1+3=3.故选B.8.已知二次函数y=﹣(x﹣k+2)(x+k)+m,其中k,m为常数.下列说法正确的是()A.若k≠1,m≠0,则二次函数y的最大值小于0B.若k<1,m>0,则二次函数y的最大值大于0C.若k=1,m≠0,则二次函数y的最大值小于0D.若k>1,m<0,则二次函数y的最大值大于0【答案】B【解析】∵y=﹣(x﹣k+2)(x+k)+m=﹣(x+1)2+(k﹣1)2+m,∴当x=﹣1时,函数最大值为y=(k﹣1)2+m,则当k<1,m>0时,则二次函数y的最大值大于0.故选:B.9.关于抛物线,下列说法错误..的是().A.开口向上B.与轴只有一个交点C.对称轴是直线D.当时,的增大而增大【答案】B【解析】解:A、,抛物线开口向上,所以A选项的说法正确;B、当时,即,此方程没有实数解,所以抛物线与x轴没有交点,所以B选项的说法错误;C、抛物线的对称轴为直线,所以C选项的说法正确;D、抛物线开口向上,抛物线的对称轴为直线,则当时,y随x的增大而增大,所以D选项的说法正确.故选:B.10.将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=﹣3(x﹣2)2+4 B.y=﹣3(x﹣2)2﹣2C.y=﹣3(x+2)2+4 D.y=﹣3(x+2)2﹣2【答案】D【解析】将抛物线y=﹣3x2+1向左平移2个单位长度所得直线解析式为:y=﹣3(x+2)2+1;再向下平移3个单位为:y=﹣3(x+2)2+1﹣3,即y=﹣3(x+2)2﹣2.故选D.11.已知抛物线经过点,则该抛物线的解析式为__________.【答案】【解析】解:将A、O两点坐标代入解析式得:,解得:,∴该抛物线的解析式为:y=.12.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.【答案】-1【解析】解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,∴a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a的值为-1.故答案为:-1.13.将二次函数y=x2的图象先向上平移1个单位,然后向右平移2个单位,得到新的二次函数的顶点式为______.【答案】y=(x-2)2+1【解析】解:将抛物线y=x2的图象先向上平移1个单位,然后向右平移2个单位后,得到的抛物线的表达式为y=(x-2)2+1,故答案为:y=(x-2)2+1.14.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.【答案】y=2(x+3)2+1【解析】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+115.在平面直角坐标系xOy 中,函数y = x2的图象经过点M (x1 , y1 ) ,N (x2 , y2 ) 两点,若- 4< x1<-2,0< x2<2 ,则y1 ____ y2 . (用“ <”,“=”或“>”号连接)【答案】>【解析】解:抛物线y=x2的对称轴为y轴,而M(x1,y1)到y轴的距离比N(x2,y2)点到y轴的距离要远,所以y1>y2.故答案为:>.16.小颖从如图所示的二次函数的图象中,观察得出了下列信息:;;;;.你认为其中正确信息的个数有______.【答案】【解析】解:抛物线的对称轴位于y轴左侧,则a、b同号,即,抛物线与y轴交于正半轴,则,所以,故错误;如图所示,当时,,所以,故正确;对称轴,,则如图所示,当时,,,,故正确;如图所示,当时,,故错误;综上所述,正确的结论是:.故答案是:.17.已知二次函数y=﹣x2+bx﹣c的图象与x轴的交点坐标为(m﹣2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y =1时,自变量x 有唯一的值,求二次函数的解析式.【答案】(1)31=m (2)y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 【解析】解:(1)由题意可知,二次函数图象的对称轴为x =2213122m m m -++-=, ∵a =﹣1<0,∴二次函数的图象开口向下,∵x <0时,y 随x 的增大而增大, ∴312m -≥0, 解得m ≥13, (2)由题意可知,二次函数的解析式为y =﹣(x ﹣312m -)2+1, ∵二次函数的图象经过点(m ﹣2,0),∴0=﹣(m ﹣2﹣312m -)2+1, 解得m =﹣1和m =﹣5,∴二次函数的解析式为y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63.18.设二次函数y 1=ax 2+bx +a ﹣5(a ,b 为常数,a ≠0),且2a +b =3.(1)若该二次函数的图象过点(﹣1,4),求该二次函数的表达式;(2)y 1的图象始终经过一个定点,若一次函数y 2=kx +b (k 为常数,k ≠0)的图象也经过这个定点,探究实数k ,a 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )都在函数y 1的图象上,若x 0<1,且m >n ,求x 0的取值范围(用含a 的代数式表示).【答案】(1)y =3x 2﹣3x ﹣2;(2)k =2a ﹣5;(3)x 0<.【解析】解:(1)∵函数y 1=ax 2+bx +a ﹣5的图象经过点(﹣1,4),且2a +b =3∴, ∴, ∴函数y 1的表达式为y =3x 2﹣3x ﹣2;(2)∵2a +b =3∴二次函数y1=ax2+bx+a﹣5=ax2+(3﹣2a)x+a﹣5,整理得,y1=[ax2+(3﹣2a)x+a﹣3]﹣2=(ax﹣a+3)(x﹣1)﹣2∴当x=1时,y1=﹣2,∴y1恒过点(1,﹣2)∴代入y2=kx+b得∴﹣2=k+3﹣2a得k=2a﹣5∴实数k,a满足的关系式:k=2a﹣5(3)∵y1=ax2+(3﹣2a)x+a﹣5∴对称轴为x=﹣,∵x0<1,且m>n∴当a>0时,对称轴x=﹣,解得,当a<0时,对称轴x=﹣,解得(不符合题意,故x0不存在)故x0的取值范围为:19.已知二次函数y=x2+bx+c的图象经过点A和点B(1)求该二次函数的解析式;(2)写出该抛物线的对称轴及顶点坐标.【答案】(1) y=x2﹣4x﹣6;(2)对称轴为x=2;顶点坐标是(2,﹣10).【解析】(1)根据题意,得,解得,∴所求的二次函数的解析式为y=x2﹣4x﹣6.(2)又∵y=x2﹣4x﹣6=(x﹣2)2﹣10,∴函数图象的对称轴为x=2;顶点坐标是(2,﹣10).20.如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A、B两点,其中A点的坐标为(-3,0),C为抛物线与y轴的交点.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=2S△BOC,求点P的坐标.【答案】(1)y=x2+2x﹣3;(2)点P的坐标为(2,5)或(﹣2,﹣3)【解析】(1)∵抛物线的对称轴为x=﹣1,A点的坐标为(﹣3,0),∴点B的坐标为(1,0).将点A和点B的坐标代入抛物线的解析式得:解得:b=2,c=﹣3,∴抛物线的解析式为y=x2+2x﹣3.(2)∵将x=0代y=x2+2x﹣3入,得y=﹣3,∴点C的坐标为(0,﹣3).∴OC=3.∵点B的坐标为(1,0),∴OB=1.设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12OC•|a|=12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,5);当a=﹣2时,点P的坐标为(﹣2,﹣3).∴点P的坐标为(2,5)或(﹣2,﹣3).21.已知抛物线y=ax2﹣3ax﹣4a(a≠0).(1)直接写出该抛物线的对称轴.(2)试说明无论a为何值,该抛物线一定经过两个定点,并求出这两个定点的坐标.【答案】(1);(2)抛物线一定经过点.【解析】解:(1)该抛物线的对称轴为x=-;(2)可化为,当,即时,,抛物线一定经过点.22.如图,已知点A(-1,0),B(3,0),C(0,)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在第一象限的抛物线上求一点P,使△PBC的面积为.【答案】(1);(2)点P的坐标为(1,2)或(2,).【解析】(1)设抛物线的解析式为y=a(x+1)(x-3),将C(0,)代入,得-3a=,解得∴抛物线的解析式为(2)过点P作PD⊥x轴于D.设点,∴S四边形ACOB=S梯形PDOC+S△PBD =(=∴S△PBC=S四边形PCOB- S△BOC=整理得,解得x=1或x=2.∴点P的坐标为(1,2)或(2,)。
学习目标:1.经历探索二次函数y=ax2+k(a≠0),y=a(x-h)2(a≠0)的图象作法和性质的过程;2.能够理解函数y=ax2+k(a≠0)、y=a(x-h)2与y=ax2的图象的关系,知道a、h对二次函数的图象的影响;3.能正确说出函数y=ax2+k(a≠0)、y=a(x-h)2的图象的性质.教学过程:一、探索二次函数y=ax2+k(a≠0)的图象和性质。
(2)在下图的直角坐标系中,描点并画出函数2y x=和21y x=+的图象;2.思考:函数y=x2+1的图象与y=x2的图象有什么关系?(1)形状相同吗?(2)相同自变量的值所对应的两个函数值有何关系?(3)从点的位置看,函数y=x2+1的图象与函数y=x2的图象的位置有什么关系?3.归纳:图象向上移还是向下移,移多少个单位长度,有什么规律吗?函数y=ax2 (a≠0)和函数y=ax2+ k (a≠0)的图象形状,只是位置不同;当k >0时,函数y=ax2+ k的图象可由y=ax2的图象向平移个单位得到;当k〈0时,函数y=ax2+c的图象可由y=ax2的图象向平移个单位得到。
二、探索二次函数y=a(x-h)2(a≠0)的图象作法和性质:1.操作:在上图右边直角坐标系中,描点并画出函数y=(x+3)2的图象;2.思考:函数y=(x+3)2的图象与y=x2的图象有什么关系?(1)形状相同吗?(2)从表格中的数值看,函数y=(x+3)2的函数值与函数y=x2的函数值相等时,它们所对应的自变量的值有什么关系?(3)从点的位置看,函数y=(x+3)2的图象与函数y=x 2的图象的位置有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?3.结论:函数y=(x+3)2的图象可以由函数y=x 2的图像沿x 轴向 平移 个单位长度得到,所以它是 ,这条抛物线的对称轴是 ,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小.4.①抛物线y=-3(x-1)2可以看作是抛物线y=-3x 2沿x 轴 平移了 个单位;抛物线y=-3(x+1)2可以看作是抛物线y=-3x 2沿x 轴 平移了 个单位. ②图象向左平移还是向右平移,移多少个单位长度,有什么规律吗?三、例题:1.函数y=4x 2+5的图象可由y=4x 2的图象向 平移 个单位得到;y=4x 2-11的图象可由 y=4x 2的图象向 平移 个单位得到。
2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题05 二次函数的图像和性质考试时间:120分钟试卷满分:100分姓名:__________ 班级:__________考号:__________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•长沙期末)抛物线y=2x2﹣4x+c经过三点(﹣4,y1),(﹣2,y2),(,y3),则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y22.(2分)(2022春•长沙期末)已知二次函数y=(x﹣1)2+1,则关于该函数的下列说法正确的是()A.该函数图象与y轴的交点坐标是(0,1)B.当x>1时,y的值随x值的增大而减小C.当x取0和2时,所得到的y的值相同D.当x=1时,y有最大值是13.(2分)(2022春•岳麓区校级期末)将抛物线y=x2+1向下平移3个单位,再向左平移4个单位,得到抛物线()A.y=(x+4)2+4 B.y=(x﹣4)2+4 C.y=(x+4)2﹣2 D.y=(x﹣4)2﹣24.(2分)(2022春•岳麓区校级期末)抛物线y=(x+1)2﹣3的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣3 D.直线x=35.(2分)(2021秋•雨花区期末)在同一平面直角坐标系中,函数y=ax2+b与y=ax+2b(ab≠0)的图象大致如图()A.B.C.D.6.(2分)(2022•长沙模拟)如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④7.(2分)(2021秋•长沙月考)我们定义一种新函数:形如y=|ax²+bx+c|(a≠0,b²﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x²﹣2x﹣3|的图象(如图所示),并写出下列结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4;⑥若点P(a,b)在该图象上,则当b=2时,可以找到4个不同的点P.其中正确结论的个数是()A.6 B.5 C.4 D.38.(2分)(2020秋•岳麓区校级期末)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3 C.m≥3 D.1≤m≤39.(2分)(2016•长沙校级一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0 10.(2分)(2021春•天心区期中)如图,抛物线G:y1=a(x+1)2+2与H:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),且分别与y轴交于点D、E.过点B作x轴的平行线,交抛物线于点A、C,则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是()A.①③④B.①②④C.②③④D.①②③④评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2019春•雨花区校级期末)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是.12.(2分)(2021•岳麓区开学)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③3a+c>0;④当x >﹣1时,y的值随x值的增大而增大;⑤4a+2b≥am2﹣bm(m为任意实数).其中正确的结论有.(填序号)13.(2分)(2020•天心区开学)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m(am+b).其中正确的结论为.(注:只填写正确结论的序号)14.(2分)(2019秋•浏阳市期末)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a﹣b+c<0;⑤3a+c>0.其中正确结论的序号是.15.(2分)(2019•雨花区校级开学)如图,在平面直角坐标系中,抛物线y =ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为.16.(2分)(2021春•雨花区期末)如图,P是抛物线y=x2﹣2x﹣3在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.17.(2分)(2019秋•天心区校级月考)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,S△PAB=.18.(2分)(2019秋•浏阳市期中)已知抛物线y=ax2+2ax+m(a>0)经过点(﹣4,y1)、(﹣2,y2),(1,y3),则y1、y2、y3的大小关系是.19.(2分)(2017秋•开福区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=﹣1,经过点(0,1)有以下结论:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是.20.(2分)(2015春•长沙校级期中)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有个.评卷人得分三.解答题(共7小题,满分60分)21.(6分)(2021春•岳麓区校级期末)已知二次函数如图所示,M为抛物线的顶点,其中A(1,0),B(3,0),C(0,3).(1)求这个二次函数的解析式及顶点坐标M的坐标.(2)求直线CM的解析式.22.(8分)(2021春•天心区校级月考)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)求出直线l的解析式;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,求a的取值范围.23.(8分)(2020秋•长沙月考)已知抛物线y=(2m﹣1)x2+(m+1)x+3(m为常数).(1)若该抛物线经过点(1,m+7),求m的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求满足条件的最大整数m;(3)将该抛物线向下平移若干个单位长度,所得的新抛物线经过P(﹣5,y1),Q(7,y2)(其中y1<y2)两点,当﹣5≤x≤3时,点P是该部分函数图象的最低点,求m的取值范围.24.(8分)(2020•雨花区二模)已知抛物线y=ax2+x+c经过点A(﹣2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠DAB,设AE=x,BF=y,求y与x的函数关系式;(3)在(2)问的条件下,△DEF能否为等腰三角形?若能,求出DF的长;若不能,请说明理由.25.(8分)(2021秋•雨花区期末)如图,已知抛物线y=x2﹣2x﹣3的顶点为A,交x轴于B、D两点,与y轴交于点C.(1)求线段BD的长;(2)求△ABC的面积;(3)P是抛物线对称轴上一动点,求PC+PD的最小值.26.(10分)(2021•岳麓区开学)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的定顶抛物线,如:y=x2+1是y=x+1的定顶抛物线.(1)若y=x2﹣4是y=﹣x+p的定顶抛物线,求p的值;(2)若二次函数y=﹣x2+4x+7是经过点(1,3)一次函数y=kx+t(k≠0)的定顶抛物线,求直线y=kx+t(k≠0)与两坐标轴围成的三角形的面积;(3)若函数y=mx﹣3(m≠0)的定顶抛物线y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.27.(12分)(2021春•长沙期末)如图①,抛物线y=ax2+bx+c与x轴交于A,B,与y轴交于点C,若OA=OC=2OB=2.(1)求抛物线的解析式及过点B、C的直线的解析式;(2)若P为线段AC上方抛物线上一动点,求△ACP面积的最大值;(3)如图②过点A作AD⊥BC于点D,过D作DH⊥x轴于H,若G为直线DH上的动点,N为抛物线上的动点,在x轴上是否存在点M,使得以M、N、G、H为顶点的四边形为正方形?若存在,求出M点坐标,若不存在,请说明理由.2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题05 二次函数的图像和性质考试时间:120分钟试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•长沙期末)抛物线y=2x2﹣4x+c经过三点(﹣4,y1),(﹣2,y2),(,y3),则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2【思路引导】利用配方法将已知抛物线方程转化为顶点式,根据抛物线的对称性质和增减性比较大小.【完整解答】解:∵y=2x2﹣4x+c=2(x﹣1)2+c﹣2.∴抛物线开口向上,对称轴是直线x=1.∴当x<1时,y随x的增大而减小,∵抛物线y=2x2﹣4x+c经过三点(﹣4,y1),(﹣2,y2),(,y3),﹣4<﹣2<<1,∴y1>y2>y3,故选:B.2.(2分)(2022春•长沙期末)已知二次函数y=(x﹣1)2+1,则关于该函数的下列说法正确的是()A.该函数图象与y轴的交点坐标是(0,1)B.当x>1时,y的值随x值的增大而减小C.当x取0和2时,所得到的y的值相同D.当x=1时,y有最大值是1【思路引导】在y=(x﹣1)2+1中,令x=0得y=2,可判定A不符合题意;由1>0,对称轴直线x=1可判断B不符合题意;根据当x=0时,y=2;当x=2时,y=2,可判定C符合题意;由y=(x﹣1)2+1,根据函数性质可判定D不符合题意.【完整解答】解:令x=0,则y=(0﹣1)2+1=2,∴二次函数y=(x﹣1)2+1的图象与y轴的交点坐标为(0,2),故A不符合题意;∵二次函数y=(x﹣1)2+1的对称轴为x=1,开口向上,∴当x>1时,y随x的增大而增大,故B不符合题意;当x=0时,y=2,当x=2时y=(2﹣1)2+1=2,故C符合题意;∵二次函数y=(x﹣1)2+1的对称轴为x=1,开口向上,∴当x=1时,y有最小值,故D不符合题意.故选:C.3.(2分)(2022春•岳麓区校级期末)将抛物线y=x2+1向下平移3个单位,再向左平移4个单位,得到抛物线()A.y=(x+4)2+4 B.y=(x﹣4)2+4 C.y=(x+4)2﹣2 D.y=(x﹣4)2﹣2【思路引导】直接根据二次函数图象平移的法则即可得出结论.【完整解答】解:根据“上加下减,左加右减”的法则可知,将抛物线y=x2+1向下平移3个单位,再向左平移4个单位,得到抛物线的表达式是y=(x+4)2+1﹣3,即y=(x+4)2﹣2.故选:C.4.(2分)(2022春•岳麓区校级期末)抛物线y=(x+1)2﹣3的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣3 D.直线x=3【思路引导】根据抛物线的顶点式,可以写出该抛物线的对称轴,本题得以解决.【完整解答】解:∵抛物线y=(x+1)2﹣3,∴该抛物线的对称轴是直线x=﹣1,故选:A.5.(2分)(2021秋•雨花区期末)在同一平面直角坐标系中,函数y=ax2+b与y=ax+2b(ab≠0)的图象大致如图()A.B.C.D.【思路引导】根据每一选项中a、b的符号是否相符,逐一判断.【完整解答】解:A、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;B、由抛物线可知,a<0,b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知a>0,b<0,由直线可知a>0,b>0,故本选项错误;D、由抛物线可知,a<0,b<0,由直线可知,a>0,b<0,故本选项错误.故选:B.6.(2分)(2018秋•天心区校级期末)已知函数y=ax2+bx+c,当y>0时,.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.【思路引导】当y>0时,,所以可判断a<0,可知﹣=﹣+=﹣,=﹣×=﹣,所以可知a=6b,a=﹣6c,则b=﹣c,不妨设c=1进而得出解析式,找出符合要求的答案.【完整解答】解:因为函数y=ax2+bx+c,当y>0时,所以可判断a<0,可知﹣=﹣+=﹣,=﹣×=﹣所以可知a=6b,a=﹣6c,则b=﹣c,不妨设c=1则函数y=cx2﹣bx+a为函数y=x2+x﹣6即y=(x﹣2)(x+3)则可判断与x轴的交点坐标是(2,0),(﹣3,0),故选:A.7.(2分)(2021秋•长沙月考)我们定义一种新函数:形如y=|ax²+bx+c|(a≠0,b²﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x²﹣2x﹣3|的图象(如图所示),并写出下列结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4;⑥若点P(a,b)在该图象上,则当b=2时,可以找到4个不同的点P.其中正确结论的个数是()A.6 B.5 C.4 D.3【思路引导】由(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|知①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线x=1,②也是正确的;根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤时不正确的;⑥根据图形判断即可;逐个判断之后,可得出答案.【完整解答】解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;⑤从图象上看,当x<﹣1或x>3,存在函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤是不正确的;⑥从图象上看,若点P(a,b)在该图象上,则当b=2时,可以找到4个不同的点P,因此⑥也是正确的.故答案为:①②③④⑥.故选:B.8.(2分)(2020秋•岳麓区校级期末)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3 C.m≥3 D.1≤m≤3【思路引导】根据题意,x=﹣≤2,≥﹣3【完整解答】解:当对称轴在y轴的右侧时,,解得≤m<3,当对称轴是y轴时,m=3,符合题意,当对称轴在y轴的左侧时,2m﹣6>0,解得m>3,综上所述,满足条件的m的值为m≥.故选:A.9.(2分)(2016•长沙校级一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0【思路引导】根据二次函数的图象求出a<0,c>0,根据抛物线的对称轴求出b=﹣2a>0,即可得出abc<0;根据图象与x轴有两个交点,推出b2﹣4ac>0;对称轴是直线x=1,与x轴一个交点是(﹣1,0),求出与x轴另一个交点的坐标是(3,0),把x=3代入二次函数得出y=9a+3b+c=0;把x=4代入得出y=16a﹣8a+c=8a+c,根据图象得出8a+c<0.【完整解答】解:A.∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,∴a<0,c>0,∵抛物线的对称轴是直线x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故本选项错误;B.∵图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;C.∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),∴与x轴另一个交点的坐标是(3,0),把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;D.∵当x=3时,y=0,∵b=﹣2a,∴y=ax2﹣2ax+c,把x=4代入得:y=16a﹣8a+c=8a+c<0,故选:D.10.(2分)(2021春•天心区期中)如图,抛物线G:y1=a(x+1)2+2与H:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),且分别与y轴交于点D、E.过点B作x轴的平行线,交抛物线于点A、C,则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是()A.①③④B.①②④C.②③④D.①②③④【思路引导】①由非负数的性质,即可证得y2=﹣(x﹣2)2﹣1≤﹣1<0,即可得无论x取何值,y2总是负数;②由抛物线l1:y1=a(x+1)2+2与l2:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),可求得a的值,然后由抛物线的平移的性质,即可得l2可由l1向右平移3个单位,再向下平移3个单位得到;③由y1﹣y2=﹣(x+1)2+2﹣[﹣(x﹣2)2﹣1]=﹣6x+6,可得随着x的增大,y1﹣y2的值减小;④首先求得点A,C,D,E的坐标,即可证得AF=CF=DF=EF,又由AC⊥DE,即可证得四边形AECD为正方形.【完整解答】解:①∵(x﹣2)2≥0,∴﹣(x﹣2)2≤0,∴y2=﹣(x﹣2)2﹣1≤﹣1<0,∴无论x取何值,y2总是负数;故①正确;②∵抛物线G:y1=a(x+1)2+2与抛物线H:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),∴当x=1时,y=﹣2,即﹣2=a(1+1)2+2,解得:a=﹣1;∴y1=﹣(x+1)2+2,∴H可由G向右平移3个单位,再向下平移3个单位得到;故②正确;③∵y1﹣y2=﹣(x+1)2+2﹣[﹣(x﹣2)2﹣1]=﹣6x+6,∴随着x的增大,y1﹣y2的值减小;故③错误;④设AC与DE交于点F,∵当y=﹣2时,﹣(x+1)2+2=﹣2,解得:x=﹣3或x=1,∴点A(﹣3,﹣2),当y=﹣2时,﹣(x﹣2)2﹣1=﹣2,解得:x=3或x=1,∴点C(3,﹣2),∴AF=CF=3,AC=6,当x=0时,y1=1,y2=﹣5,∴DE=6,DF=EF=3,∴四边形AECD为平行四边形,∴AC=DE,∴四边形AECD为矩形,∵AC⊥DE,∴四边形AECD为正方形.故④正确.故选:B.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2019春•雨花区校级期末)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤15 .【思路引导】根据坐标先求AB的长,所以△PAB的面积S的大小取决于P的纵坐标的大小,因此只要讨论当0≤m≤3时,P的纵坐标的最大值和最小值即可,根据顶点坐标D(1,4),由对称性可知:x=1时,P的纵坐标最大,此时△PAB的面积S最大;当x=3时,P的纵坐标最小,此时△PAB的面积S最小.【完整解答】解:∵点A、B的坐标分别为(﹣5,0)、(﹣2,0),∴AB=3,y=﹣2x2+4x+8=﹣2(x﹣1)2+10,∴顶点D(1,10),由图象得:当0≤x≤1时,y随x的增大而增大,当1≤x≤3时,y随x的增大而减小,∴当x=3时,即m=3,P的纵坐标最小,y=﹣2(3﹣1)2+10=2,此时S△PAB=×2AB=×2×3=3,当x=1时,即m=1,P的纵坐标最大是10,此时S△PAB=×10AB=×10×3=15,∴当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤15;故答案为:3≤S≤15.12.(2分)(2021•岳麓区开学)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③3a+c>0;④当x>﹣1时,y的值随x值的增大而增大;⑤4a+2b≥am2﹣bm(m为任意实数).其中正确的结论有①③⑤.(填序号)【思路引导】由抛物线的对称轴为直线x=2可得a与b的关系,从而判断①,由x=﹣3时y>0可判断②,由抛物线经过(﹣1,0)及a与b的关系可判断③,由抛物线对称轴及开口方向可判断④,由x=2时y取最大值可判断⑤.【完整解答】解:∵抛物线对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,①正确.由图象可得x=﹣3时,y=9a﹣3b+c<0,∴9a+c<3b,②错误.∵抛物线经过(﹣1,0),∴a﹣b+c=a+4a+c=5a+c=0,∵抛物线开口向下,∴a<0,∴3a+c=5a+c﹣2a>0,③正确.由图象可得x<2时,y随x增大而增大,∴④错误.∵x=2时,函数取最大值,∴4a+2b+c≥am2﹣bm+c,即4a+2b≥am2﹣bm,⑤正确.故答案为:①③⑤.13.(2分)(2020•天心区开学)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m(am+b).其中正确的结论为②⑤.(注:只填写正确结论的序号)【思路引导】根据二次函数的图象与系数的关系即可求出答案.【完整解答】解:①函数的对称轴在y轴右侧,则ab<0,而c<0,故abc>0,故①错误,不符合题意;②将点(﹣,0)代入函数表达式得:a﹣2b+4c=0,故②正确,符合题意;③函数的对称轴为直线x=﹣=1,即b=﹣2a,故2a+b=0,故③错误,不符合题意;④由②③得:a﹣2b+4c=0,b=﹣2a,则c=﹣,故2c﹣3b=>0,故④错误,不符合题意;⑤当x=1时,函数取得最小值,即a+b+c≤m(am+b)+c,故⑤正确,符合题意;故答案为②⑤.14.(2分)(2019秋•浏阳市期末)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a﹣b+c<0;⑤3a+c>0.其中正确结论的序号是①④⑤.【思路引导】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=﹣1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【完整解答】解:∵图象和x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,∴①正确;∵从图象可知:a>0,c<0,﹣=﹣1,b=2a>0,∴abc<0,∴②错误;∵b=2a>0∴2a+b=4a>0,∴③错误;∵x=﹣1时,y<0,∴a﹣b+c<0,∴④正确;∵x=1时,y>0,∴a+b+c>0,把b=2a代入得:3a+c>0,选项⑤正确;故答案为①④⑤.15.(2分)(2019•雨花区校级开学)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为 2 .【思路引导】先根据抛物线解析式求出点A坐标和其对称轴,再根据对称性求出点M坐标,利用点M为线段AB中点,得出点B坐标;用含a的式子表示出点P坐标,写出直线OP 的解析式,再将点B坐标代入即可求解出a的值.【完整解答】解:∵抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,∴A(0,),抛物线的对称轴为x=1∴顶点P坐标为(1,﹣a),点M坐标为(2,)∵点M为线段AB的中点,∴点B坐标为(4,)设直线OP解析式为y=kx(k为常数,且k≠0)将点P(1,)代入得=k∴y=()x将点B(4,)代入得=()×4解得a=2故答案为:2.16.(2分)(2021春•雨花区期末)如图,P是抛物线y=x2﹣2x﹣3在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.【思路引导】设P(x,x2﹣2x﹣3)根据矩形的周长公式得到C=﹣2(x﹣)2+.根据二次函数的性质来求最值即可.【完整解答】解:设P(x,x2﹣2x﹣3),∵过点P分别向x轴和y轴作垂线,垂足分别为A、B,∴四边形OAPB为矩形,∴四边形OAPB周长=2PA+2OA=﹣2(x2﹣2x﹣3)+2x=﹣2x2+6x+6=﹣2(x2﹣3x)+6,=﹣2+.∴当x=时,四边形OAPB周长有最大值,最大值为.故答案为.17.(2分)(2019秋•天心区校级月考)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,S△PAB=.【思路引导】根据轴对称,可以求得使得△PAB的周长最小时点P的坐标,然后求出点P到直线AB的距离和AB的长度,即可求得△PAB的面积,本题得以解决.【完整解答】解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△PAB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△PAB的面积是:=,故答案为:.18.(2分)(2019秋•浏阳市期中)已知抛物线y=ax2+2ax+m(a>0)经过点(﹣4,y1)、(﹣2,y2),(1,y3),则y1、y2、y3的大小关系是y2<y3<y1.【思路引导】把三点的坐标分别代入可求得y1、y2、y3,再比例其大小即可.【完整解答】解:∵抛物线y=ax2+2ax+m(a>0)经过点(﹣4,y1)、(﹣2,y2),(1,y3),∴y1=16a﹣8a+m=8a+m,y2=4a﹣4a+m=m,y3=a+2a+m=3a+m,∵a>0,∴m<3a+m<8a+m,即y2<y3<y1,故答案为:y2<y3<y1.19.(2分)(2017秋•开福区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=﹣1,经过点(0,1)有以下结论:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是①②③⑤.【思路引导】根据二次函数的图象与性质即可求出答案.【完整解答】解:①由图象可知:x=1时,y<0,∴y=a+b+c<0,故①正确;②由图象可知:Δ>0,∴b2﹣4ac>0,故②正确;③由图象可知:<0,∴ab>0,又∵c=1,∴abc>0,故③正确;④由图象可知:(0,0)关于x=﹣1对称点为(﹣2,0)∴令x=﹣2,y>0,∴4a﹣2b+c>0,故④错误;⑤由图象可知:a<0,c=1,∴c﹣a=1﹣a>1,故⑤正确;故答案为:①②③⑤20.(2分)(2015春•长沙校级期中)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有 2 个.【思路引导】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【完整解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;由图象知,抛物线y=x2+bx+c与直线y=x的交点坐标为(1,1)和(3,3),当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故答案是:2.三.解答题(共7小题,满分60分)21.(6分)(2021春•岳麓区校级期末)已知二次函数如图所示,M为抛物线的顶点,其中A(1,0),B(3,0),C(0,3).(1)求这个二次函数的解析式及顶点坐标M的坐标.(2)求直线CM的解析式.【思路引导】根据待定系数法求二次函数解析式、一次函数解析式.【完整解答】解:(1)设二次函数解析式为y=a(x﹣1)(x﹣3),将C(0,3)代入得:3=a(0﹣1)(0﹣3),∴a=1,∴y=(x﹣1)(x﹣3)=x2﹣4x+3,∴顶点坐标M(2,﹣1),(2)设直线CM的解析式为y=kx+b,将C(0,3)、M(2,﹣1)代入得:,∴.∴y=﹣2x+3.22.(8分)(2021春•天心区校级月考)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)求出直线l的解析式;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,求a的取值范围.【思路引导】(1)利用待定系数法即可求出直线的解析式;(2)分x在对称轴右侧和左侧两种情况,分别求解即可;(3)分a<0、a>0两种情况,分别求解即可.【完整解答】解:(1)把点A(﹣3,﹣3),B(1,﹣1)代入y=kx+b中,得,解得,∴直线l的解析式为y=x﹣;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣4,∴当y=﹣4时,有﹣x2+2x﹣1=﹣4,∴x=﹣1或x=3,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣1时,y有最大值﹣4,∴m=﹣3;②在对称轴x=1右侧,y随x最大而减小,∴x=m=3时,y有最大值﹣4;综上所述:m=﹣3或m=3;(3))①a<0时,x=1时,y≤﹣1,即a+1≤﹣1,∴a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即9a﹣7≥﹣3,∴a≥,直线AB的解析式为y=x﹣;抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2.23.(8分)(2020秋•长沙月考)已知抛物线y=(2m﹣1)x2+(m+1)x+3(m为常数).(1)若该抛物线经过点(1,m+7),求m的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求满足条件的最大整数m;(3)将该抛物线向下平移若干个单位长度,所得的新抛物线经过P(﹣5,y1),Q(7,y2)(其中y1<y2)两点,当﹣5≤x≤3时,点P是该部分函数图象的最低点,求m的取值范围.【思路引导】(1)将点(1,m+7)代入函数解析式即可;(2)设符合题意的两点分别是(x0,y0),(﹣x0,﹣y0),代入解析式,两式相加即可得到2(2m﹣1)x02+6=0,根据二次函数的性质即可求得;(3)当﹣5≤x≤3时,点P是该图象的最低点,①当2m﹣1>0时,﹣≤﹣5②当2m﹣1<0时,﹣>1.【完整解答】解:(1)抛物线经过点(1,m+7),∴m+7=2m﹣1+m+1+3,∴m=2;(2)设抛物线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0),代入解析式可得:,∴两式相加可得:2(2m﹣1)x02+6=0,化简得:x02=﹣,又∵x0≠0,∴﹣>0,∴2m﹣1<0,∴m<,故满足条件的最大整数m=0;(3)∵新抛物线经过P(﹣5,y1),Q(7,y2)(其中y1<y2)两点,∵当﹣5≤x≤3时,点P是该图象的最低点,①当2m﹣1>0时,﹣≤﹣5,∴<m≤,②当2m﹣1<0时,﹣>1,∴<m<;综上所述:<m≤且m≠;24.(8分)(2017春•雨花区校级期末)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【思路引导】(1)直接把A点和C点坐标代入y=﹣x2+mx+n得m、n的方程组,然后解方程组求出m、n即可得到抛物线解析式;(2)先利用抛物线对称轴方程求出抛物线的对称轴为直线x=﹣,则D(,0),则利用勾股定理计算出CD=,然后分类讨论:如图1,当CP=CD时,利用等腰三角形的性质易得P1(,4);当DP =DC时,易得P2(,),P3(,﹣);(3)先根据抛物线与x轴的交点问题求出B(4,0),再利用待定系数法求出直线BC的解析式为y=﹣x+2,利用一次函数图象上点的坐标特征和二次函数图象上点的坐标特征,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),则FE=﹣x2+2x,由于△BEF和△CEF共底边,高的和为4,则S△BCF =S△BEF+S△CEF=×4×EF=﹣x2+4x,加上S△BCD=,所以S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),然后根据二次函数的性质求四边形CDBF的面积最大,并得到此时E点坐标.【完整解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,则D(,0),∴CD===,如图1,当CP=CD时,则P1(,4);当DP=DC时,则P2(,),P3(,﹣),综上所述,满足条件的P点坐标为(,4)或(,)或(,﹣);(3)当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则B(4,0),设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),∴FE=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∵S△BCF=S△BEF+S△CEF=×4×EF=2(﹣x2+2x)=﹣x2+4x,而S△BCD=×2×(4﹣)=,∴S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),=﹣(x﹣2)2+当x=2时,S四边形CDBF有最大值,最大值为,此时E点坐标为(2,1).25.(8分)(2021秋•雨花区期末)如图,已知抛物线y=x2﹣2x﹣3的顶点为A,交x轴于B、D两点,与y轴交于点C.(1)求线段BD的长;(2)求△ABC的面积;(3)P是抛物线对称轴上一动点,求PC+PD的最小值.【思路引导】(1)分别求出D(﹣1,0),B(3,0),则可求BD;(2)连接AO,求出顶点坐标为(1,﹣4),C(0,﹣3),再由S△CAB=S△OAB+S△OCA﹣S△OCB即可求解;(3)连接BC交对称轴与点P,由题意可知B点与D点关于对称轴x=1对称,则当P、B、C三点共线时,PC+PD的值最小,求出BC=3即为所求.【完整解答】解:(1)当y=0,则0=x2﹣2x﹣3,则(x﹣3)(x+1)=0,解得:x1=﹣1,x2=3,∴D(﹣1,0),B(3,0),∴BD=4;故答案为:4.(2)连接AO,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4),当x=0时,y=﹣3,∴C(0,﹣3),∴S△CAB=S△OAB+S△OCA﹣S△OCB=×3×4+×3×1﹣×3×3=3;故答案为:3.(3)连接BC交对称轴与点P,∵y=(x﹣1)2﹣4,∴对称轴为直线x=1,∵B点与D点关于对称轴x=1对称,∴DP=PB,∴PC+PD=PC+BP≥BC,∴当P、B、C三点共线时,PC+PD的值最小,∵B(3,0),C(0,﹣3),∴BC=3,∴PC+PD的最小值即BC=.26.(10分)(2021•岳麓区开学)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的定顶抛物线,如:y=x2+1是y=x+1的定顶抛物线.(1)若y=x2﹣4是y=﹣x+p的定顶抛物线,求p的值;(2)若二次函数y=﹣x2+4x+7是经过点(1,3)一次函数y=kx+t(k≠0)的定顶抛物线,求直线y=kx+t(k≠0)与两坐标轴围成的三角形的面积;(3)若函数y=mx﹣3(m≠0)的定顶抛物线y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.【思路引导】(1)由抛物线解析式可得顶点坐标,将顶点坐标代入直线解析式求解.(2)由抛物线解析式可得顶点坐标,由抛物线顶点坐标及(1,3)可得直线解析式,进而求解.(3)由线y=x2+2x+n可得抛物线对称轴为直线x=﹣1,由抛物线与x轴两个交点间的距离为4可得抛物线与x轴交点坐标,进而可得n的值,将抛物线顶点坐标代入直线解析式可得m的值.【完整解答】解:(1)∵抛物线y=x2﹣4的顶点坐标为(0,﹣4),∴(0,﹣4)在直线y=﹣x+p上,∴p=﹣4.(2)∵y=﹣x2+4x+7=﹣(x﹣2)2+11,∴抛物线顶点坐标为(2,11),将(2,11),(1,3)代入y=kx+t得,解得,∴一次函数解析式为y=8x﹣5.将x=0代入y=8x﹣5得y=﹣5,将y=0代入y=8x﹣5得0=8x﹣5,解得x=,∴一次函数与坐标轴交点坐标为(0,﹣5),(,0),∴直线y=8x﹣5与坐标轴围成的三角形面积为×=.(3)∵y=x2+2x+n,∴抛物线对称轴为直线x=﹣=﹣1,∵抛物线与x轴的两个交点之间距离为4,﹣1+2=1,﹣1﹣2=﹣3,∴抛物线经过(1,0),(﹣5,0),将(1,0)代入y=x2+2x+n得0=1+2+n,解得n=﹣3.∴y=x2+2x﹣3=(x+1)2﹣4,∴抛物线顶点坐标为(﹣1,﹣4),将(﹣1,﹣4)代入y=mx﹣3得﹣4=﹣m﹣3,解得m=1.27.(12分)(2021春•长沙期末)如图①,抛物线y=ax2+bx+c与x轴交于A,B,与y轴交于点C,若OA=OC=2OB=2.(1)求抛物线的解析式及过点B、C的直线的解析式;。