一级倒立摆的建模与控制分析
- 格式:doc
- 大小:472.50 KB
- 文档页数:19
一级倒立摆的系统分析一、倒立摆系统的模型建立如图1-1所示为一级倒立摆的物理模型图1-1 一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力x:小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。
其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。
注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。
图1-2 小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:M ẍ=F-bẋ-N (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N =md 2dt 2(x +l sin θ) (1-2)即: N =mẍ+mlθcos θ−mlθ2sin θ (1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )ẍ+bẋ+mlθcos θ−mlθ2sin θ=F (1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P −mg =md 2dt 2(l cos θ) (1-5)P −mg =− mlθsin θ−mlθ2cos θ (1-6) 利用力矩平衡方程可以有:−Pl sinθ−Nl cosθ=Iθ (1-7)注意:此方程中的力矩方向,由于θ=π+ɸ,cosɸ=−cosθ,sinɸ=−sinθ,所以等式前面含有负号。
合并两个方程,约去P和N可以得到第二个运动方程:(I+ml2)θ+mgl sinθ=−mlẍcosθ (1-8)设θ=π+ɸ,假设ɸ与1(单位是弧度)相比很小,即ɸ<<1,则可以进行近似处理:cosθ=−1,sinθ=−ɸ,(dθdt )2=0。
用u来代表被控对象的输入力F,线性化后的两个运动方程如下:{(I+ml2)ɸ−mglɸ=mlẍ(M+m)ẍ+bẋ−mlɸ=u(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:{(I+ml2)Φ(s)s2−mglΦ(s)=mlX(s)s2(M+m)X(s)s2+bX(s)s−mlΦ(s)s2=U(s) (1-10) 由于输出为角度ɸ,求解方程组的第一个方程,可以得到:X(s)=[(I+ml2)ml −gs2]Φ(s) (1-11)或改写为:Φ(s)X(s)=mls2(I+ml2)s2−mgl(1-12)如果令v=ẍ,则有:Φ(s)V(s)=ml(I+ml2)s2−mgl(1-13)如果将上式代入方程组的第二个方程,可以得到:(M+m)[(I+ml2)ml −gs]Φ(s)s2+b[(I+ml2)ml+gs2]Φ(s)s−mlΦ(s)s2=U(s) (1-14) 整理后可得传递函数:Φ(s) U(s)=mlqs2s4+b(I+ml2)qs3−(M+m)mglqs2−bmglqs(1-15)其中q=[(M+m)(I+ml2)−(ml)2]假设系统状态空间方程为:X=AX+Buy=CX+Du (1-16) 方程组对ẍ,ɸ解代数方程,可以得到解如下:{ẋ=ẋẍ=−(I+ml2)bI(M+m)+Mml2ẋ+m2gl2I(M+m)+Mml2ɸ+(I+ml2)I(M+m)+Mml2uɸ=ɸɸ=−mlbI(M+m)+Mml2ẋ+mgl(M+m)I(M+m)+Mml2ɸ+mlI(M+m)+Mml2u(1-17)整理后可以得到系统状态空间方程:[ẋẍɸɸ]=[01000−(I+ml2)bI(M+m)+Mml2m2gl2I(M+m)+Mml200010−mlbI(M+m)+Mml2mgl(M+m)I(M+m)+Mml20][xẋɸɸ]+[(I+ml2)I(M+m)+Mml2mlI(M+m)+Mml2]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-18)由(1-9)的第一个方程为:(I+ml2)ɸ−mgl ɸ=mlẍ对于质量均匀分布的摆杆可以有:I=13ml2于是可以得到:(13ml2+ml2)ɸ−mgl ɸ=mlẍ化简可以得到:ɸ=3g4l ɸ+34lẍ(1-19)设X={x, ẋ, ɸ , ɸ},u=ẍ则有:[ẋẍɸɸ]=[010000000001003g4l0][xẋɸɸ]+[134l]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-20)以上公式推理是根据牛顿力学的微分方程验证的。
直线一级倒立摆的建模及控制分析摘要:本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。
在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。
此外,用MATLAB 仿真绘制了相应的曲线并做了分析。
一、问题描述倒立摆控制系统是机器人技术、控制理论、计算机控制等多个领域和多种技术的有机结合,其被控系统本身是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,是控制理论研究中较为理想的实验对象。
它为控制理论的教学、实验和科研构建了一个良好的实验平台,促进了控制系统新理论、新思想的发展。
倒立摆系统可以采用多种理论和方法来实现其稳定控制,如PID,自适应、状态反馈、智能控制等方法都己经在倒立摆控制系统上得到实现。
由于直线一级倒立摆的力学模型较简单,又是研究其他倒立摆的基础,所以本文利用所学的矩阵论知识对此倒立摆进行建模和控制分析。
二、方法简述本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。
在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。
此外,用MATLAB 仿真绘制了相应的曲线并做了分析。
三、模型的建立及分析3.1 微分方程的推导在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示。
图1 直线一级倒立摆系统假设 M 为小车质量;m 为摆杆质量;b 为小车摩擦系数;l 为摆杆转动轴心到杆质心的长度;I 为摆杆惯量;F 为加在小车上的力;x 为小车位置;φ为摆杆与垂直向上方向的夹角;θ为摆杆与垂直向下方向的夹角。
图2是系统中小车和摆杆的受力分析图。
其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。
值得注意的是: 在实际倒立摆系统中检测和执行装置的正负方向已确定, 因而矢量方向定义如图2所示, 图示方向为矢量正向。
(a) (b)图2 小车和摆杆的受力分析图分析小车水平方向所受的合力,可以得到以下方程:N x b F x M --= (1)由摆杆水平方向的受力进行分析可以得到下面等式:θθθθs i n c o s 2ml ml x m N -+= (2) 把这个等式代入上式中,就得到系统的第一个运动方程:()F ml ml x b x m M =-+++θθθθsin cos 2 (3)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:θθθθc o s s i n 2 ml ml mg P --=- (4) 力矩平衡方程如下:θθθI Nl Pl =--cos sin (5)合并这(4)、(5)两个方程,约去P 和N ,得到第二个运动方程:()θθθc o s s i n 2x ml mgl ml I -=++ (6) 假设φ与1(单位是弧度)相比很小,即φ《1,则可以进行近似处理:0d d s i n 1c o s 2=⎪⎭⎫ ⎝⎛-=-=t θφθθ,, (7) 用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:()()⎩⎨⎧=-++=-+u ml x b x m M xml mgl ml I φφφ 2 (8) 3.2 状态空间方程方程组(8)对φ,x 解代数方程,整理后的系统状态空间方程为: ()()()()()()()()u Mm l m M I m l Mm l m M I m lI x x Mm l m M I m M m gl Mm l m M I m lbMm l m M I gl m Mm l m M I b m l I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡222222222200001000000010φφφφ u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ 对于质量均匀分布的摆杆有:3/2ml I =,于是可得:()x ml mgl ml ml =-+φφ223/ 化简得:xll g 4343+=φφ设}{x u x x X ==1,,,,φφ ,则有:14301004300100000000010u l x x l g x x⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡φφφφ10001000001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ 3.3 实际系统模型实际系统模型参数: M =1.096 Kg ;m =0.109 Kg ;b =0.1 N/m/s ; l =0.25 m ;I =0.0034 kg ·m ·m ;采样频率 T =0.005 s 。
直线一级倒立摆建模与性能分析直线一级倒立摆建模及性能分析一、数学模型建立在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。
u 为外界作用力;x 为小车位移; 为摆杆与铅垂方向的夹角;O 、G 分别为摆杆与小车的链接点、摆杆质心的位置;M 为小车的质量;m 为摆杆的质量;J 为摆杆绕G 的转动惯量;l 为O 到摆杆质心的距离,L 为摆杆的长度;0f 为小车与导轨间的滑动摩擦系数,1f 为摆杆绕 O 转动的摩擦阻力矩系数。
对于上图的物理模型我们做以下假设: M :小车质量 m :摆杆质量 b :小车摩擦系数l :摆杆转动轴心到杆质心的长度 I :摆杆惯量 F :加在小车上的力 x :小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)其机械部分遵守牛顿运动定律,其电子部分遵守电磁学的基本定律。
因此可以通过机理建模得到系统较为精确的数学模型。
应用牛顿力学来建立系统的动力学方程过程如下: 分析小车水平方向所受的合力,可以得到以下方程:N x b F xM --= 由摆杆水平方向的受力进行分析可以得到下面等式:22(sin )d N m x l dtθ=+即:2cos sin N mx ml ml θθθθ=+-把这个等式代入上式中,就得到系统的第一个运动方程:F ml ml x b x m M =-+++θθθθsin cos )(2(1-1) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:22(cos )d P mg m l dtθ-=-即:2sin cos P mg ml ml θθθθ-=+力矩平衡方程如下:θθθ I Nl Pl =--cos sin 注意:此方程中力矩的方向,由于θφθφφπθsin sin ,cos cos ,-=-=+=,故等式前面有负号。
合并这两个方程,约去P 和N ,得到第二个运动方程:θθθcos sin )(2xml mgl ml I -=++ (1-2) 1.1 微分方程模型设φπθ+=,当摆杆与垂直向上方向之间的夹角φ与1(单位是弧度)相比很小,即 1<<φ 时,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2=dt d θ。
研究生《现代控制理论及其应用》课程小论文一级倒立摆的建模与控制分析学院:机械工程学院班级:机研131姓名:尹润丰学号: 2013212020162014年6月2日目录1. 问题描述及状态空间表达式建立............................ - 1 -1.1问题描述................................................................. - 1 -1.2状态空间表达式的建立..................................................... - 1 -1.2.1直线一级倒立摆的数学模型........................................... - 1 -1.2.2 直线一级倒立摆系统的状态方程 ...................................... - 5 -2.应用MATLAB分析系统性能.................................. - 6 -2.1直线一级倒立摆闭环系统稳定性分析......................................... - 6 -2.2 系统可控性分析.......................................................... - 7 -2.3 系统可观测性分析........................................................ - 8 -3. 应用matlab进行综合设计................................. - 8 -3.1状态反馈原理............................................................. - 8 -3.2全维状态反馈观测器和simulink仿真........................................ - 9 -4.应用Matlab进行系统最优控制设计......................... - 11 -5.总结.................................................... - 13 -1.问题描述及状态空间表达式建立1.1问题描述倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
一级倒立摆系统仿真及分析1•摘要本次课程设讣,我们小组选择一级倒立摆系统作为物理模型,首先通过物理分析建立数学模型,得到系统的传递函数,通过对传递函数的极点,根轨迹,单位阶跃响应来分析系统稳定性。
建立状态空间模型,利用matlab进行能控能观性分析, 输入阶跃信号,分析系统输出响应。
通过设定初始条件,查看系统稳定性,利用simulink绘制系统状态图。
再对系统进行极点配置,进行状态反馈,使得系统在初始状态下处于稳定状态,并绘制系统状态图。
2・;3课程设计目的倒立摆系统是一个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。
倒立摆控制理论产生的方法和技术在半导体及精密仪器加E.机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。
因此研究倒立摆系统具有重要的实践意义。
4.课程设计题目描述和要求本次课程设计•我们小组选择环节项H三:系统状态响应、输出响应的测量。
<环节目的:1. 利用MATLAB分析线性定常系统。
2. 利用SIMULINK进行系统状态空间控制模型仿真,求取系统的状态响应及输出响应。
环节内容、方法:1•给定系统状态空间方程,对系统进行可控性、可观性分析。
并利用SIMULINK 绘制系统的状态图,求取给定系统输入信号和初始状态时的状态响应及输出响应。
2.给定两个系统的状态空间模型,分别求两个系统的特征值;将两个系统的系统矩阵化为标准型;求出给定系统初始状态时,状态的零输入响应;求两个系统的传递函数并分析仿真结果。
4.课程设计报告内容数学模型的建立及分析对于倒立摆系统,山于其本身是自不稳定的系统,实验建模存在一定的困难。
但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。
下面我们采用其中的牛顿一欧拉方法建立直线型一级倒立摆系统的数学模型。
在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示我们不妨做以下假设:M小车质量、m摆杆质量、b小车摩擦系数、I摆杆转动轴心到杆质心的长度、I摆杆惯、F加在小车上的力、x小车位置、<1)摆杆与垂直向上方向的夹角、0 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)。
直线一级倒立摆的建模及性能分析1 直线一级倒立摆数学模型的建立 (1)2 直线一级倒立摆系统的实际模型 (5)3 直线一级倒立摆系统的性能分析 (6)相关理论的介绍 (6)倒立摆系统的性能分析 (7)1 直线一级倒立摆数学模型的建立所谓系统的数学模型,是指利用数学结构来反映实际系统内部之间、系统内部与外部某些主要相关因素之间的精确的定量表示。
数学模型是分析、设计、预测以及控制一个系统的理论基础。
因此,对于实际系统的数学模型的建立就显得尤为重要。
系统数学模型的构建可以分为两种:实验建模和机理建模。
实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对像并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。
机理建模就是在了解研究对象的运动规律的基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。
对于倒立摆系统,由于其本身是不稳定的系统,无法通过测量频率特性的方法获取其数学模型,实验建模存在一定的困难。
但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统是一个典型的机电一体化系统,其机械部分遵守牛顿运动定律,其电子部分遵守电磁学的基本定律,因此可以通过机理建模得到系统较为精确的数学模型。
为了简单起见,在建模时忽略系统中的一些次要的难以建模的因素,例如空气阻力、伺服电机由于安装而产生的静摩擦力、系统连接处的松弛程度、摆杆连接处质量分布不均匀、传动皮带的弹性、传动齿轮的间隙等。
将小车抽象为质点,摆杆抽象为匀质刚体,摆杆绕转轴转动,这样就可以通过力学原理建立较为精确的数学模型。
我们可以应用牛顿力学的分析方法或者欧拉-拉格朗日原理建立系统的动力学模型。
对于直线一级倒立摆这样比较简单的系统,我们采用通俗易懂的牛顿力学分析法建模。
为了建立直线一级倒立摆的数学模型,采用如下的坐标系:图1直线一级倒立摆的物理模型其中,F 为加在小车上的力,M 为小车质量,m 为摆杆质量,I 为摆杆惯量, l 为摆杆转动轴心到杆质心的长度,x 为小车位移,φ为摆杆与垂直向上方向的夹角,b 为小车在滑轨上所受的摩擦力,N 和P 为摆杆相互作用力的水平和垂直方向的分量。
一阶倒立摆系统模型分析状态反馈与观测器设计一阶倒立摆系统是控制工程中常见的一个具有非线性特点的系统,它由一个摆杆和一个质点组成,质点在摆杆上下移动,而摆杆会受到重力的作用而产生摆动,需要通过控制来实现倒立的功能。
以下是一阶倒立摆系统的模型分析、状态反馈与观测器设计的详细介绍。
一、系统模型分析:一阶倒立摆系统是一个非线性动力学系统,可以通过线性化的方式来进行模型分析。
在进行线性化之前,首先需要确定系统的状态变量和输入变量。
对于一阶倒立摆系统,可以将摆杆角度和质点位置作为状态变量,将水平推力作为输入变量。
在对系统进行线性化之后,可以得到系统的状态空间表达式:x_dot = A*x + B*uy=C*x+D*u其中,x是状态向量,u是输入向量,y是输出向量。
A、B、C和D是系统的矩阵参数。
二、状态反馈设计:状态反馈是一种常用的控制方法,通过测量系统状态的反馈信号,计算出控制输入信号。
在设计状态反馈控制器之前,首先需要确定系统的可控性。
对于一阶倒立摆系统,可以通过可控性矩阵的秩来判断系统是否是可控的。
如果可控性矩阵的秩等于系统的状态数量,则系统是可控的。
在确定系统可控性之后,可以通过状态反馈控制器来实现控制。
状态反馈控制器的设计可以通过选择适当的反馈增益矩阵K来实现。
具体的设计方法是,根据系统的状态空间表达式,将状态反馈控制器加入到系统模型中。
状态反馈控制器的输入是状态变量,输出是控制输入变量。
然后,通过调节反馈增益矩阵K的值,可以实现对系统的控制。
三、观测器设计:观测器是一种常用的状态估计方法,通过测量系统的输出信号,估计系统的状态。
在设计观测器之前,首先需要确定系统的可观性。
对于一阶倒立摆系统,可以通过可观性矩阵的秩来判断系统是否是可观的。
如果可观性矩阵的秩等于系统的状态数量,则系统是可观的。
在确定系统可观性之后,可以通过观测器来实现状态估计。
观测器的设计可以通过选择适当的观测增益矩阵L来实现。
具体的设计方法是,根据系统的状态空间表达式,将观测器加入到系统模型中。
题目一:考虑以下图的倒立摆系统。
图中,倒立摆安装在一个小车上。
这里仅考虑倒立摆在图面内运动的二维问题。
倒立摆系统的参数包含:摆杆的质量(摆杆的质量在摆杆中心)、摆杆的长度、小车的质量、摆杆惯量等。
图倒立摆系统设计一个控制系统,使适当给定随意初始条件( 由扰乱惹起 ) 时,最大超调量%≤10%,调理时间 ts≤ 4s,使摆返回至垂直地点,并使小车返回至参照地点(x=0) 。
要求: 1、成立倒立摆系统的数学模型2、剖析系统的性能指标——能控性、能观性、稳固性3、设计状态反应阵,使闭环极点能够达到希望的极点,这里所说的希望的极点确立是把系统设计成拥有两个主导极点,两个非主导极点,这样就能够用二阶系统的剖析方法进行参数确实定4、用MATLAB进行程序设计,获得设计后系统的脉冲响应、阶跃响应,绘出相应状态变量的时间响应图。
解:1成立一级倒立摆系统的数学模型系统的物理模型如图 1 所示,在惯性参照系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l ,在某一瞬时时辰摆角( 即摆杆与竖直线的夹角) 为θ,作用在小车上的水平控制力为u。
这样,整个倒立摆系统就遇到重力, 水平控制力和摩擦力的 3 外力的共同作用。
图 1一级倒立摆物理模型成立系统状态空间表达式为简单起见,本文第一假定:(1)摆杆为刚体;(2)忽视摆杆与支点之间的摩擦;( 3)忽视小车与导轨之间的摩擦。
在如图一所示的坐标下,小车的水平地点是y, 摆杆的偏离地点的角度是θ,摆球的水平地点为 y+lsin θ。
这样,作为整个倒立摆系统来说,在说平方方向上,依据牛顿第二定律,获得M d 2 y m d 2( y l sin ) u( 1)dt 2dt 2关于摆球来说,在垂直于摆杆方向,由牛顿第二运动定律,获得m d2l sin ) mgsin2 (y( 2)dt方程 (1) ,(2) 是非线性方程,因为控制的目的是保持倒立摆直立,在施加适合的外力条件下,假定θ很小,靠近于零是合理的。
一阶倒立摆控制设计与实现一阶倒立摆是一种常见的控制系统模型,它由一个垂直的支柱和一个质量为m 的物体组成,物体通过支柱与地面相连。
在控制系统中,我们需要设计一个控制器来控制物体的位置和速度,使其保持在垂直位置上。
本文将介绍一阶倒立摆控制设计与实现的相关内容。
一、一阶倒立摆模型一阶倒立摆模型可以用以下方程描述:m*d^2y/dt^2 = -mg*sin(y) + u其中,y是物体的位置,u是控制器的输出,m是物体的质量,g是重力加速度,t是时间。
该方程可以通过拉普拉斯变换转换为传递函数:G(s) = Y(s)/U(s) = 1/(ms^2 + mg)二、控制器设计为了控制一阶倒立摆,我们需要设计一个控制器来产生控制信号u。
常见的控制器包括比例控制器、积分控制器和微分控制器,它们可以组合成PID控制器。
在本文中,我们将使用比例控制器来控制一阶倒立摆。
比例控制器的输出与误差成正比,误差越大,输出越大。
比例控制器的传递函数为:Gc(s) = Kp其中,Kp是比例增益。
三、闭环控制系统将控制器和一阶倒立摆模型组合起来,得到闭环控制系统的传递函数:G(s) = Y(s)/R(s) = Kp/(ms^2 + mg + Kp)其中,R(s)是参考信号,表示我们期望物体保持的位置。
四、控制系统实现在实现控制系统之前,我们需要对一阶倒立摆进行建模和仿真。
我们可以使用MATLAB等工具进行建模和仿真。
在MATLAB中,我们可以使用Simulink模块来建立一阶倒立摆模型和控制器模型。
在建立模型之后,我们可以进行仿真,观察系统的响应和稳定性。
在实现控制系统时,我们需要选择合适的硬件平台和控制器。
常见的硬件平台包括Arduino和Raspberry Pi等,常见的控制器包括PID控制器和模糊控制器等。
在实现控制系统之后,我们需要进行调试和优化,以达到最佳控制效果。
五、总结本文介绍了一阶倒立摆控制设计与实现的相关内容,包括一阶倒立摆模型、控制器设计、闭环控制系统和控制系统实现。
研究生《现代控制理论及其应用》课程小论文一级倒立摆的建模与控制分析学院:机械工程学院班级:机研131:润丰学号:2013212020162014年6月2日目录1. 问题描述及状态空间表达式建立....................................................... - 1 -1.1问题描述 ....................................................................................................................... - 1 -1.2状态空间表达式的建立.................................................................................................. - 1 -1.2.1直线一级倒立摆的数学模型 ................................................................................. - 1 -1.2.2 直线一级倒立摆系统的状态方程........................................................................ - 5 -2.应用MATLAB分析系统性能............................................................. - 6 -2.1直线一级倒立摆闭环系统稳定性分析............................................................................ - 6 -2.2 系统可控性分析.......................................................................................................... - 7 -2.3 系统可观测性分析 ...................................................................................................... - 8 -3. 应用matlab进行综合设计 .............................................................. - 9 -3.1状态反馈原理............................................................................................................... - 9 -3.2全维状态反馈观测器和simulink仿真........................................................................... - 9 -4.应用Matlab进行系统最优控制设计 ................................................ - 11 -5.总结................................................................................................. - 13 -1.问题描述及状态空间表达式建立1.1问题描述倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
下对于倒立摆系统,经过小心的假设忽略掉一些次要的因素后,它就是一个典型的运动的刚体系统,可以在惯性坐标系应用经典力学理论建立系统的动力学方程。
下面采用其中的牛顿—欧拉方法建立直线一级倒立摆系统的数学模型。
. 资料. ..1.2状态空间表达式的建立1.2.1直线一级倒立摆的数学模型图1.1 直线一级倒立摆系统本文中倒立摆系统描述中涉及的符号、物理意义及相关数值如表1.1所示。
. 资料. ... 资料. ..图1.2是系统中小车的受力分析图。
其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。
图1.2 系统中小车的受力分析图图1.3是系统中摆杆的受力分析图。
F s 是摆杆受到的水平方向的干扰力, F h 是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力F g 。
. 资料. ..图1.3 摆杆受力分析图分析小车水平方向所受的合力,可以得到以下方程:()11- 设摆杆受到与垂直方向夹角为α 的干扰力Fg ,可分解为水平方向、垂直方向的干扰力,所产生的力矩可以等效为在摆杆顶端的水平干扰力FS 、垂直干扰力Fh 产生的力矩。
()21-对摆杆水平方向的受力进行分析可以得到下面等式:()θsin 22l x dtd m F N S +=- ()31-即:αθθθθsin sin cos 2f F ml ml x m N +-+= ()41- 对图1.3摆杆垂直方向上的合力进行分析,可以得到下面方程:N x f F x M --= αsin g S F F =αcos g h F F =. 资料 . ..()θcos 22l l dtd m F mg P h -=++- ()51-即 θθθθαcos sin cos 2 ml ml F mg P g +=++- ()61-力矩平衡方程如下:0cos sin sin cos cos sin =++++θθθθαθα I Nl Pl l F l F g g ()71- 代入P 和N ,得到方程:()0cos 2sin sin 2cos sin cos 2cos sin 2222=+-++++θθθθθθθαθαx ml ml mgl ml I l F l F g g ()81- 设φπθ+=,(φ是摆杆杆与垂直向上方向之间的夹角,单位是弧度),代入上式。
假设φ<<1,则可进行近似处理:φφφφφφφ===⎪⎭⎫⎝⎛==2sin ,12cos ,0,sin ,1cos 2dt d由于:231ml I =方程化为:()xm mg ml F g=-+--φφαφα34cos sin 2 ()91- 令:()αφαcos sin --=g f F F ,则()91-可化为:x m mg ml F f=-+φφ342 ()101- ()101-即是化简后的直线一级倒立摆系统微分方程。
带入实际数据后,微分方程为:mF x f234.29-+= θθ ()111-当忽略了F f 时,系统的微分方程如式(1-12)所示x 34.29+=θθ()121-. 资料 . ..忽略干扰力后,直线一级倒立摆系统是单输入二输出的四阶系统,考虑干扰力后,直线一级倒立摆系统是二输入二输出的四阶系统。
其部的4个状态量分别是小车的位移x 、小车的速度x、摆杆的角度θ、摆杆的角速度θ 。
系统输出的观测量为小车的位移x 、摆杆的角度θ。
其控制量为小车的加速度θ将微分方程(1-12)化为关于加速度输入量和角度输出量的传递函数:()()4.2932-=s s R s θ ()131- 1.2.2 直线一级倒立摆系统的状态方程实验所使用的直线一级倒立摆系系统是加速度x 作为系统的控制输入,所以根据式(1-12)建立系统的状态方程为:xll g xx x x4343+====φφφφ整理后得到系统状态方程:[][]x x x x y x l g x x l gx x⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001000001430100430010********10φφφφφφφ将实际参数代入得到一级倒立摆系统的状态空间方程为:. 资料 . ..[][]x x x x y xx x x x ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001000001301004.2900100000000010φφφφφφφ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=04.2900100000000010A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=3010B ⎥⎦⎤⎢⎣⎡=01000001C ⎥⎦⎤⎢⎣⎡=00D2.应用MATLAB 分析系统性能2.1直线一级倒立摆闭环系统稳定性分析构建如图1.4所示闭环系统,则系统的闭环极点为(-5.1381)、(5.1381):图1.4 闭环系统结构图由于有实部为正的极点,所以闭环系统不稳定,必须设计控制器使系统稳定。
可以通过MATLAB Simulink 中对其进行仿真,判断其稳定性。
构建图1.4所示系统的仿真程序e1,加入1m/s 2的阶跃信号由上图也能清楚的知道一级倒立摆系统是不稳定的。
2.2 系统可控性分析系统的可控性可根据秩判据进行可控性判断。
线性定常连续系统完全可控的充分必要条件是:1()n rank B AB A B n -⋅⋅⋅=,其中n 为系统矩阵A 的阶次,1()n M B AB A B -=⋅⋅⋅为系统的可控性矩阵。
matlab 程序及运行结果如下:>> A=[0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 0];>> B=[0;1;0;3];>> T=ctrb(A,B);>> rank(T)ans =4由于rank (Ic )=4,可见该系统是完全可控的。
2.3 系统可观测性分析系统的可控性可根据秩判据进行可控性判断。
线性定常连续系统完全可控的充分必要条件是:1n C CA rank N rank n CA -⎡⎤⎢⎥⎢⎥⎢⎥⋅==⎢⎥⋅⎢⎥⎢⎥⋅⎢⎥⎢⎥⎣⎦或21(()())T T T T T T n T rank C A C A C A C n -⋅⋅⋅= 其中n 为系数矩阵A 的阶次。