2016年武汉市中考数学试卷(含答案)
- 格式:pdf
- 大小:302.48 KB
- 文档页数:13
2016年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间2.(3分)若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=33.(3分)下列计算中正确的是()A.a•a2=a2B.2a•a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a44.(3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球5.(3分)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+96.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b 的值是()A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣17.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A .B .C .D .8.(3分)某车间20名工人日加工零件数如表所示:45678日加工零件数人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、69.(3分)如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π B.πC.2 D.210.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算5+(﹣3)的结果为.12.(3分)某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为.13.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.14.(3分)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E 处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.15.(3分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为.16.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为.三、解答题(共8题,共72分)17.(8分)解方程:5x+2=3(x+2)18.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.19.(8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了名学生,其中最喜爱戏曲的有人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.20.(8分)已知反比例函数y=.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.21.(8分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.22.(10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(12分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.2016年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2016•武汉)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【解答】解:∵1<<2,∴实数的值在:1和2之间.故选:B.2.(3分)(2016•武汉)若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=3【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.(3分)(2016•武汉)下列计算中正确的是()A.a•a2=a2B.2a•a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a4【解答】解:A、原式=a3,错误;B、原式=2a2,正确;C、原式=4a4,错误;D、原式=2a6,错误,故选B4.(3分)(2016•武汉)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【解答】解:A.摸出的是3个白球是不可能事件;B.摸出的是3个黑球是随机事件;C.摸出的是2个白球、1个黑球是随机事件;D.摸出的是2个黑球、1个白球是随机事件,故选:A.5.(3分)(2016•武汉)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+9【解答】解:(x+3)2=x2+6x+9,故选:C.6.(3分)(2016•武汉)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣1【解答】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=﹣5,b=﹣1.故选D.7.(3分)(2016•武汉)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.8.(3分)(2016•武汉)某车间20名工人日加工零件数如表所示:45678日加工零件数人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选D.9.(3分)(2016•武汉)如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A .π B.πC.2 D.2【解答】解:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=AB=2,OP=AB=2,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF 为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=•2π•1=π.故选B.10.(3分)(2016•武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选A二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2016•武汉)计算5+(﹣3)的结果为2.【解答】解:原式=+(5﹣3)=2,故答案为:2.12.(3分)(2016•武汉)某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为 6.3×104.【解答】解:将63 000用科学记数法表示为6.3×104.故答案为:6.3×104.13.(3分)(2016•武汉)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.【解答】解:∵一个质地均匀的小正方体由6个面,其中标有数字5的有2个,∴随机投掷一次小正方体,则朝上一面的数字是5的概率==.故答案为:.14.(3分)(2016•武汉)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE 折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为36°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.15.(3分)(2016•武汉)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为﹣4≤b≤﹣2.【解答】解:∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>﹣;∴﹣<x<,∵x满足0<x<3,∴﹣=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故答案为﹣4≤b≤﹣2.16.(3分)(2016•武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为2.【解答】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴=,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD===2,故答案为:2.三、解答题(共8题,共72分)17.(8分)(2016•武汉)解方程:5x+2=3(x+2)【解答】解:去括号得:5x+2=3x+6,移项合并得:2x=4,解得:x=2.18.(8分)(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.19.(8分)(2016•武汉)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了50名学生,其中最喜爱戏曲的有3人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是72°.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【解答】解:(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人);∵“娱乐”类人数占被调查人数的百分比为:×100%=36%,∴“体育”类人数占被调查人数的百分比为:1﹣8%﹣30%﹣36%﹣6%=20%,∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是360°×20%=72°;故答案为:50,3,72°.(2)2000×8%=160(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.20.(8分)(2016•武汉)已知反比例函数y=.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.【解答】解:(1)解得kx2+4x﹣4=0,∵反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,∴△=16+16k=0,∴k=﹣1;(2)如图所示,C1平移至C2处所扫过的面积=2×3=6.21.(8分)(2016•武汉)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:连接BE、BC、OC,BE交AC于F交OC于H.∵AB是直径,∴∠AEB=∠DEH=∠D=∠DCH=90°,∴四边形DEHC是矩形,∴∠EHC=90°即OC⊥EB,∴DC=EH=HB,DE=HC,∵cos∠CAD==,设AD=4a,AC=5a,则DC=EH=HB=3a,∵cos∠CAB==,∴AB=a,BC=a,在RT△CHB中,CH==a,∴DE=CH=a,AE==a,∵EF∥CD,∴==.22.(10分)(2016•武汉)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【解答】解:(1)y1=(6﹣a)x﹣20,(0<x≤200)y2=10x﹣40﹣0.05x2=﹣0.05x2+10x﹣40.(0<x≤80).(2)对于y1=(6﹣a)x﹣20,∵6﹣a>0,∴x=200时,y1的值最大=(1180﹣200a)万元.对于y2=﹣0.05(x﹣100)2+460,∵0<x≤80,∴x=80时,y2最大值=440万元.(3)①(1180﹣200a)=440,解得a=3.7,②(1180﹣200a)>440,解得a<3.7,③(1180﹣200a)<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,生产甲乙两种产品的利润相同.当3≤a<3.7时,生产甲产品利润比较高.当3.7<a≤5时,生产乙产品利润比较高.23.(10分)(2016•武汉)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.【解答】解:(1)∵∠ACP=∠B,∠A=∠A,∴△ACP∽△ABC,∴,∴AC2=AP•AB;(2)①取AP在中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,∵M是PC的中点,∴MG∥AC,∴∠BGM=∠A,∵∠ACP=∠PBM,∴△APC∽△GMB,∴,即,∴x=,∵AB=3,∴AP=3﹣,∴PB=;②过C作CH⊥AB于H,延长AB到E,使BE=BP,设BP=x.∵∠ABC=45°,∠A=60°,∴CH=,HE=+x,∵CE2=(+(+x)2,∵PB=BE,PM=CM,∴BM∥CE,∴∠PMB=∠PCE=60°=∠A,∵∠E=∠E,∴△ECP∽△EAC,∴,∴CE2=EP•EA,∴3+3+x2+2x=2x(x++1),∴x=﹣1,∴PB=﹣1.24.(12分)(2016•武汉)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.【解答】解:(1)①将P(1,﹣3),B(4,0)代入y=ax2+c,得,解得,抛物线的解析式为y=x2﹣;②如图1,当点D在OP左侧时,由∠DPO=∠POB,得DP∥OB,D与P关于y轴对称,P(1,﹣3),得D(﹣1,﹣3);当点D在OP右侧时,延长PD交x轴于点G.作PH⊥OB于点H,则OH=1,PH=3.∵∠DPO=∠POB,∴PG=OG.设OG=x,则PG=x,HG=x﹣1.在Rt△PGH中,由x2=(x﹣1)2+32,得x=5.∴点G(5,0).∴直线PG的解析式为y=x﹣解方程组得,.∵P(1,﹣3),∴D(,﹣).∴点D的坐标为(﹣1,﹣3)或(,﹣).(2)点P运动时,是定值,定值为2,理由如下:作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2.∵PQ∥OF,∴,∴OF==﹣==amt+at2.同理OE=﹣amt+at2.∴OE+OF=2at2=﹣2c=2OC.∴=2.第21页(共21页)。
2016年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间B .1和2之间C .2和3之间D .3和4之间2.若代数式在31x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x =33.下列计算中正确的是( )4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +9 6.已知点A (a ,1)与点A ′(5,b )关于坐标原点对称,则实数a 、b 的值是( ) A .a =5,b =1B .a =-5,b =1C .a =5,b =-1D .a =-5,b =-17.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )8.某车间20名工人日加工零件数如下表所示: 日加工零件数4 5 6 7 8 人数 26543 这些工人日加工零件数的众数、中位数、平均数分别是( )A .5、6、5B .5、5、6C .6、5、6D .5、6、69.如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( ) A .π2B .πC .22D .210.平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5B .6C .7D .8二、填空题(本大题共6个小题,每小题3分,共18分)11.计算5+(-3)的结果为___________12.某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为___________ 13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为___________14.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为___________15.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x <3,则b的取值范围为___________5,则BD的16.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5长为___________三、解答题(共8题,共72分)17.(本题8分)解方程:5x+2=3(x+2)18.(本题8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE19.(本题8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图请你根据以上的信息,回答下列问题:(1) 本次共调查了__________名学生,其中最喜爱戏曲的有__________人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是__________(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数20.(本题8分)已知反比例函数xy 4=(1) 若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值 (2) 如图,反比例函数xy 4=(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积21.(本题8分)如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E (1) 求证:AC 平分∠DAB(2) 连接BE 交AC 于点F ,若cos ∠CAD =54,求FCAF 的值22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:其中a 为常数,且3≤a ≤5(1) 若产销甲乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式 (2) 分别求出产销两种产品的最大年利润(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由23.(本题10分)在△ABC 中,P 为边AB 上一点 (1) 如图,若∠ACP =∠B ,求证:AC 2=AP ·AB (2) 若M 为CP 的中点,AC =2① 如图2,若∠PBM =∠ACP ,AB =3,求BP 的长② 如图3,若∠ABC =45°,∠A =∠BMP =60°,直接写出BP 的长24.(本题12分)抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方(1) 如图1,若P (1,-3)、B (4,0) ① 求该抛物线的解析式② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标(2) 如图2,已知直线P A 、PB 与y 轴分别交于E 、F 两点.当点P 运动时,OCOFOE 是否为定值?若是,试求出该定值;若不是,请说明理由参考答案。
2016年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间 B .1和2之间 C .2和3之间 D .3和4之间【考点】有理数的估计【答案】B【解析】∵1<2<4,∴124<<,∴122<<.2.若代数式在31-x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3 B .x >3 C .x ≠3 D .x =3【考点】分式有意义的条件【答案】C 【解析】要使31-x 有意义,则x -3≠0,∴x ≠3 故选C.3.下列计算中正确的是( )A .a ·a 2=a 2B .2a ·a =2a 2C .(2a 2)2=2a 4D .6a 8÷3a 2=2a 4 【考点】幂的运算 【答案】B【解析】A . a ·a 2=a 3,此选项错误;B .2a ·a =2a 2,此选项正确;C .(2a 2)2=4a 4,此选项错误;D .6a 8÷3a 2=2a 6,此选项错误。
4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球【考点】不可能事件的概率 【答案】A【解析】∵袋子中有4个黑球,2个白球,∴摸出的黑球个数不能大于4个,摸出白球的个数不能大于2个。
A 选项摸出的白球的个数是3个,超过2个,是不可能事件。
故答案为:A5.运用乘法公式计算(x +3)2的结果是( ) A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +9【考点】完全平方公式【答案】C【解析】运用完全平方公式,(x+3)2=x2+2×3x+32=x2+6x+9.故答案为:C6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-1【考点】关于原点对称的点的坐标.【答案】D【解析】关于原点对称的点的横坐标与纵坐标互为相反数.∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=-5,b=-1,故选D.7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()【考点】简单几何体的三视图.【答案】A【解析】从左面看,上面看到的是长方形,下面看到的也是长方形,且两个长方形一样大.故选A8.某车间20名工人日加工零件数如下表所示:日加工零件数 4 5 6 7 8人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6【考点】众数;加权平均数;中位数.根据众数、平均数、中位数的定义分别进行解答.【答案】D【解析】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故选D.9.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π2B.πC.22D.2【考点】轨迹,等腰直角三角形【答案】B【解析】取AB的中点E,取CE的中点F,连接PE,CE,MF,则FM=12PE=1,故M的轨迹为以F为圆心,1为半径的半圆弧,轨迹长为1212ππ⋅⋅=.10.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【考点】等腰三角形的判定;坐标与图形性质【答案】A【解析】构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。
武珞路中学2016~2017学年度九年级上学期期中测试数学试卷一、选择题(共10小题,每小题3分,共30分)1.方程3x 2+1=6x 的二次项系数和一次项系数分别为( )A .3和6B .3和-6C .3和-1D .3和12.下列是几个汽车的标志,其中是中心对称图形的是( )3.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共73.若设主干长出x 个支干,则可列方程是( )A .(1+x )2=73B .1+x +x 2=73C .(1+x )x =73D .1+x +2x =734.将抛物线y =-x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线解析式为( )A .y =-(x +2)2+3B .y =-(x -2)2+3C .y =-(x +2)2-3D .y =-(x -2)2-35.方程09242=+-x x 的根的情况是( )A .有两个不相等实根B .有两个相等实根C .无实根D .以上三种情况都有可能6.如图,A 、B 、C 三点都在⊙O 上,∠ABO =50°,则∠ACB =( )A .50°B .40°C .30°D .25°7.如图,在下面的网格中,每个小正方形的边长均为1,△ABC 的三个顶点都是网格线的交点.已知A (-2,2)、C (-1,-2),将△ABC 绕着点C 顺时针旋转90°,则点A 对应点的坐标为( )A .(2,-2)B .(-5,-3)C .(2,2)D .(3,-1)8.如图,四边形ABCD 的两条对角线互相垂直,AC +BD =12,则四边形ABCD 的面积最大值是( )A .12B .18C .24D .369.二次函数y =x 2+mx +1的图象的顶点在坐标轴上,则m 的值( )A .0B .2C .±2D .0或±210.若二次函数y =ax 2+bx +c 的图象的顶点在第一象限,且过点(0,1)和(-1,0),则s =a +b +c 的值的变化范围是( )A .0<s <1B .0<s <2C .1<s <2D .-1<s <2二、填空题(本大题共6个小题,每小题3分,共18分)11.点A (-2,5)关于原点的对称点B 的坐标是___________12.抛物线y =x 2-2x -2的顶点坐标是___________13.方程3x 2-1=2x +5的两根之和为___________,两根之积为___________14.如图,有一块长30 m 、宽20 m 的矩形田地,准备修筑同样宽的三条直路,把田地分成六块,种植不同品种的蔬菜,并且种植蔬菜面积为矩形田地面积的5039,则道路的宽为___________15.⊙O 的半径为25 cm ,AB 、CD 是⊙O 的两条弦,AB ∥CD ,AB =30 cm ,CD =48 cm ,则AB 和CD 之间的距离为___________16.如图,边长为4的正方形ABCD 外有一点E ,∠AEB =90°,F 为DE 的中点,连接CF ,则CF 的最大值为___________三、解答题(共8题,共72分)17.(本题8分)解方程:x 2-4x -7=018.(本题8分)画出函数y =x 2-3x -4的图象(草图),利用图象回答:(1) 方程x 2-3x -4=0的解是什么?(2) x 取什么值时,函数大于0?(3) x 取什么值时,函数小于0?19.(本题8分)如图,⊙O 中,直径CD ⊥弦AB 于M ,AE ⊥BD 于E ,交CD 于N ,连AC(1) 求证:AC =AN(2) 若OM ∶OC =3∶5,AB =5,求⊙O 的半径20.(本题8分)如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF(1) 在图中画出点O和△CDF,并简要说明作图过程(2) 若AE=12,AB=13,求EF的长21.(本题8分)一个涵洞成抛物线形,它的截面如图,现测得:当水面宽AB=1.6 m时,涵洞顶点与水面的距离为2.4 m,离开水面1.5 m处是涵洞宽ED(1) 求抛物线的解析式(2) 求ED的长22.(2010·武汉)(本题10分)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍)(1) 设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围(2) 设宾馆一天的利润为w元,求w与x的函数关系式(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?23.(本题10分)已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD(1) 如图1,若AB为边在△ABC外作△ABE,AB=AE,∠DAC=∠EAB=60°,求∠BFC的度数(2) 如图2,∠ABC=α,∠ACD=β,BC=6,BD=8①若α=30°,β=60°,AB的长为② 若改变α、β的大小,但α+β=90°,求△ABC 的面积24.(本题12分)如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3(1) 求抛物线的解析式(2) 如图1,D 位抛物线的顶点,P 为对称轴左侧抛物线上一点,连OP 交直线BC 于G ,连GD .是否存在点P ,使2 GOGD ?若存在,求点P 的坐标;若不存在,请说明理由 (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值武珞路中学2016~2017学年度九年级上学期期中测试数学试卷参考答案一、选择题(共10小题,每小题3分,共30分)10.提示:将(0,1)和(-1,0)代入y =ax +bx +c 中,得c =1,b =a +1∴S =a +b +c =2b由抛物线图象可知:⎪⎩⎪⎨⎧>-<020a ba ,得-1<a <0∴0<2b <2二、填空题(共6小题,每小题3分,共18分)11.(2,-5) 12.(1,-3)13.32、-2 14. 2 m 15.13或2716.113+16.提示:利用中位线构造圆(期中就考试的变态题)三、解答题(共8题,共72分)17.解:11211221-=+=x x ,18.解:(1) x 1=4,x 2=-1;(2) x <-1或x >4;(3) -1<x <419.解:(1) 连接AC∵∠AED =∠AMO =90°∴∠BDC =∠EAB =∠BAC (八字型和圆周角)∵AM ⊥OC∴△AMN ≌△AMC (ASA )∴AC =AN(2) 设OM =3x ,OC =5x连接OA∴OA =5x ,AM =4x∵AB =5∴4x =25,x =85 ∴r =5x =825 20.解:(1) 如图(2) 27(提示:△AOG ≌△BOE )21.解:(1) 2415x y -= (2) 562 22.解:(1) x y 10150-=(0≤x ≤160,且x 是10的整数倍) (2) 800034101)20180)(10150(2++-=-+-=x x x x w (3) 10890)170(10180003410122+--=++-=x x x w 当x <170时,w 随x 的增大而增大∴当x =160时,w 有最大值为10880此时y =34答:一天订34个房间时,宾馆每天的利润最大,最大利润是10880元23.解:(1) 120°(2) ① 72② 73提示:比较简单的共顶点等腰三角形的旋转,不会的地方找各自老师提问24.解:(1) y =x 2-4x +3(2) ∵y =(x -2)2-1∴D (2,-1) 若2=GOGD 则△GOD 为等腰直角三角形根据三垂直模型,得G (1,2)∴直线OG 的解析式为y =2x联立⎪⎩⎪⎨⎧+-==3422x x y x y ,解得636321-=+=x x , ∵P 在对称轴左侧∴x <1 ∴63-=x∴P (62663--,) (3) 若∠MON =45°则CM 2+BN 2=MN 2设M (x 1,y 1)、N (x 2,y 2)∴CM 2=2x 12,BN 2=2(3-x 2)2,MN =2(x 1-x 2)2∴x 12+(3-x 2)2=(x 1-x 2)2,整理得2x 1x 2-6x 2+9=0联立⎪⎩⎪⎨⎧+-=+-=3432x x y x y ,化简得x 2-3x +m =0 ∴x 1+x 2=3,x 1x 2=m联立⎪⎩⎪⎨⎧=+-==+096232212121x x x m x x x x ,解得2299±-=m ∵m >0 ∴2299+-=m硚口2016~2017学年度蔡甸区部分学校九年级11月期中联考试题数 学 试 题(满分120分)2016.11.10一、选择题(每小题3分,共30分)1.在﹣1,0.﹣2,1四个数中,最小的数是( ) A . ﹣1 B . 0 C . ﹣2 D . 1 2.若式子在实数范围内有意义,则x 的取值范围是( )A . x ≥1B . x >1C . x <1D . x ≤13.下列方程中,是关于x 的一元二次方程的是( ) A . 3x 2=2(x+1)B .2112=-+xx C . ax 2+bx+c=0 D . x 2+2x=x 24.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A .B .C .D .5.抛物线y=(x ﹣1)2+2的顶点坐标是( ) A .(﹣1,2) B .(﹣1,﹣2) C .(1,﹣2)D .(1,2)6.在平面直角坐标系中,P 点关于原点的对称点为)34,3(P 1--,P 点关于x 轴的对称点为P 2(a ,b),则ab -=( )A .2B .-2C .4D .-47.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A ′B ′C ′.若∠A=40°.∠B ′=110°,则 ∠BCA ′的度数是( )A . 110°B . 80°C . 40°D . 30°8.观察图形:将一张长方形纸片对折,可得到一条折痕.继续对折,对折是每次折痕与上次折痕保持平行,那么对折8次后折痕的条数是( )A.16 B .64 C .128D .2559.2016年11月5日金报讯:昨从国家统计局湖北调查总队获悉,10月份,我省大型企业集团的资产总额已达到11906万元,同上年比增长19%,下列说法:①2015年10月份我省大型企业集团的资产总额为11906(1﹣19%)万元; ②2015年10月份我省大型企业集团的资产总额为万元;③若2016年后两个月资产总额仍按19%的增长率增长,则到2016年12月份我省大型企业集团的资产总额将达到11906(1+19%)2万元.其中正确的是( ) A . ②③ B . ①③ C . ①②③ D . ①②10.如图,AD 为等边△ABC 边BC 上的高,AB=4,AE=1,P,Q 为高AD 上任两点,且Q 点在P 点上方PQ=,则BP+EQ 的最小值为()A . 2B .7C. 3 D 5二、填空题(每小题3分,共18分)11.已知抛物线y =x 2-2b x +4的顶点在x 轴上,则b 的值为12.据新华社北京2012年1月19日电,截至2011年末,北京常住人口已经突破20 000 000人,用科学记数法表示20 000 000这个数字为13.我市今年5月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.这组数据的中位数是 14.若x 1,x 2是一元二次方程x 2﹣3x+k=0的两根,则x 1+x 2的值是15.如图,△ABC 中,∠BAC=90°,AB=AC=2,D 为AB 上一动点,过点A 作AE ⊥BD 于E ,则线段BE 的最小值为16.若a,b 两数中较大的数记作D{a,b},直线y=kx+21(k>0)与函数y=D{12-x ,1+x }的图像有且只有2个交点,则k 的取值为三.解答题(共8小题,共72分)17.(8分)解方程:x 2﹣2x -4=0. 18.(8分)已知:如图,AC=AD ,AB 是∠CAD 的角平分线.求证:BC=BD . 19.(8分)已知二次函数y=﹣x 2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式. 20.(8分)已知关于x 的一元二次方程x 2+(m+3)x+m+1=0.A B(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若x1、x2是原方程的两根,且|x1﹣x2|=2,求m的值.21.(8分)如图,某小区在宽20m,长32m的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.22.(10分)已知△ABC与△ADE都是等腰直角三角形,且∠BAC=∠DAE=90º(1)证明:CE=BD,CE⊥BD(2)延长CE交BD于点F,当∠CAE=45º,AB=4,AD=时,试求线段CF的长23.(10分)如图,P为正方形ABCD边CD延长线上一点,BH⊥AP交PA的延长线于点H,AH=HE,连接BE,CE(!)求证:∠BCE=∠BEC;(2)如图,过E作PE的垂线交CB的延长线于点F,求证:EF+EP= EC(3)在(2)的条件下,若正方形的边长为2,DP=1,请直接写出线段CE的长。
武汉市青山区2016年中考备考数学训练题(三)一、选择题(本大题共10小题,每小题3分,共30分) 1.无理数a 满足:2<a <3,那么a 可能是( ) A .22B .32C .11D .102.若分式31+-x x 有意义,则x 的取值是( ) A .x =1B .x =-3C .x ≠-3D .x ≠33.计算(x ﹣5)2=( ) A .x 2-25B .x 2+25C .x 2-5 x +25D .x 2-10x +254.下列事件中,是必然事件的是( ) A .在地球上,向上抛出去的篮球会下落 B .打开电视机,任选一个频道,正在播新闻 C .购买一张彩票中奖一百万元D .掷两枚质地均匀的正方体骰子,点数之和一定大于6 5.下列运算正确的是( ) A .x 3+x 3=2x 3 B .x 6÷x 2=x 3 C .x 3·x 2=x 6 D .(x 2)3=x 5 6.如图,菱形ABCD 中,AB ∥y 轴,且B (-3,1),C (1,4),则点A 的坐标为( )A .(-3,5)B .(1,8)C .(-3,6)D .(1,9)7.如图是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是( )8.某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( ) A .该班有50名同学参赛B .第五组的百分比为16%C .成绩在70~80分的人数最多D .80分以上的学生有14名9.如图在3×4的网格中,每个小正方形的边长都是1个单位长度,定义:以网格中小正方形的顶点为顶点的正方形叫作格点正方形,图中包含“△”的格点正方形的个数有( ) A .5个B .6个C .7个D .8个10.如图,等腰Rt △ABC 和等腰Rt △ADE ,∠BAC =∠DAE =90°,AB =2AD =26,直线BD 、CE 交于点P ,Rt △ABC 固定不动,将△ADE 绕点A 旋转一周,点P 的运动路径长为( )A .12πB .8πC .6πD .4π二、填空题(每小题3分,共18分) 11.计算4-(-3)的结果为_________12.武汉园博园占地面积2 130 000平方米,用科学记数法可表示为_________平方米13.袋中装有大小相同的4个红球和3个绿球,从袋中摸出1个球摸到红球的概率为_________14.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 上一点,且AB =BE ,∠1=15°,则∠2=_________15.在平面直角坐标系中,已知点A 、B 的坐标分别为A (6,0)、B (0,2),以AB 为斜边在右上方作Rt △ABC .设点C 坐标为(x ,y ),则(x +y )的最大值=_________16.定义符号min [a ,b ]的含义为:当a ≥b 时,min [a ,b ]=b ;当a <b 时,min [a ,b ]=a ,如min [1,-2]=-2,min [-1,2]=-1.已知当21-≤x ≤2时,min [x 2-2 x -3,k (x -1)]=x 2-2 x -3,则k 的取值范围是_________ 三、解答题(共8小题,共72分)17.(本题8分)解方程:23131-=-x x 18.(本题8分)已知:如图,点E 、A 、C 在同一条直线上,AB ∥CD ,AB =CE ,AC =CD ,求证:∠B =∠E19.(本题8分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1) 样本中,男生的身高中位数在_________组 (2) 样本中,女生身高在E 组的人数有_________人(3) 已知该校共有男生800人,女生760人,请估计身高在 160≤x <170之间的学生约有多少人?20.(本题8分)如图,直线y =x +3与双曲线xm y 3-=( m 为常数)交于点A (a ,2)、B 两点 (1) 求a 、m 的值和B 点坐标(2) 双曲线xm y 3-=上有三点M (x 1,y 1)、N (x 2,y 2)、P (x 3,y 3),且y 1<y 2<0<y 3,则x 1、x 2、x 3的大小关系是_________________(用“<”号连接)21.(本题8分)如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,OA 与⊙O 相交于点P ,点B 为⊙O 上一点,BP 的延长线交直线l 于点C ,且 AB =AC (1) 求证:AB 与⊙O 相切 (2) 若tan ∠OAB =43,求sin ∠ABC 的值22.(本题10分)跳绳时绳甩到最高处时的形状是抛物线,如图,正在甩绳的甲、乙两同学拿绳的手到地面的距离均为0.9米,小丽站在距离点O 的水平距离为1米的F 处,绳子甩到最高处时刚好通过她的头顶E ,以O 为原点建立如图所示的平面直角坐标系,已知抛物线的解析式为y =-0.1x 2+0.6x +0.9 (1) 求小丽的身高是多少米?(2) 若小华站在OD 正中间,且绳子甩到最高处时刚好通过他的头顶,请问小华的身高比小丽高多少米? (3) 若小丽站在OD 之间,且距离点O 的水平距离为t 米,绳子甩到最高处时超过她的头顶,结合图象,直接写出t 的取值范围23.(本题10分)在△ABC 中,AD 、AE 分别是△ABC 的内、外角平分线 (1) 如图①,CG ⊥AD 于G ,BG 的延长线交AE 于H ,求证:AH =EH(2) 如图①,在(1)的条件下,若AE =2AD ,BE =5BC ,则tan ∠AHB =__________ 友情提醒:(1)、(2)问如果没有解出,不影响第(3)问的解答,且按步骤评分) (3) 如图②,点M 是DE 的中点,BE =5BC =10,求MD 的长24.(本题12分)如图①,直线l:y=-kx+kb(k>0,b>0),与x,y轴分别相交于A、B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A、B、D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线(1) 探究与猜想:①探究:若P:y =-x2-3x+4,则l表示的函数解析式为_________________若l:y =-2 x+2,则P表示的函数解析式为_________________②猜想:若b=1时,直线l:y =-kx+k的关联抛物线的抛物线解析式为_________________,并验证你的猜想(2) 如图②,若k=2,b=2,直线MN:y=mx+n与直线l的关联抛物线P抛物线相交于M、N两点,∠MBN=90°,直线MN必经过一个定点Q,请求定点Q坐标青山区2016年中考备考数学训练题(三)参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案A C D A A D B D C B10.提示:超出我能力范围之外二、填空题(共6小题,每小题3分,共18分) 11.7 12.2.13×106 13.7414.35°15.524+16.673<<-k 15.提示:点C 在以AB 为直径的圆上运动,构造新的函数x +y =m ,函数与y 轴交点最高处即可,此时y =-x +m 与圆相切三、解答题(共8题,共72分) 17.解:x =3 18.解:略19.解:(1) B 、C ;(2) 2;(3) 332 20.解:(1) a =-1、n =1、B (-2,1) (2) x 3<x 1<x 2 21.证明:(1) 连接OB∵OB =OP∴∠OPB =∠OBP =∠APC ∵AB =AC ∴∠ABC =∠ACB ∴OA ⊥l∴∠ACB +∠APC =90° ∴∠ABC +∠OBP =90° 即OB ⊥AB ∴AB 与⊙O 相切(2) ∵tan ∠OAB =43设OB =3,AB =4,则OA =5,OP =3,AP =2∵AC =AB =4∴sin ∠ABC =sin ∠ACB =55=PC AP 22.解:(1) 令x =1时,y =1.4(2) 令y =0.9,则-0.1x 2+0.6x =0,x 1=0,x 2=6 ∴小华站在离远点O 水平距离3米处 当x =3时,y =1.8 ∴小华比小丽高0.4米 (3) 1<t <523.证明:(1) 延长CG 交AB 于M∵AD 平分∠BAC ,CG ⊥AD ∴CG =MG∵AD 、AE 分别是△ABC 的内、外角平分线 ∴∠HAG =90° ∴AE ∥CG ∵AHMGBH BG EH CG == ∴AH =EH(2) 由角平分线定理得DBCDAB AC = ∵AC =AM ∴DB CDAB AM = 又EBECAB AM = ∵BE =5BC ∴54==EB EC AB AM ∴54=DB CD 设CD =4,DB =5 则EC =36 ∴91==CE CD AG DG ∵AH =EH ,AE =2AD ∴AH =AD ∴tan ∠AHB =109=AH AG (3) 由(2)可知:BE =45a =10,a =92 ∴MD =20a =940 24.解:(1) y =-4x +4,y =-x 2-x +2(2) y =-x 2-(k -1)x +k(3) 直线l 的解析式为y =-2x +4 ∴A (2,0)、B (0,4)、D (-4,0) 抛物线P 的解析式为y =21-x 2-x +4 设M (x 1,y 1)、N (x 2,y 2) 过点B 作x 轴的平行线PQ过点B 作MP ⊥PQ 于P ,过点N 作NQ ⊥PQ 于N ∴Rt △BNQ ∽Rt △MBP ∴NQBPBQ MP =即212144y x x y -=--,整理得x 1x 2+16-4(y 1+y 2)+y 1y 2=0 ∵y 1+y 2=m (x 1+x 2)+2n ,y 1y 2=(mx 1+n )(mx 2+n )=m 2x 1x 2+mn (x 1+x 2)+n 2 ∴(m 2+1)x 1x 2+(mn -4m )(x 1+x 2)+n 2-8n +16=0联立⎪⎩⎪⎨⎧+--=+=4212x x y n mx y ,整理得x 2+(2m +2)x +2n -8=0 ∴x 1+x 2=-2m -2,x 1x 2=2n -8 ∴n 2-6n +8m -2mn +8=0 ∴(n -4)(n -2m -2)=0当n=4时,直线MN经过点B,无法得到∠MBN=90°∴n=2m+2∴直线MN的解析式为y=mx+2m+2必过定点(-2,2)。
22p故选B.【提示】如图,连接MN ,根据圆周角定理可以判定MN 是直径,所以根据勾股定理求得直径,然后再来求半径即可.【考点】圆周角定理,勾股定理 6.【答案】D【解析】在不等式x y >两边都加上1,不等号的方向不变,故选项A 正确;在不等式x y >两边都乘上2,不等号的方向不变,故选项B 正确;在不等式x y >两边都除以2,不等号的方向不变,故选项C 正确;当1x =,2y =-时,x y >,但22x y <,故选项D 错误.故选D.【提示】根据不等式的基本性质进行判断,不等式的两边加上同一个数,不等号的方向不变;不等式的两边乘以(或除以)同一个正数,不等号的方向不变. 【考点】不等式的性质 7.【答案】A【解析】如图,根据垂线段最短可知:3PC <,∴CP 的长可能是2,故选A.【提示】根据垂线段最短得出结论.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C 到直线AB 连接的所有线段中,CP 是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择 【考点】垂线段最短 8.【答案】D【解析】由表可知,(1,0)-,(0,1)在直线一次函数1y kx m =+的图象上,∴01k m m -+=⎧⎨=⎩,∴11k m =⎧⎨=⎩∴一次函数11y x =+,48x y =,∴2322x y =,即2首先把已知得到式子的两边化成以21.【答案】(1)2000 (2)将条形统计图补充完整,如图所示.(2)画树状图如下:∴四边形ADO′B′是平行四边形.②(3)②剪拼示意图如图3所示,∴轻质钢丝的总长度为602302902AC EF cm+=+=.2=-)PE m222。
2016年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间2.(3分)若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3B.x>3C.x≠3D.x=33.(3分)下列计算中正确的是()A.a•a2=a2B.2a•a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a44.(3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球5.(3分)运用乘法公式计算(x+3)2的结果是()A.x2+9B.x2﹣6x+9C.x2+6x+9D.x2+3x+96.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b 的值是()A.a=5,b=1B.a=﹣5,b=1C.a=5,b=﹣1D.a=﹣5,b=﹣17.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D .8.(3分)某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、69.(3分)如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.πB.πC.2D.210.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算5+(﹣3)的结果为.12.(3分)某市2016年初中毕业生人数约为63000,数63000用科学记数法表示为.13.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.14.(3分)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E 处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.15.(3分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为.16.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为.三、解答题(共8题,共72分)17.(8分)解方程:5x+2=3(x+2)18.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.19.(8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了名学生,其中最喜爱戏曲的有人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.20.(8分)已知反比例函数y=.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.21.(8分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.22.(10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(12分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.2016年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2016•武汉)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【解答】解:∵1<<2,∴实数的值在:1和2之间.故选:B.2.(3分)(2016•武汉)若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3B.x>3C.x≠3D.x=3【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.(3分)(2016•武汉)下列计算中正确的是()A.a•a2=a2B.2a•a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a4【解答】解:A、原式=a3,错误;B、原式=2a2,正确;C、原式=4a4,错误;D、原式=2a6,错误,故选B4.(3分)(2016•武汉)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【解答】解:A.摸出的是3个白球是不可能事件;B.摸出的是3个黑球是随机事件;C.摸出的是2个白球、1个黑球是随机事件;D.摸出的是2个黑球、1个白球是随机事件,故选:A.5.(3分)(2016•武汉)运用乘法公式计算(x+3)2的结果是()A.x2+9B.x2﹣6x+9C.x2+6x+9D.x2+3x+9【解答】解:(x+3)2=x2+6x+9,故选:C.6.(3分)(2016•武汉)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1B.a=﹣5,b=1C.a=5,b=﹣1D.a=﹣5,b=﹣1【解答】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=﹣5,b=﹣1.故选D.7.(3分)(2016•武汉)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.8.(3分)(2016•武汉)某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A .5、6、5B .5、5、6C .6、5、6D .5、6、6【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选D .9.(3分)(2016•武汉)如图,在等腰Rt△ABC 中,AC=BC=2,点P 在以斜边AB 为直径的半圆上,M为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是()A .πB .πC .2D .2【解答】解:取AB 的中点O 、AC 的中点E 、BC 的中点F,连结OC 、OP 、OM 、OE 、OF 、EF ,如图,∵在等腰Rt △ABC 中,AC=BC=2,∴AB=BC=4,∴OC=AB=2,OP=AB=2,∵M 为PC 的中点,∴OM ⊥PC ,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF 为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=•2π•1=π.故选B.10.(3分)(2016•武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选A二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2016•武汉)计算5+(﹣3)的结果为2.【解答】解:原式=+(5﹣3)=2,故答案为:2.12.(3分)(2016•武汉)某市2016年初中毕业生人数约为63000,数63000用科学记数法表示为 6.3×104.【解答】解:将63000用科学记数法表示为6.3×104.故答案为:6.3×104.13.(3分)(2016•武汉)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.【解答】解:∵一个质地均匀的小正方体由6个面,其中标有数字5的有2个,∴随机投掷一次小正方体,则朝上一面的数字是5的概率==.故答案为:.14.(3分)(2016•武汉)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为36°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.15.(3分)(2016•武汉)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为﹣4≤b≤﹣2.【解答】解:∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>﹣;∴﹣<x<,∵x满足0<x<3,∴﹣=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故答案为﹣4≤b≤﹣2.16.(3分)(2016•武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为2.【解答】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴=,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD===2,故答案为:2.三、解答题(共8题,共72分)17.(8分)(2016•武汉)解方程:5x+2=3(x+2)【解答】解:去括号得:5x+2=3x+6,移项合并得:2x=4,解得:x=2.18.(8分)(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.19.(8分)(2016•武汉)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了50名学生,其中最喜爱戏曲的有3人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是72°.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【解答】解:(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人);∵“娱乐”类人数占被调查人数的百分比为:×100%=36%,∴“体育”类人数占被调查人数的百分比为:1﹣8%﹣30%﹣36%﹣6%=20%,∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是360°×20%=72°;故答案为:50,3,72°.(2)2000×8%=160(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.20.(8分)(2016•武汉)已知反比例函数y=.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.【解答】解:(1)解得kx2+4x﹣4=0,∵反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,∴△=16+16k=0,∴k=﹣1;(2)如图所示,C1平移至C2处所扫过的面积=2×3=6.21.(8分)(2016•武汉)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:连接BE、BC、OC,BE交AC于F交OC于H.∵AB是直径,∴∠AEB=∠DEH=∠D=∠DCH=90°,∴四边形DEHC是矩形,∴∠EHC=90°即OC⊥EB,∴DC=EH=HB,DE=HC,∵cos∠CAD==,设AD=4a,AC=5a,则DC=EH=HB=3a,∵cos∠CAB==,∴AB=a,BC=a,在RT△CHB中,CH==a,∴DE=CH=a,AE==a,∵EF∥CD,∴==.22.(10分)(2016•武汉)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【解答】解:(1)y1=(6﹣a)x﹣20,(0<x≤200)y2=10x﹣40﹣0.05x2=﹣0.05x2+10x﹣40.(0<x≤80).(2)对于y1=(6﹣a)x﹣20,∵6﹣a>0,∴x=200时,y1的值最大=(1180﹣200a)万元.对于y2=﹣0.05(x﹣100)2+460,∵0<x≤80,∴x=80时,y2最大值=440万元.(3)①(1180﹣200a)=440,解得a=3.7,②(1180﹣200a)>440,解得a<3.7,③(1180﹣200a)<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,生产甲乙两种产品的利润相同.当3≤a<3.7时,生产甲产品利润比较高.当3.7<a≤5时,生产乙产品利润比较高.23.(10分)(2016•武汉)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.【解答】解:(1)∵∠ACP=∠B,∠A=∠A,∴△ACP∽△ABC,∴,∴AC2=AP•AB;(2)①取AP在中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,∵M是PC的中点,∴MG∥AC,∴∠BGM=∠A,∵∠ACP=∠PBM,∴△APC∽△GMB,∴,即,∴x=,∵AB=3,∴AP=3﹣,∴PB=;②过C作CH⊥AB于H,延长AB到E,使BE=BP,设BP=x.∵∠ABC=45°,∠A=60°,∴CH=,HE=+x,∵CE2=(+(+x)2,∵PB=BE,PM=CM,∴BM∥CE,∴∠PMB=∠PCE=60°=∠A,∵∠E=∠E,∴△ECP∽△EAC,∴,∴CE2=EP•EA,∴3+3+x2+2x=2x(x++1),∴x=﹣1,∴PB=﹣1.24.(12分)(2016•武汉)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.【解答】解:(1)①将P(1,﹣3),B(4,0)代入y=ax2+c,得,解得,抛物线的解析式为y=x2﹣;②如图1,当点D在OP左侧时,由∠DPO=∠POB,得DP∥OB,D与P关于y轴对称,P(1,﹣3),得D(﹣1,﹣3);当点D在OP右侧时,延长PD交x轴于点G.作PH⊥OB于点H,则OH=1,PH=3.∵∠DPO=∠POB,∴PG=OG.设OG=x,则PG=x,HG=x﹣1.在Rt△PGH中,由x2=(x﹣1)2+32,得x=5.∴点G(5,0).∴直线PG的解析式为y=x﹣解方程组得,.∵P(1,﹣3),∴D(,﹣).∴点D的坐标为(﹣1,﹣3)或(,﹣).(2)点P运动时,是定值,定值为2,理由如下:作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2.第21页(共21页)∵PQ ∥OF ,∴,∴OF==﹣==amt +at 2.同理OE=﹣amt +at 2.∴OE +OF=2at 2=﹣2c=2OC .∴=2.梦想不会辜负每一个努力的人。
2016年湖北省武汉六中中考数学四模试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)无理数的值最接近()A.1 B.2 C.3 D.42.(3分)若分式有意义,则x的取值范围是()A.x≠5 B.x≠﹣5 C.x>5 D.x>﹣53.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.(1+a)(a﹣1)=a2﹣1C.a2+ab+b2=(a+b)2D.(x+3)2=x2+3x+94.(3分)下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上5.(3分)下面计算正确的是()A.a4•a2=a8 B.b3+b3=b6 C.x6÷x2=x3D.(y2)4=y86.(3分)如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么tan∠BAD′等于()A.1 B.C.D.27.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.8.(3分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)10.(3分)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E 在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.2 C.3 D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算:4﹣|﹣6|=.12.(3分)2015武汉园博园开幕,预计国庆期间共接待游客48万人,48万用科学记数法表示为.13.(3分)在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为.14.(3分)如图,已知∠1=∠2=∠3=59°,则∠4=.15.(3分)已知△ABC中,∠ABC=45°,AB=7,BC=17,以AC为斜边在△ABC 外作等腰Rt△ACD,连接BD,则BD的长为.16.(3分)定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b 时,min{a,b}=a.如:min{2,﹣4}=﹣4,min{1,5}=1,则min{﹣x2+1,﹣x}的最大值是.三.解答题(共8小题,共72分)17.(7分)解方程:﹣1=0.18.(7分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.19.(8分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?20.(8分)如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.21.(8分)如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)当BF=5,sinF=时,求BD的长.22.(10分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?23.(12分)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D 和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.24.(12分)如图:二次函数y=ax2+c(a<0,c>0)的图象C1交x轴于A、B两点,交y轴于D,将C1沿某一直线方向平移,平移后的抛物线C2经过B点,且顶点落在直线x=上.(1)求B点坐标(用a、c表示);(2)求出C2的解析式(用含a、c的式子表示);(3)点E是点D关于x轴的对称点,C2的顶点为F,且∠DEF=45°,试求a、c 应满足的数量关系式.2016年湖北省武汉六中中考数学四模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)无理数的值最接近()A.1 B.2 C.3 D.4【解答】解:∵4<5<9,∴2<<3,∴与无理数最接近的整数为2.故选B2.(3分)若分式有意义,则x的取值范围是()A.x≠5 B.x≠﹣5 C.x>5 D.x>﹣5【解答】解:∵x﹣5≠0,∴x≠5;故选A.3.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.(1+a)(a﹣1)=a2﹣1C.a2+ab+b2=(a+b)2D.(x+3)2=x2+3x+9【解答】解:A、原式=a2﹣2ab+b2,错误;B、原式=a2﹣1,正确;C、原式为最简结果,错误;D、原式=x2+6x+9,错误,故选B4.(3分)下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上【解答】解:A.是不可能事件,故A选项不符合题意;B.是随机事件,故B选项不符合题意;C.是必然事件,故C选项符合题意;D.是随机事件,故D选项不符合题意.故选:C.5.(3分)下面计算正确的是()A.a4•a2=a8 B.b3+b3=b6 C.x6÷x2=x3D.(y2)4=y8【解答】解:A、a4•a2=a6,故A错误;B、b3+b3=2b3,故B错误;C、x6÷x2=x4,故C错误;D、(y2)4=y8,故D正确.故选:D.6.(3分)如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么tan∠BAD′等于()A.1 B.C.D.2【解答】解:由题知,∠ABD′=90°,BD=BD′==2,∴tan∠BAD′===.故选B.7.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.8.(3分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.9.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,的横坐标是2(2n+1)﹣1=4n+1,∴A n的横坐标是2n﹣1,A2n+1∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,的纵坐标是,∴顶点A2n+1∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故选:C.10.(3分)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E 在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.2 C.3 D.【解答】解:设BE与AC交于点F(P′),连接BD,∵点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选:A.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算:4﹣|﹣6|=﹣2.【解答】解:4﹣|﹣6|,=4﹣6,=﹣2.故答案为:﹣2.12.(3分)2015武汉园博园开幕,预计国庆期间共接待游客48万人,48万用科学记数法表示为 4.8×105.【解答】解:48万=48 0000=4.8×105,故答案为:4.8×105.13.(3分)在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为.【解答】解:画树状图得:∵共有12种等可能的结果,两球恰好是一个黄球和一个红球的有6种情况,∴两球恰好是一个黄球和一个红球的为:=.故答案为:.14.(3分)如图,已知∠1=∠2=∠3=59°,则∠4=121°.【解答】解:∵∠1=∠3,∴AB∥CD,∴∠5+∠4=180°,又∠5=∠2=59°,∴∠4=180°﹣59°=121°.故答案为:121°15.(3分)已知△ABC中,∠ABC=45°,AB=7,BC=17,以AC为斜边在△ABC外作等腰Rt△ACD,连接BD,则BD的长为.【解答】解:以AB为腰作等腰Rt△ABE,连接EC,∵△ADC为等腰Rt△,∴,∠EAB=∠DAC=45°,∴∠EAB+∠BAC=∠BAC+∠DAC,∴∠EAC=∠DAB,∴△EAC∽△BAD,∴,作EF⊥BC交BC延长线于F,∵∠ABC=45°,∠EBA=90°,∴∠EBF=45°,∴△EFB为等腰Rt△,∴EF=FB===7,∴EC==25,∴BD==.16.(3分)定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b 时,min{a,b}=a.如:min{2,﹣4}=﹣4,min{1,5}=1,则min{﹣x2+1,﹣x}的最大值是.【解答】解:在同一坐标系xOy中,画出函数二次函数y=﹣x2+1与正比例函数y=﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x=或,∴A(,),B(,).观察图象可知:①当x≤时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为;②当<x<时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为;③当x≥时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为.综上所示,min{﹣x2+1,﹣x}的最大值是.故答案:.三.解答题(共8小题,共72分)17.(7分)解方程:﹣1=0.【解答】解:去分母得:x+1﹣2=0,x=2﹣1,x=1.18.(7分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.【解答】证明:∵AC⊥BC,BD⊥AD,∴∠C=∠D=90,在Rt△ACB和Rt△BDA中,,∴△ACB≌△BDA(HL).19.(8分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?【解答】解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.20.(8分)如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.【解答】解:(1)∵点A(﹣2,4)在反比例函数图象上∴4=∴k′=﹣8,(1分)∴反比例函数解析式为y=;(2分)(2)∵B点的横坐标为﹣4,∴y=﹣,∴y=2,∴B(﹣4,2)(3分)∵点A(﹣2,4)、点B(﹣4,2)在直线y=kx+b上∴4=﹣2k+b2=﹣4k+b解得k=1b=6∴直线AB为y=x+6(4分)与x轴的交点坐标C(﹣6,0)=CO•y A=×6×4=12.(6分)∴S△AOC21.(8分)如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)当BF=5,sinF=时,求BD的长.【解答】(1)证明:连接OC.∵OA=OC,∴∠1=∠2.又∵∠3=∠1+∠2,∴∠3=2∠1.又∵∠4=2∠1,∴∠4=∠3,∴OC∥DB.∵CE⊥DB,∴OC⊥CF.又∵OC为⊙O的半径,∴CF为⊙O的切线;(2)解:连结AD.在Rt△BEF中,∵∠BEF=90°,BF=5,sinF=,∴BE=BF•sinF=3.∵OC∥BE,∴△FBE∽△FOC,∴.设⊙O的半径为r,∴,∴.∵AB为⊙O直径,∴AB=15,∠ADB=90°,∵∠4=∠EBF,∴∠F=∠BAD,∴,∴,∴BD=9.22.(10分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.23.(12分)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.【解答】解:(1)在菱形ABCD中,∵AC⊥BD∴AD==50.∴菱形ABCD的周长为200.(2)过点M作MP⊥AD,垂足为点P.①当0<t≤40时,如答图1,∵sin∠OAD===,∴MP=AM•sin∠OAD=t.S=DN•MP=×t×t=t2;②当40<t≤50时,如答图2,MD=70﹣t,∵sin∠ADO===,∴MP=(70﹣t).=DN•MP=×t×(70﹣t)=t2+28t=(t﹣35)2+490.∴S△DMN∴S=当0<t≤40时,S随t的增大而增大,当t=40时,最大值为480.当40<t≤50时,S随t的增大而减小,当t=40时,最大值为480.综上所述,S的最大值为480.(3)存在2个点P,使得∠DPO=∠DON.方法一:如答图3所示,过点N作NF⊥OD于点F,则NF=ND•sin∠ODA=30×=24,DF=ND•cos∠ODA=30×=18.∴OF=12,∴tan∠NOD===2.作∠NOD的平分线交NF于点G,过点G作GH⊥ON于点H,则FG=GH.∴S=OF•NF=S△OGF+S△OGN=OF•FG+ON•GH=(OF+ON)•FG.△ONF∴FG===,∴tan∠GOF===.设OD中垂线与OD的交点为K,由对称性可知:∠DPK=∠DPO=∠DON=∠FOG∴tan∠DPK===,∴PK=.根据菱形的对称性可知,在线段OD的下方存在与点P关于OD轴对称的点P′.∴存在两个点P到OD的距离都是.方法二:答图4所示,作ON的垂直平分线,交OD的垂直平分线EF于点I,连结OI,IN.过点N作NG⊥OD,NH⊥EF,垂足分别为G,H.当t=30时,DN=OD=30,易知△DNG∽△DAO,∴,即.∴NG=24,DG=18.∵EF垂直平分OD,∴OE=ED=15,EG=NH=3.设OI=R,EI=x,则在Rt△OEI中,有R2=152+x2①在Rt△NIH中,有R2=32+(24﹣x)2②由①、②可得:∴PE=PI+IE=.根据对称性可得,在BD下方还存在一个点P′也满足条件.∴存在两个点P,到OD的距离都是.(注:只求出一个点P并计算正确的扣(1分).)24.(12分)如图:二次函数y=ax2+c(a<0,c>0)的图象C1交x轴于A、B两点,交y轴于D,将C1沿某一直线方向平移,平移后的抛物线C2经过B点,且顶点落在直线x=上.(1)求B点坐标(用a、c表示);(2)求出C2的解析式(用含a、c的式子表示);(3)点E是点D关于x轴的对称点,C2的顶点为F,且∠DEF=45°,试求a、c 应满足的数量关系式.【解答】解:(1)y=ax2+c中令y=0,可得ax2+c=0,解得x=±,∵B点在y轴的右侧,∴B点坐标为(,0);(2)∵点B、C关于直线x=上对称∴C点坐标为(,0),∴抛物线的解析式为y=a(x﹣)(x﹣);(3)在y=a(x﹣)(x﹣)中,当x=时,可得y=,∵D、E关于x轴对称,∴E点坐标为(0,﹣c),∴OE=c,∴GE=c+,过点F作FG⊥y轴于G,如图,则GF=,∵∠DEF=45°,∴GE=GF,∴=c+,整理可得ac=﹣。