2018年湖北省武汉市中考数学试卷(含答案解析)-全新整理
- 格式:doc
- 大小:379.09 KB
- 文档页数:20
2024年湖北省武汉市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.2.小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A.随机事件B.不可能事件C.必然事件D.确定性事件【答案】A【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A.3.如图是由两个宽度相同的长方体组成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】本题考查了三视图的知识,熟知主视图是从物体的正面看到的视图是解题的关键.按照主视图的定义逐项判断即可.【详解】解:从正面看该几何体,下面是一个大长方形,上面叠着一个小长方形,故选:B .4.国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是()A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯5.下列计算正确的是()A .236a a a ⋅=B .()1432a a =C .()2236a a =D .()2211a a +=+【答案】B【分析】本题考查了完全平方公式,积的乘方,幂的乘方,同底数幂的乘法等,根据同底数幂的乘法,积的乘方,幂的乘方,完全平方公式运算法则分别判断即可.【详解】解:A.235a a a ⋅=,故该选项不正确,不符合题意;B.()4312a a =,故该选项正确,符合题意;C.()2239a a =,故该选项不正确,不符合题意;D.()22121a a a +=++,故该选项不正确,不符合题意;故选:B .6.如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是()A.B.C.D.【答案】D【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D.∠;②以点A为圆心,1个单位长为半7.小美同学按如下步骤作四边形ABCD:①画MAN径画弧,分别交AM,AN于点B,D;③分别以点B,D为圆心,1个单位长为半径画弧,∠的大小是()两弧交于点C;④连接BC,CD,BD.若44∠=︒,则CBDAA.64︒B.66︒C.68︒D.70︒【答案】C【分析】本题考查了基本作图,菱形的判定和性质,根据作图可得四边形ABCD是菱形,进而根据菱形的性质,即可求解.===【详解】解:作图可得AB AD BC DC8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是()A .19B .13C .49D .59共有9种情况,至少一辆车向右转有5种,∴至少一辆车向右转的概率是59,故选:D .9.如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是()A B C D .2∵四边形ABCD 内接于 ∴ADC ABC ABC ∠+∠=∠∴ADC CBE∠=∠∵45BAC CAD ∠=∠=︒10.如图,小好同学用计算机软件绘制函数32331y x x x =-+-的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++ 的值是()A .1-B .0.729-C .0D .1∵()0,1-关于点()1,0中心对称的点为()2,1,即当2x =时,201y =,∴12319201020011y y y y y y y +++++=+=+= ,故选:D .二、填空题11.中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作℃.【答案】2-【分析】本题考查了正数和负数的意义,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:零上3℃记作3+℃,则零下2℃记作2-℃.,故答案为:2-.12.某反比例函数k y x =具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当0x >时,y 随x 的增大而减小,∴0k >故答案为:1(答案不唯一).13.分式方程131x x x x +=--的解是.【答案】3x =-【分析】本题主要考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题关键.首先等号两边同时乘以()()31x x --完成去分母,再按照去括号,移项、合并同类项的步骤求解,检验即可获得答案.14.黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是m .(参考数据:tan632︒≈)【答案】51【分析】本题主要考查解直角三角形的应用,理解题意,作出辅助线是解题关键.延长BA 交距水平地面102m 的水平线于点D ,根据tan632︒≈,求出51m DC AD =≈,即可求解.【详解】解:延长BA 交距水平地面102m 的水平线于点D ,如图,由题可知,102m BD =,设AD x =,∵45DCA ∠=︒∴DC AD x==15.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是. 45PMN ∴∠=︒45EMG PMN ∴∠=∠=1EG MG ∴==在AEG △和ABN 中,16.抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1-,(),1m 两点,且01m <<.下列四个结论:①0b >;②若01x <<,则()()2111a x b x c -+-+>;③若1a =-,则关于x 的一元二次方程22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>-,12x x >,总有12y y <,则102m <≤.其中正确的是(填写序号).三、解答题17.求不等式组3121x x x +>⎧⎨-≤⎩①②的整数解.【答案】整数解为:1,0,1-【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨-≤⎩①②解不等式①得:2x >-解不等式②得:1x ≤∴不等式组的解集为:21x -<≤,∴整数解为:1,0,1-18.如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)【答案】(1)见解析(2)添加AF BE =(答案不唯一)【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;(1)根据平行四边形的性质得出AB CD =,B D ∠=∠,结合已知条件可得DF BE =,即可证明C ABE DF ≌△△;(2)添加AF BE =,依据一组对边平行且相等的四边形是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,AD BC =,B D ∠=∠,∵AF CE =,∴AD AF BC CE -=-即DF BE =,在ABE 与CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE CDF ≌;(2)添加AF BE =(答案不唯一)如图所示,连接EF .∵四边形ABCD 是平行四边形,∴AD BC ∥,即AF BE ∥,当AF BE=时,四边形ABEF是平行四边形.19.为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表成绩/分频数4123a2151b06根据以上信息,解答下列问题:(1)直接写出m,n的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20.如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.AO BC ∴⊥,AO 平分BAC∠AC 与半圆O 相切于点DOD AC∴⊥由ON AB⊥ ON OD∴=21.如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;∠=∠;(2)在(1)的基础上,在射线AD上画点E,使ECB ACB(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90︒到点C,再画射线AF交BC于点G;(4)在(3)的基础上,将线段AB绕点G旋转180︒,画对应线段MN(点A与点M对应,点B与点N对应).(2)如图,作OP(4)如图,作OP MN 即为所求作.22.16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =-+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .23.问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF的值.∵E 是AB 的中点,H 是∴12EH AD =,EH AD ∥又∵2AD CF =,∴EH CF =,∵2AD CF CD ==,∴12AM MD FC AD ===设2AD a =,则MF CD =【点睛】本题考查了矩形的性质,相似三角形的性质与判定,平行四边形的性质与判定,直角三角形中斜边上的中线等于斜边的一半,全等三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.24.抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.∴90T S EGF ∠=∠=∠=∴90EGT FGS ∠=︒-∠=∴ETG GSF∽∴ET TG GS FS=即ET FS GS TG⋅=⋅。
2018年湖北省武汉市中考数学试卷(解析版)一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃【分析】根据题意列出算式,再利用加法法则计算可得.【解答】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.【点评】本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣2【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.(3分)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x2【分析】根据合并同类项解答即可.【解答】解:3x2﹣x2=2x2,故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则解答.4.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、40【分析】根据众数和中位数的定义求解.【解答】解:这组数据的众数和中位数分别42,38.故选:B.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+6【分析】根据多项式的乘法解答即可.【解答】解:(a﹣2)(a+3)=a2+a﹣6,故选:B.【点评】此题考查多项式的乘法,关键是根据多项式乘法的法则解答.6.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.【点评】此题主要考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.2013【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【解答】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D.【点评】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.10.(3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+﹣=故答案为:【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.12.(3分)下表记录了某种幼树在一定条件下移植成活情况移植总数n400 1500 3500 7000 9000 14000成活数m325 1336 3203 6335 8073 12628 成活的频率(精确到0.01)0.813 0.891 0.915 0.905 0.897 0.902由此估计这种幼树在此条件下移植成活的概率约是0.9(精确到0.1)【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.(3分)计算﹣的结果是.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+=故答案为:【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.【点评】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质并准确识图是解题的关键.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是216m.【分析】求出t=4时的函数值即可;【解答】解:根据对称性可知,开始4秒和最后4秒的滑行的距离相等,t=4时,y=60×4﹣×42=240﹣24=216m,故答案为216.【点评】本题考查二次函数的应用,解题的关键是理解题意,属于中考基础题.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.三、解答题(共8题,共72分)17.(8分)解方程组:【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?【分析】(1)根据题意和统计图中的数据可以求得m、a、b的值;(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.【点评】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.【分析】(1)根据“C型钢板不少于120块,D型钢板不少于250块”建立不等式组,即可得出结论;(2)先建立总利润和x的关系,即可得出结论.【解答】解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.【点评】此题主要考查了二元一次不等式组的应用,一次函数的性质,根据题意得出正确的等量关系是解题关键.21.(8分)如图,P A是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC 交AB于点E,且P A=P B.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.【分析】(1)想办法证明△P AO≌△PBO.可得∠P AO=∠PBO=90°;(2)首先证明BC=2OK,设OK=a,则BC=2a,再证明BC=PB=P A=2a,由△P AK∽△POA,可得P A2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),推出PK=a,由PK∥BC,可得==;【解答】(1)证明:连接OP、O B.∵P A是⊙O的切线,∴P A⊥OA,∴∠P AO=90°,∵P A=PB,PO=PO,OA=OB,∴△P AO≌△PBO.∴∠P AO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵P A、PB都是切线,∴P A=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=P A=2a,∵△P AK∽△POA,∴P A2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n 的数量关系.【分析】(1)①如图1﹣1中,求出PB、PC的长即可解决问题;②图1﹣2中,由题意C(t,t+2),理由待定系数法,把问题转化为方程解决即可;(2)分两种情形①当点A与点D关于x轴对称时,A(a,m),D(d,n),可得m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,推出OB=OH,AB=D′H,由A(a,m),推出D′(m,﹣a),即D′(m,n),由D′在y=﹣上,可得mn=﹣8;【解答】解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.【点评】本题考查反比例函数综合题、旋转变换、待定系数法、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.23.(10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠P AC=,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.【分析】(1)利用同角的余角相等判断出∠BAM=∠CBN,即可得出结论;(2)先判断出△ABP∽△PQF,得出=,再判断出△ABP∽△CQF,得出CQ=2a,进而建立方程用b表示出a,即可得出结论;(3)先判断出=,再同(2)的方法,即可得出结论.【解答】解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠P AC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=b,AB=a=b,在Rt△ABC中,tanC==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.【点评】此题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,构造图1是解本题的关键.24.(12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)求解可得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG•x N﹣BG•x M=1得出x N﹣x M=1,联立直线和抛物线解析式求得x=,根据x N﹣x M=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【解答】解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).【点评】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、利用割补法求三角形的面积建立关于k的方程及相似三角形的判定与性质等知识点.。
绝密★启用前2018年武汉市初中毕业生学业考试数学试卷亲爱的同学,在你答题前,请认真阅读下面的注意事项: 1.本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,全卷共6页,三大题,满分120分,考试用时120分钟. 2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答第Ⅰ卷(选择题)时,选出每小题答案后,用2B 铅笔把“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答在..“.试卷..”.上.无效... 5.认真阅读答题卡上的注意事项. 预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、 选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑. 1.温度由4℃-上升7℃是 A .3℃B .3℃-C .11℃D .11℃-2.若分式12x +在实数范围内有意义,则实数x 的取值范围是 A .2x -B .2-x <C .2x =-D .2x ≠-3.计算223x x -的结果是 A .2B .22xC .2xD .24x4.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是 A .2、40B .42、38C .40、42D .42、405.计算()(23)a a -+的结果是 A .26a -B .26a a +-C .26a +D .26a a -+6.点5(2),A -关于x 轴对称的点的坐标是 A .(2)5,.B .()25,-C .(25),--D .()52,-7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是 A .3 B .4 C .5 D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是 A .14B .12C .34D .569.将正整数1至2018按一定规律排列如下表:毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------A.2019B .2018C .2016D .201310.如图,在O 中点C 在优弧AB 上,将弧BC 沿BC 折叠后刚好经过AB 的中点D .若O4AB=,则BC 的长是 A. B .CD 第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算的结果是 . 12.下表记录了某种幼树在一定条件下移植成活情况是 (精确到0.1).13.计算22111m m m---的结果是 . 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC的度数是 .15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是23602y t t =-.在飞机着陆滑行中,最后4s 滑行的距离是 m .16.如图,△ABC 中,60ACB ∠=︒,1AC =,D 是边AB 的中点,E是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是 .三、解答题(共8小题,共72分)在答题卡指定位置上写出必要的演算过程或证明过程. 17.(本小题满分8分)解方程组:10 216. x y x y +=⎧⎨+=⎩,①②第10题图第16题图18.(本小题满分8分)如图,点E 、F 在BC 上,BE CF =,AB DC =,B C ∠=∠,AF与DE 交于点G .求证:GE GF =. 19.(本小题满分8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表学生读书数量扇形图(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本小题满分8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A ,B 型钢板共100块,并全部加工成C ,D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数).(1)求A ,B 型钢板的购买方案共有多少种?(2)出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若将C 、D 型钢板全部出售,请你设计获利最大的购买方案.21.(本小题满分8分)如图,P A 是O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB ,PC .PC交AB 于点E ,且PA PB =.(1)求证:PB 是O 的切线; PECE的值. (2)若3APC BPC ∠=∠,求22.(本小题满分10分)已知点()A a m ,在双曲线8y x=上,且0m <.过点A 作x 轴的垂线,垂足为B .(1)如图1,当2a =-时,()P t ,0是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C .第18题图第21题图-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------①若1t =,直接写出点C 的坐标; ②若双曲线8y x=经过点C ,求t 的值;(2)如图2,将图1中的双曲线()8x 0y x=->沿y 轴折叠得到双曲线()8x 0y x=-<,将线段OA 绕点O 旋转,点A 刚好落在双曲线()8x 0y x=-<上的点()D d n ,处,求m 和n 的数量关系.第22题图1第22题图223.(本小题满分10分)在△ABC 中,90ABC ∠=︒.(1)如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M ,N .求证:△∽△ABM BCN ;(2)如图2,P 是边BC 上一点,BAP C ∠=∠,an 5t PAC ∠=,求tan C 的值;(3)如图3,D 是边CA 延长线上一点,AE AB =,90DEB ∠=︒,3sin 5BAC ∠=,25AD AC =,直接写出tan CEB ∠的值.24.(本小题满分12分)抛物线L :2y x bx c +=-+经过点1(0)A ,,与它的对称轴直线1x =交于点B .(1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线()40y kx k k =-+<与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m ()m>0个单位长度得到抛物线1L ,抛物线1L 与y 轴交于点C ,过点C 作y 轴的垂线交抛物线1L 于另一点D .F 为抛物线1L 的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.第24题图1第24题图22018年武汉市初中毕业生学业考试数学试卷答案解析第23题图1第23题图2第23题图3第Ⅰ卷一、选择题1.【答案】A【解析】温度由4-℃上升7℃是473-+=℃.【提示】根据题意列出算式,再利用加法法则计算可得.【考点】有理数的加法.2.【答案】D【解析】∵代数式12x+在实数范围内有意义,∴20x+≠,解得:2x≠-.【提示】直接利用分式有意义的条件分析得出答案.【考点】分式有意义的条件.3.【答案】B【解析】22232x x x-=【提示】根据合并同类项解答即可.【考点】合并同类项.4.【答案】D【解析】这组数据的众数和中位数分别42,40.【提示】根据众数和中位数的定义求解.【考点】众数和中位数的定义.5.【答案】B【解析】223()()6a a a a-+=+-【提示】根据多项式的乘法解答即可.【考点】多项式的乘法.6.【答案】A【解析】点5(2)A-,关于x轴的对称点B的坐标为(2)5,.【提示】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【考点】x轴、y轴对称的点的坐标.7【答案】C【解析】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.【提示】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可. 【考点】由三视图判断几何体.8.【答案】C【解析】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率123164==.【提示】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【考点】列表法与树状图法.9.【答案】D【解析】设中间数为x,则另外两个数分别为1x-、1x+,∴三个数之和为()(13)1x x x x-+++=.根据题意得:32019x=、32018x=、32016x=、32013x=,解得:673x=,26733x=(舍去),672x=,671x=.∵6738481=⨯+,∴2019不合题意,舍去;∵672848=⨯,∴2016不合题意,舍去;∵6718377=⨯+,∴三个数之和为2013.【提示】设中间数为x,则另外两个数分别为1x-、1x+,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【考点】一元一次方程的应用以及规律型中数字的变化类.10.【答案】B【解析】连接OD 、AC 、DC 、OB 、OC ,作CE AB ⊥于E ,OF CE ⊥于F ,如图,∵D 为AB 的中点, ∴OD AB ⊥, ∴122AD BD AB ===,在Rt △OBD 中,1OD ==,∵将弧BC 沿BC 折叠后刚好经过AB 的中点D , ∴弧AC 和弧CD 所在的圆为等圆, ∴AC CD =, ∴AC DC =, ∴1AE DE ==,易得四边形ODEF 为正方形, ∴1OF EF ==,在Rt △OCF 中,2CF =, ∴213CE CF EF =+=+=, 而213BE BD DE =+=+=,∴BC =.【提示】连接OD 、AC 、DC 、OB 、OC ,作CE AB ⊥于E ,OF CE ⊥于F ,如图,利用垂径定理,得到OD AB ⊥,则122AD BD AB ===,于是根据勾股定理可计算出1OD =,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到AC CD =,所以AC DC =,利用等腰三角形的性质得1AE DE ==,接着证明四边形ODEF 为正方形得到1OF EF ==,然后计算出CF 后得到3CE BE ==,于是得到BC =.【考点】切线的性质,圆周角定理和垂径定理.第Ⅱ卷二、填空题 11【解析】原式【提示】根据二次根式的运算法则即可求出答案. 【考点】二次根式的运算. 12.【答案】0.9【解析】∵概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率. ∴这种幼树移植成活率的概率约为0.9.【提示】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率. 【考点】利用频率估计概率. 13.【答案】11m - 【解析】原式2211111m m m m =+=---. 【提示】根据分式的运算法则即可求出答案. 【考点】分式的运算法则. 14.【答案】30︒或150︒. 【解析】如图1,∵四边形ABCD 为正方形,△ADE 为等边三角形,∴AB BC CD AD AE DE =====,90BAD ABC BCD ADC ∠=∠=∠=∠=︒,60AED ADE DAE ∠=∠=∠=︒,∴150BAE CDE ∠=∠=︒,又AB AE =,DC DE =, ∴15AEB CED ∠=∠=︒,则30BEC AED AEB CED ∠=∠-∠-∠=︒. 如图2,∵△ADE 是等边三角形, ∴AD DE =,∵四边形ABCD 是正方形, ∴AD DC =, ∴DE DC =,∴CED ECD ∠=∠,∴906030CDE ADC ADE ∠=∠-∠=︒-︒=︒, ∴118030()752CED ECD ∠=∠=︒-︒=︒,∴36075260150BEC ∠=︒-︒⨯-︒=︒【提示】分等边△ADE 在正方形的内部和外部两种情况分别求解可得.【考点】正方形的性质,等边三角形的性质,等腰三角形的判定与性质. 15.【答案】24 【解析】22223333604020400206002222y t t t t t t ⎡⎤=-=--=---=--+⎣⎦()()() 当20s t =时,y 取得最大值,即滑行停止,所以,故最后4s 为第16s至20s 内滑行的总距离。
湖北省武汉市中考数学试卷(解析版)一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃ B.﹣3℃C.11℃D.﹣11℃【分析】根据题意列出算式,再利用加法法则计算可得.【解答】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.【点评】本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣2【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.(3分)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x2【分析】根据合并同类项解答即可.【解答】解:3x2﹣x2=2x2,故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则解答.4.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、40【分析】根据众数和中位数的定义求解.【解答】解:这组数据的众数和中位数分别42,38.故选:B.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+6【分析】根据多项式的乘法解答即可.【解答】解:(a﹣2)(a+3)=a2+a﹣6,故选:B.【点评】此题考查多项式的乘法,关键是根据多项式乘法的法则解答.6.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.【点评】此题主要考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)将正整数1至按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.B.C.D.【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x 不能为第一列及第八列数,即可确定x值,此题得解.【解答】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=、3x=、3x=、3x=,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴不合题意,舍去;∵672=84×8,∴不合题意,舍去;∵671=83×7+7,∴三个数之和为.故选:D.【点评】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.10.(3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+﹣=故答案为:【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.12.(3分)下表记录了某种幼树在一定条件下移植成活情况移植总数n40015003500700090001400成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是0.9(精确到0.1)【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.(3分)计算﹣的结果是.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+=故答案为:【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.【点评】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质并准确识图是解题的关键.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是216m.【分析】求出t=4时的函数值即可;【解答】解:根据对称性可知,开始4秒和最后4秒的滑行的距离相等,t=4时,y=60×4﹣×42=240﹣24=216m,故答案为216.【点评】本题考查二次函数的应用,解题的关键是理解题意,属于中考基础题.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.三、解答题(共8题,共72分)17.(8分)解方程组:【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE 交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?【分析】(1)根据题意和统计图中的数据可以求得m、a、b的值;(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.【点评】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.【分析】(1)根据“C型钢板不少于120块,D型钢板不少于250块”建立不等式组,即可得出结论;(2)先建立总利润和x的关系,即可得出结论.【解答】解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.【点评】此题主要考查了二元一次不等式组的应用,一次函数的性质,根据题意得出正确的等量关系是解题关键.21.(8分)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.【分析】(1)想办法证明△PAO≌△PBO.可得∠PAO=∠PBO=90°;(2)首先证明BC=2OK,设OK=a,则BC=2a,再证明BC=PB=PA=2a,由△PAK∽△POA,可得PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a (负根已经舍弃),推出PK=a,由PK∥BC,可得==;【解答】(1)证明:连接OP、OB.∵PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵PA、PB都是切线,∴PA=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=PA=2a,∵△PAK∽△POA,∴PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x <0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D (d,n)处,求m和n的数量关系.【分析】(1)①如图1﹣1中,求出PB、PC的长即可解决问题;②图1﹣2中,由题意C(t,t+2),理由待定系数法,把问题转化为方程解决即可;(2)分两种情形①当点A与点D关于x轴对称时,A(a,m),D(d,n),可得m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,推出OB=OH,AB=D′H,由A(a,m),推出D′(m,﹣a),即D′(m,n),由D′在y=﹣上,可得mn=﹣8;【解答】解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.【点评】本题考查反比例函数综合题、旋转变换、待定系数法、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.23.(10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.【分析】(1)利用同角的余角相等判断出∠BAM=∠CBN,即可得出结论;(2)先判断出△ABP∽△PQF,得出=,再判断出△ABP∽△CQF,得出CQ=2a,进而建立方程用b表示出a,即可得出结论;(3)先判断出=,再同(2)的方法,即可得出结论.【解答】解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠PAC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=b,AB=a=b,在Rt△ABC中,tanC==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.【点评】此题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,构造图1是解本题的关键.24.(12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN 的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)求解可得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG•x N﹣BG•x M=1得出x N﹣x M=1,联立直线和抛物线解析式求得x=,根据x N﹣x M=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【解答】解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).【点评】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、利用割补法求三角形的面积建立关于k的方程及相似三角形的判定与性质等知识点.。
2018年武汉市中考数学模拟题及答案一、选择题(共10小题,每小题 3分,共30分) 1•月球表面白天的温度可达 123 C,夜晚可降到一 A . 110C B110C C . 356C 233 C ,那么月球表面昼夜的温差为( D . — 356C 2. 如果分式 —没有意义,那么X 1x 的取值范围是 X M 0 计算 3ab 2 - 4ab A. - ab 2 B . X = 0 2的结果是(B. ab 2C . X M — 1D . X =— 1 .7ab 2 色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性, 抽取体检表,统计结果如表: D . - 1 从男性体检信息库中随机 抽取的体检表数 n 50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数 m 3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069 0.01)( )根据表中数据,估计在男性中,男性患色盲的概率为(结果精确到 A . 0.069 B . 0.07 5. 计算(a — 1)2正确的是(A . a 2— 1B .6. 在平面直角坐标系中,点 A . ( — 1, 2)C . 0.070 ) a 2 — 2a — 1 C . —2)关于 2) )D . 0.06 P (1 , B. (1 , a 2 — 2a + 1 X 轴的对称点的坐标为 C. ( — 1 , — 2) a 2— a + 1)D. ( — 2, — 1)7. 图中三视图对应的正三棱柱是( D 童老师随机调查了 每天使用零花钱(单位:元)5 10 15 20 25 人数 2 5 8 X6 30名同学,结果如下表: 则这30名同学每天使用的零花钱的众数和中位数分别是( ) B C 8 .为调查某班学生每天使用零花钱的情况, A . 15、 15 B . 20、17.5 C . 20、 20 D . 20、 15 9.如图,动点P 从(0 , 3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射 角等于入射角.当点 P 第17次碰到矩形的边时,点 P 的坐标为( )A. (3 , 0)B. (0 , 3)C. (1 , 4)D. (8 , 3)10 .如图,FA 、PB 切O O 于AB 两点,CD 切O O 于点E 交FA 、PB 于C 、D .若△ PCD 的半径 为3r ,则tan / APB 的值为()、填空题(本大题共 6个小题,每小题 3分,共18分)11 .计算J8逅的结果是 ________________16 .已知关于 x 的二次函数 y = x 2-2x -2,当a < x < a + 2时,函数有最大值 1,贝U a 的值为三、解答题(共 8题,共72 分)5,1312 3.13 512 •计算: 2x 2 x 1 x 113•学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了 从这6名学生中选取2名同时跳绳,恰好选中一男一女的概率是 4名女生和2名男生,则14•如图,将矩形 ABCD 沿BD 翻折,点 C 落在P 点处,连接AP.若/ ABP = 26 ° 贝APB =60。
2024年湖北武汉市中考数学试题+答案详解(试题部分)亲爱的同学:在你答题前,请认真阅读下面的注意事项:1.本试卷全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答选择题时,选出每小题答案后,用2B铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.2. 小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A. 随机事件B. 不可能事件C. 必然事件D. 确定性事件3. 如图是由两个宽度相同的长方体组成的几何体,它的主视图是()A. B. C. D.4. 国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是()A. 50.310⨯B. 60.310⨯C. 5310⨯D. 6310⨯5. 下列计算正确的是( )A. 236a a a ⋅=B. ()1432a a =C. ()2236a a =D. ()2211a a +=+ 6. 如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是( )A. B. C. D. 7. 小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是( )A. 64︒B. 66︒C. 68︒D. 70︒8. 经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是( ) A. 19 B. 13 C. 49 D. 599. 如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O的半径是( )A. 3B. 3C. 2D. 210. 如图,小好同学用计算机软件绘制函数32331y x x x =−+−的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++的值是( )A. 1−B. 0.729−C. 0D. 1二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11. 中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作_________℃.12. 某反比例函数k y x =具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是__________.13. 分式方程131x x x x +=−−的解是______. 14. 黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是__________m .(参考数据:tan632︒≈)15. 如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E ,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是___________.16. 抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论:①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤. 其中正确的是__________(填写序号). 三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17. 求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 18. 如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由) 19. 为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m 名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表根据以上信息,解答下列问题:(1)直接写出m ,n 的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20. 如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.21. 如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;(2)在(1)的基础上,在射线AD 上画点E ,使ECB ACB ∠=∠;(3)在图(2)中,先画点F ,使点A 绕点F 顺时针旋转90︒到点C ,再画射线AF 交BC 于点G ; (4)在(3)的基础上,将线段AB 绕点G 旋转180︒,画对应线段MN (点A 与点M 对应,点B 与点N 对应).22. 16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离. (2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .23. 问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF 的值.24. 抛物线215222y x x =+−交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.2024年湖北武汉市中考数学试题+答案详解(答案详解)亲爱的同学:在你答题前,请认真阅读下面的注意事项:1.本试卷全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答选择题时,选出每小题答案后,用2B铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.2. 小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A. 随机事件B. 不可能事件C. 必然事件D. 确定性事件【答案】A【解析】 【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A .3. 如图是由两个宽度相同的长方体组成的几何体,它的主视图是( )A. B. C. D.【答案】B【解析】【分析】本题考查了三视图的知识,熟知主视图是从物体的正面看到的视图是解题的关键.按照主视图的定义逐项判断即可.【详解】解:从正面看该几何体,下面是一个大长方形,上面叠着一个小长方形,故选:B .4. 国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A. 50.310⨯B. 60.310⨯C. 5310⨯D. 6310⨯【答案】C【解析】 【分析】本题考查了科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值大于1与小数点移动的位数相同.【详解】解:5300000310=⨯,故选:C .5. 下列计算正确的是( )A. 236a a a ⋅=B. ()1432a a =C. ()2236a a =D. ()2211a a +=+ 【答案】B【解析】 【分析】本题考查了完全平方公式,积的乘方,幂的乘方,同底数幂的乘法等,根据同底数幂的乘法,积的乘方,幂的乘方,完全平方公式运算法则分别判断即可.【详解】解:A. 235a a a ⋅=,故该选项不正确,不符合题意;B. ()4312a a =,故该选项正确,符合题意;C. ()2239a a =,故该选项不正确,不符合题意;D. ()22121a a a +=++,故该选项不正确,不符合题意;故选:B .6. 如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是( )A. B. C. D.【答案】D【解析】【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D .7. 小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是( )A. 64︒B. 66︒C. 68︒D. 70︒【答案】C 【解析】【分析】本题考查了基本作图,菱形的判定和性质,根据作图可得四边形ABCD 是菱形,进而根据菱形的性质,即可求解.【详解】解:作图可得AB AD BC DC === ∴四边形ABCD 是菱形, ∴,AD BC ABD CBD ∠=∠ ∵44A ∠=︒,∴44MBC A ∠=∠=︒, ∴()()11180180446822CBD MBC ∠=︒−∠=︒−︒=︒, 故选:C .8. 经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是( ) A.19B.13C.49D.59【答案】D 【解析】【分析】本题考查的是运用树状图求概率,运用树状图法确定所有情况数和符合题意情况数是解答本题的关键.运用树状图法确定所有情况数和符合题意情况数,然后用概率公式解答即可. 【详解】解:列树状图如图所示,共有9种情况,至少一辆车向右转有5种, ∴至少一辆车向右转的概率是59, 故选:D .9. 如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O的半径是( )A.B.C.2D.2【答案】A 【解析】【分析】延长AB 至点E ,使BE AD =,连接BD ,连接CO 并延长交O 于点F ,连接AF ,即可证得()SAS ADC EBC ≌,进而可求得cos 45AC AE =︒⋅=,再利用圆周角定理得到60AFC ∠=︒,结合三角函数即可求解.【详解】解:延长AB 至点E ,使BE AD =,连接BD ,连接CO 并延长交O 于点F ,连接AF ,∵四边形ABCD 内接于O ,∴180ADC ABC ABC CBE ∠+∠=∠+∠=︒ ∴ADC CBE ∠=∠ ∵45BAC CAD ∠=∠=︒∴45CBD CDB ∠=∠=︒,90DAB ∠=︒ ∴BD 是O 的直径,∴90DCB ∠=︒∴DCB △是等腰直角三角形, ∴DC BC = ∵BE AD =∴()SAS ADC EBC ≌ ∴ACD ECB ∠=∠,AC CE =, ∵2AB AD += ∴2AB BE AE +== 又∵90DCB ∠=︒ ∴90ACE ∠=︒∴ACE △是等腰直角三角形∴cos 45AC AE =︒⋅=∵60ABC ∠=︒ ∴60AFC ∠=︒ ∵90FAC ∠=︒∴sin 603AC CF ==︒∴123OF OC CF ===故选:A .【点睛】本题考查了全等三角形的性质与判定,圆周角定理,锐角三角函数、等腰三角形的性质与判定等知识点,熟练掌握圆周角定理以及全等三角形的性质与判定是解题的关键.10. 如图,小好同学用计算机软件绘制函数32331y x x x =−+−的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++的值是( )A. 1−B. 0.729−C. 0D. 1【答案】D 【解析】【分析】本题坐标规律,求函数值,中心对称的性质,根据题意得出123911190y y y y y y +++++=,进而转化为求1020y y +,根据题意可得100y =,201y =,即可求解. 【详解】解:∵这20个点的横坐标从0.1开始依次增加0.1, ∴0.1 1.90.2 1.80.9 1.11222+++==⋅⋅⋅=, ∴123911190y y y y y y +++++=,∴12319201020y y y y y y y +++++=+,而()101,0A 即100y =,∵32331y x x x =−+−, 当0x =时,1y =−,即()0,1−,∵()0,1−关于点()1,0中心对称的点为()2,1, 即当2x =时,201y =, ∴12319201020011y y y y y y y +++++=+=+=,故选:D .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11. 中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作_________℃. 【答案】2− 【解析】【分析】本题考查了正数和负数的意义,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:零上3℃记作3+℃,则零下2℃记作2−℃., 故答案为:2−. 12. 某反比例函数ky x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是__________.【答案】1(答案不唯一) 【解析】【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可. 【详解】解:∵当0x >时,y 随x 的增大而减小, ∴0k >故答案为:1(答案不唯一). 13. 分式方程131x x x x +=−−的解是______. 【答案】3x =− 【解析】【分析】本题主要考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题关键.首先等号两边同时乘以()()31x x −−完成去分母,再按照去括号,移项、合并同类项的步骤求解,检验即可获得答案. 【详解】解:131x x x x +=−−, 等号两边同时乘以()()31x x −−,得 ()()()131x x x x −=−+, 去括号,得 2223x x x x −=−−, 移项、合并同类项,得 3x =−, 经检验,3x =−是该分式方程的解, 所以,该分式方程的解为3x =−. 故答案为:3x =−.14. 黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是__________m .(参考数据:tan632︒≈)【答案】51 【解析】【分析】本题主要考查解直角三角形的应用,理解题意,作出辅助线是解题关键.延长BA 交距水平地面102m 的水平线于点D ,根据tan632︒≈,求出51m DC AD =≈,即可求解.【详解】解:延长BA 交距水平地面102m 的水平线于点D ,如图,由题可知,102m BD =, 设AD x =, ∵45DCA ∠=︒ ∴DC AD x == ∴102tan632BD DC x︒==≈ ∴51m DC AD =≈∴1025151m AB BD AD =−=−≈ 故答案为:51.15. 如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E ,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是___________.【答案】221(1)k k +− 【解析】【分析】作EG AN ⊥交AN 于点G ,不妨设MN a =,设1EG =,通过四边形MNPQ 是正方形,推出45EMG PMN ∠=∠=︒,得到1EG MG ==,然后证明AEG ABN ∽,利用相似三角形对应边成比例,得到111AE AG AB BN AN k ===+,从而表示出AG ,MN 的长度,最后利用2122AB BN AN S ==+和222S MN a ==表示出正方形ABCD 和MNPQ 的面积,从而得到12S S . 【详解】解:作EG AN ⊥交AN 于点G ,不妨设MN a =,设1EG =四边形MNPQ 是正方形45PMN ∴∠=︒45EMG PMN ∴∠=∠=︒1EG MG ∴==在AEG △和ABN 中,EAG BAN ∠=∠,90AGE ANB ∠=∠=︒AEG ABN ∴∽AE EG AGAB BN AN∴== (1)BE kAE k =>(1)AB AE BE AE k ∴=+=+ 111AE AG AB BN AN k ∴===+ 1BN k ∴=+由题意可知,ABN DAM △≌△1BN AM k ∴==+11AG AM GM k k ∴=−=+−=111AG AG k AN AM MN k a k ∴===++++ 21a k ∴=−2211AN AG GM MN k k k k ∴=++=++−=+∴正方形ABCD 的面积222221222(1)()(1)(1)S AB BN AN k k k k k ==+=+++=++,正方形MNPQ 的面积2222222(1)(1)(1)S MN a k k k ===−=+−222221(1)(1)(1)(1)k k k k S S +++−∴= 1k >2(1)0k ∴+≠ 22121(1)k S S k +−∴= 【点睛】本题考查了弦图,正方形的性质,等角三角形的性质,相似三角形的判定与性质,正方形的面积,勾股定理,熟练掌握以上知识点并能画出合适的辅助线构造相似三角形是解题的关键.16. 抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论: ①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解; ④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤. 其中正确的是__________(填写序号). 【答案】②③④ 【解析】【分析】本题考查了二次函数的性质,根据题意可得抛物线对称轴11022m−+−<<,即可判断①,根据()1,1−,(),1m 两点之间的距离大于1,即可判断②,根据抛物线经过()1,1−得出2c b =+,代入顶点纵坐标,求得纵坐标的最大值即可判断③,根据④可得抛物线的对称轴111224m −+−<≤−,解不等式,即可求解.【详解】解:∵2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.∴对称轴为直线122b mx a −+=−=, 11022m −+−<<, ∵02bx a=−<,a<0 ∴0b <,故①错误, ∵01m <<∴()11m −−>,即()1,1−,(),1m 两点之间的距离大于1 又∵a<0∴1x m =−时,1y >∴若01x <<,则()()2111a x b x c −+−+>,故②正确; ③由①可得11022m −+−<<, ∴1022b−<<,即10b −<<, 当1a =−时,抛物线解析式为2y x bx c =−++设顶点纵坐标为224444ac b c b t a −−−==− ∵抛物线2y x bx c =−++(a ,b ,c 是常数,0a <)经过()1,1−,∴11b c −−+= ∴2c b =+∴()222224411122144444c b b c t b c b b b −−+===+=++=++−∵10b −<<,104−>,对称轴为直线2b =−,∴当0b =时,t 取得最大值为2,而0b <,∴关于x 的一元二次方程 22ax bx c ++=无解,故③正确;④∵a<0,抛物线开口向下,点()11,A x y ,()22,B x y 在抛物线上, 1212x x +>−,12x x >,总有12y y <,又12124x x x +=>−, ∴点()11,A x y 离14x =−较远,∴对称轴111224m −+−<≤− 解得:102m <≤,故④正确. 故答案为:②③④.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17. 求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.【答案】整数解为:1,0,1− 【解析】【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解. 【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >− 解不等式②得:1x ≤∴不等式组的解集为:21x −<≤, ∴整数解为:1,0,1−18. 如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)【答案】(1)见解析 (2)添加AF BE =(答案不唯一)【解析】【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;(1)根据平行四边形的性质得出AB CD =,B D ∠=∠,结合已知条件可得DF BE =,即可证明C ABE DF ≌△△;(2)添加AF BE =,依据一组对边平行且相等的四边形是平行四边形,即可求解.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,AD BC =,B D ∠=∠,∵AF CE =,∴AD AF BC CE −=−即DF BE =,在ABE 与CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE CDF ≌;【小问2详解】添加AF BE =(答案不唯一)如图所示,连接EF .∵四边形ABCD 是平行四边形,∴AD BC ∥,即AF BE ∥,当AF BE =时,四边形ABEF 是平行四边形.19. 为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m 名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表根据以上信息,解答下列问题:(1)直接写出m ,n 的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.【答案】(1)60m =,15n =,众数为3分(2)该校九年级有900名学生参加测试,估计得分超过2分的学生人数为450人【解析】【分析】本题考查了样本估计总体,求众数,频数分布表与扇形统计图;(1)根据成绩为2分的人数除以占比,求得m 的值,根据成绩为3分的人数的占比,求得18a =,进而求得9b =,即可得出n 的值;(2)根据得分超过2分的学生的占比乘以900,即可求解.【小问1详解】解:依题意,156025%m ==(人),6030%18a =⨯=(人),6012181569b =−−−−=(人),∴9%100%15%60n =⨯=, ∴15n =,∵3分的人数为18个,出现次数最多,∴众数为3分,【小问2详解】 解:181290045060+⨯=(人) 答:该校九年级有900名学生参加测试,估计得分超过2分的学生人数为450人.20. 如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.【答案】(1)见解析 (2)45 【解析】【分析】本题考查了等腰三角形三线合一,角平分线的判定与性质,解直角三角形,熟练掌握以上知识点是解题的关键.(1)连接OA 、OD ,作ON AB ⊥交AB 于N ,根据等腰三角形三线合一可知,AO BC ⊥,AO 平分BAC ∠,结合AC 与半圆O 相切于点D ,可推出ON OD =,得证;(2)由题意可得出OAC COD ∠=∠,根据OF OD =,在Rt ODC △中利用勾股定理可求得OD 的长度,从而得到OC 的长度,最后根据CD sin OAC sin COD OC∠=∠=即可求得答案. 【小问1详解】证明:连接OA 、OD ,作ON AB ⊥交AB 于N ,如图ABC 为等腰三角形,O 是底边BC 的中点AO BC ∴⊥,AO 平分BAC ∠ AC 与半圆O 相切于点DOD AC ∴⊥由ON AB ⊥ON OD ∴=AC ∴是半圆O 的切线【小问2详解】解:由(1)可知AO BC ⊥,OD AC ⊥90AOC ∴∠=︒,90ODC ∠=︒18090OAC OCA AOC ∴∠+∠=︒−∠=︒,18090COD OCA ODC ∠+∠=︒−∠=︒OAC COD ∴∠=∠sin sin CD OAC COD OC ∴∠=∠=又OF OD =,2CF =∴在Rt ODC △中,4CD =,2OC OF FC OD =+=+222OC CD OD =+,∴222(2)4OD OD +=+解得:3OD =442325CD CD sin OAC sin COD OC OD ∴∠=∠====++ 21. 如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;(2)在(1)的基础上,在射线AD 上画点E ,使ECB ACB ∠=∠;(3)在图(2)中,先画点F ,使点A 绕点F 顺时针旋转90︒到点C ,再画射线AF 交BC 于点G ; (4)在(3)的基础上,将线段AB 绕点G 旋转180︒,画对应线段MN (点A 与点M 对应,点B 与点N 对应).【答案】(1)作图见解析(2)作图见解析 (3)作图见解析(4)作图见解析【解析】【分析】本题考查了网格作图.熟练掌握全等三角形性质,平行四边形性质,等腰三角形性质,等腰直角三角形性质,是解题的关键.(1)作矩形HBIC ,对角线HI 交BC 于点D ,做射线AD ,即可;(2)作OP BC ∥,射线AR OP ⊥于点Q ,连接CQ 交AD 于点E ,即可;(3)在AC 下方取点F ,使AF CF ==ACF △是等腰直角三角形,连接CF , AF ,AF 交BC于点G ,即可;(4)作OP BC ∥,交AG 于点M ,作ST AG ∥,交BC 于点N ,连接MN ,即可.【小问1详解】如图,作线段HI ,使四边形HBIC 是矩形,HI 交BC 于点D ,做射线AD ,点D 即为所求作; 【小问2详解】如图,作OP BC ∥,作AR OP ⊥于点Q ,连接CQ 交AD 于点E ,点E 即为作求作;【小问3详解】如图,在AC 下方取点F ,使AF CF ==CF ,连接并延长AF ,AF 交BC 于点G ,点F ,G即为所求作;【小问4详解】如图,作OP BC ∥,交射线AG 于点M ,作ST AG ∥,交BC 于点N ,连接MN ,线段MN 即为所求作.22. 16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离. (2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①115a =−,8.1b =;②8.4km (2)2027a −<< 【解析】【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将()9,3.6代入即可求解;②将2115y x x =−+变为2115151524y x ⎛⎫=−−+ ⎪⎝⎭,即可确定顶点坐标,得出 2.4km y =,进而求得当 2.4km y =时,对应的x 的值,然后进行比较再计算即可; (2)若火箭落地点与发射点的水平距离为15km ,求得227a =−,即可求解. 【小问1详解】解:①∵火箭第二级的引发点的高度为3.6km∴抛物线2y ax x =+和直线12y x b =−+均经过点()9,3.6 ∴3.6819a =+,13.692b =−⨯+ 解得115a =−,8.1b =. ②由①知,18.12y x =−+,2115y x x =−+ ∴22111515151524y x x x ⎛⎫=−+=−−+ ⎪⎝⎭ ∴最大值15km 4y = 当15 1.35 2.4km 4y =−=时, 则21 2.415x x −+= 解得112x =,23x =又∵9x =时, 3.6 2.4y =>∴当 2.4km y =时, 则418. 2.12x +=− 解得11.4x =()11.438.4km −=∴这两个位置之间的距离8.4km .【小问2详解】解:当水平距离超过15km 时,火箭第二级的引发点为()9,819a +,将()9,819a +,()15,0代入12y x b =−+,得 181992a b +=−⨯+,10152b =−⨯+ 解得7.5b =,227a =− ∴2027a −<<. 23. 问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF的值.【答案】 【解析】 【分析】问题背景:根据矩形的性质可得90AB CD EBF C =∠=∠=︒,,根据点E ,F 分别是AB ,BC 的中点,可得12BE BF AB BC ==,即可得证;。
2018年武汉市初中毕业生学业考试数 学(满分120分,考试时间120分钟)一、选择题(共10小题,每小题3分,共30分)1.(2018湖北武汉中考,1,3分,★☆☆)温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃2.(2018湖北武汉中考,2,3分,★☆☆)若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2B .x <-2C .x =-2D .x ≠-23.(2018湖北武汉中考,3,3分,★☆☆)计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.(2018湖北武汉中考,4,3分,★☆☆)五名女生的体重(单位:kg )分别为:37,40,38,42,42.这组数据的众数和中位数分别是( ) A .2,40B .42,38C .40,42D .42,405.(2018湖北武汉中考,5,3分,★☆☆)计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +66.(2018湖北武汉中考,6,3分,★☆☆) 点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.(2018湖北武汉中考,7,3分,★★☆)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.(2018湖北武汉中考,8,3分,★☆☆)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1,2,3,4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .659.(2018湖北武汉中考,9,3分,★★☆)将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 …平移表中带阴影的方框,方框中三个数的和可能是( ) A .2019B .2018C .2016D .201310.(2018湖北武汉中考,10,3分,★★★)如图,在⊙O 中,点C 在优弧AB 上,将弧BC 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235 D .265 二、填空题(本大题共6个小题,每小题3分,共18分)11.(2018湖北武汉中考,11,3分,★☆☆)计算32)3___________. 12.(2018湖北武汉中考,12,3分,★☆☆)下表记录了某种幼树在一定条件下移植成活情况.移植总数n 400 1500 3500 7000 9000 14000 成活数m325 1336 3203 6335 8073 12628 成活的频率mn(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1). 13.(2018湖北武汉中考,13,3分,★☆☆)计算21m m --211m-的结果是___________. 14.(2018湖北武汉中考,14,3分,★★☆)以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________.15.(2018湖北武汉中考,15,3分,★★☆)飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y =60t -232t .在飞机着陆滑行中,最后4s 滑行的距离是___________m .16.(2018湖北武汉中考,16,3分,★★☆)如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是__________.三、解答题(共8题,共72分)17.(2018湖北武汉中考,17,8分,★☆☆)解方程组:10216.x y x y +=⎧⎨+=⎩,18.(2018湖北武汉中考,18,8分,★☆☆)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF .19.(2018湖北武汉中考,19,8分,★★☆)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表学生读书数量扇形图阅读量/本学生人数1 152 a3 b4 5(1) 直接写出m,a,b的值;(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(2018湖北武汉中考,20,8分,★★☆)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B 型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).(1) 求A、B型钢板的购买方案共有多少种?(2) 出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.21.(2018湖北武汉中考,21,8分,★★☆)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB ,PC ,PC 交AB 于点E ,且PA =PB . (1) 求证:PB 是⊙O 的切线. (2) 若∠APC =3∠BPC ,求CEPE的值.22.(2018湖北武汉中考,22,10分,★★☆)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B .(1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C .① 若t =1,直接写出点C 的坐标; ② 若双曲线xy 8=经过点C ,求t 的值. (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m和n 的数量关系.23.(2018湖北武汉中考,23,10分,★★☆)在△ABC 中,∠ABC =90°.(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M ,N ,求证:△ABM ∽△BCN .(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =552,求tanC 的值. (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值.24.(2018湖北武汉中考,24,12分,★★★)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B .(1) 直接写出抛物线L 的解析式.(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M ,N .若△BMN的面积等于1,求k 的值.(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.2018年武汉市初中毕业生学业考试数学答案全解全析1.答案: A解析:-4+7=3(℃).故选A. 考查内容:有理数的加法命题意图:本题主要考查学生对有理数的加法应用,难度较低. 2.答案: D 解析:∵分式21+x 在实数范围内有意义,∴2x +≠0,即x ≠-2.故选D. 考查内容:分式有意义的条件命题意图:本题主要考查学生对分式有意义的条件的理解,难度较低. 3.答案: B解析: 原式=(3-1)2x =22x .故选B. 考查内容:整式的减法命题意图:本题主要考查学生对合并同类项法则理解,难度较低. 4.答案:D解析: ∵37,40,38,42,42,这组数据共有5个数,其中42出现2次,出现的次数最多,∴这组数据的众数是42;把37,40,38,42,42,按从小到大的顺序排列为37,38,40,42,42,共有5个数据,其中40在中间位置,∴这组数据的中位数是40.故选D. 考查内容: 一组数据众数、中位数的求法命题意图:本题主要考查学生对数据的中位数和众数的求法,难度较低. 5.答案:B解析: (a -2)(a +3)=2326a a a +--=26a a +-.故选B. 考查内容:整式的乘法、整式的加减命题意图:本题主要考查学生对多项式乘多项式法则的理解,难度较低. 6.答案: A解析: ∵点P (,a b )关于x 轴的对称点是1P (,a b -),∴点A (2,-5)关于x 轴对称的点的坐标是(2,5).故选A.考查内容: 两点关于x 轴对称的坐标的关系命题意图:本题主要考查学生对成轴对称的两个点的坐标特征的理解,难度较低.知识拓展:有关点的轴对称的规律如下:(1)点(x ,y )关于x 轴对称的点坐标是(x ,-y ),即横坐标不变,纵坐标互为相反数;(2)点(x ,y )关于y 轴对称的点坐标是(-x , y ),即纵坐标不变,横坐标互为相反数. 7.答案:C解析: 由主视图知,俯视图中在该位置上最多小正方体的个数如图所示 (图中的数字表示在该位置上的小正方体的个数),则这个几何体中正方体的个数最多是2+2+1=5.故选C.第7题答图俯视图122考查内容: 由三视图判断几何体命题意图:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力,难度中考. 8.答案: C 解析: 列表如下1 (1,1)(1,2)(1,3)(1,4)2 (2,1)(2,2)(2,3)(2,4)3 (3,1)(3,2)(3,3)(3,4)4 (4,1)(4,2)(4,3)(4,4)由表可知,共有16种等可能结果,其中两次抽取的卡片上数字之积为偶数的有12种结果,所以P(两次抽取的卡片上数字之积为偶数)=1216=34.故选C.考查内容:用列表或画树状图求等可能事件的概率命题意图:本题主要考查利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,难度较低.一题多解:画树状图为:由树状图可知,共有16种等可能结果,其中两次抽取的卡片上数字之积为偶数的有12种结果,所以P(两次抽取的卡片上数字之积为偶数)=1216=34.故选C.9.答案:D解析:设中间的数为x,则这三个数分别为x-1,x,x+1∴这三个数的和为(x-1)+x+(x+1)=3x,所以和是3的倍数,又2019÷3=673,673除以8的余数为1,∴x在第1列(舍去);2016÷3=672,672除以8的余数为0,∴x在第8列(舍去);2013÷3=671,671除以8的余数为7,∴x在第7列,所以这三数的和是2013,故选答案D.考查内容:整式的加法;数字规律的变化命题意图:本题主要考查学生对整式的加法的运用,分析规律型中数字的变化的能力,难度中等.10.答案:B解析:连接AC,DC,OD,过C作CE⊥AB于E,过O作OF⊥CE于F,∵BC沿BC折叠,∴∠CDB=∠H,∵∠H+∠A=180°,∴∠CDA+∠CDB=180°,∴∠A=∠CDA,∴CA=CD,∵CE ⊥AD ,∴AE =ED =1,∵OA =,AD =2,∴OD =1,∵OD ⊥AB ,∴OFED 为正方形,∴OF =1,OC =CF =2,CE =3,∴CB =.OHFEDCBA第10题答图考查内容:翻折的性质;圆内接四边形的性质;正方形的性质与判定;等腰三角形的性质与判定.命题意图:本题主要考查学利用折叠的性质、圆内接四边形的性质进行计算,难度较大. 11.解析:.考查内容: 二次根式的加减命题意图:本题主要考查学生对二次根式的加减运算的掌握,难度较低. 12.答案:0.9解析:表中移植的棵树最多的是14000棵,对应的频率是0.902,因此0.902可作为估计值,0.902≈0.9.故答案为0.9. 考查内容:用频率估计概率命题意图:本题主要考查学生对用频率估计概率的认识,难度较低. 13.答案:11m - 解析: 原式=22111m m m +--=1(1)(1)m m m ++-=11m -.故答案为11m -. 考查内容:分式的符号法则;同分母的分式相加减命题意图:本题主要考查学生对分式运算的能力,难度较低. 14.答案:30°或150°解析:如答图(1),∵△ADE 是等边三角形,∴DE =DA ,∠DEA =∠1=60°;∵四边形ABCD 是正方形,∴DC =DA ,∠2=90°;∴∠CDE =150°,DE =DC ,∴∠3=001(180150)2-=15°.同理可求得∠4=15°.∴∠BEC =30°.如答图(2),∵△ADE 是等边三角形,∴DE =DA ,∠1=∠2=60°;∵四边形ABCD 是正方形,∴DC =DA ,∠CDA =90°;∴DE =DC ,∠3=30°,∴∠4=001(18030)2-=75°. 同理可求得∠5=75°.∴∠BEC =360°―∠2―∠4―∠5=150°.故答案为30°或150°.4321ED CBA54321A BCD E第14题答图(1) 第14题答图(2) 考查内容: 正方形的性质;等边三角形的性质.命题意图:本题主要考查学生对正方形的性质、等边三角形的性质的运用,难度中等. 易错警示:此类问题容易出错的地方是:一是未考虑点E 在正方形的内部和外部两种情况导致丢解;二是不能正确画出符合题意的图形,从而不能得到正确答案. 15.答案:24解析: ∵22360t t y -==23(20)6002t --+,∴当t =20时,滑行到最大距离600m 时停止;当t =16时,y =576,所以最后4s 滑行24m . 考查内容:求二次函数顶点坐标;已知自变量的值求函数值命题意图:本题主要考查学生对用二次函数解决实际问题的能力,难度中等. 16.解析: 延长BC 至点F ,使CF =AC ,∵DE 平分△ABC 的周长,AD =BC ,∴AC +CE =BE ,∴BE =CF +CE =EF ,∴DE ∥AF ,DE =12AF ,∠CAF =12∠ACB =30°.作CG ⊥AF ,垂足为G ,则∠AGC =90°,AF =2AG =2AC ×cos ∠CAF =2×1×cos 30°2DE =.GFECBDA考查内容: 三角形的中位线;等腰三角形的性质;直角三角形中的边角关系命题意图:本题主要考查学生对构造等腰三角形,利用三角形中位线解决问题的能力,难度较大.17.分析:②-①可求得y 的值,把x 代入①求得的x 值,得方程组的解. 解析: ②-①,得x =6. 将x =6代入①,得610y +=, y =4. 所以方程组的解是 6.4.x y =⎧⎨=⎩考查内容:加减消元法解二元一次方程组命题意图:本题主要考查学生解二元一次方程组的能力,难度较低.方法规律:解二元一次方程组的基本思路是“消元”,常用的方法是代入消元法和加减消元法.当某一未知数的系数较简单时(如是±1),可选择代入消元法求解;当同一未知数的系数互为相反数或相同时,采用加减消元法更简单些;当两种方法都不能直接用时,需对方程组适当变形,然后再求解.18.分析:如图,由已知条件证得△ABF ≌△DCE ,得∠1=∠2,再根据等腰三角形的判定定理得GE =GF .解析: ∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE . 在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DCE (SASA ),∴∠1=∠2, ∴GE =GF .GDCFEBA21考查内容: 全等三角形的判定与性质;等腰三角形的判定命题意图:本题主要考查了学生对全等三角形的判定与性质的把握,识别出两个三角形全等的条件,难度较低.19.分析:(1)根据阅读1本的学生数及所占的百分比求得随机抽取的学生数m ;根据阅读3本的学生数占随机抽取的学生数的百分比求出b 的值;阅读1本、2本、3本、4本的学生人数的和等于所抽取的学生数,求出a 的值.(2)求出随机抽取的学生平均每人阅读的本数,即可求出估计该年级全体学生在这次活动中课外阅读书籍的总量.解析:(1)m =15÷30%=50(名); b =50×40%=20; a =50―15―20―5=10. (2)1152103204550⨯+⨯+⨯+⨯ ×500=1150(本)考查内容: 条形统计图 ,扇形统计图 ,用样本估计总体命题意图:本题主要考查学生从统计图表中获取信息的能力及用样本估计总体的能力,难度中等.20.分析:(1)设购买A 型钢板x 块,表示出B 型钢板的块数,根据C 型钢板不少于120块,D 型钢板不少于250块列出不等式组,求出x 的取值范围,得到购买方案.(2)用x 表示出出售C 型钢板、D 型钢板获得的利润,根据函数的增减性确定获得最大利润的购买方案.解析:(1)设A 型钢板x 块,则B 型钢板有(100-x )块.2(100)6,3(100)250.x x x x +-≥⎧⎨+-≥⎩解得2025x ≤≤. x =20或21或22或23或24或25,购买方案共有6种. (2)设总利润为W 元,则()()1002100120310014046000w x x x x x =+-++-=-+⎡⎤⎣⎦x =20时,max 140204600043200W =-⨯+=元. 获利最大的方案为购买A 型20块,B 型80块.考查内容: 一元一次不等式组的应用;一次函数的实际应用命题意图:本题主要考查学生运用一元一次不等式组及一次函数等知识解决实际问题的能力,难度中等.归纳总结:列一元一次不等式(组)解决实际问题通常有以下步骤: (1)找出实际问题的不等关系,设定未知数,列出不等式(组); (2)解不等式(组);(3)从不等式组的解集中求出符合题意的答案.21.分析:(1)如图①,连接OB ,OP ,△OAP 与△OBP 三边对应相等,这两个三角形全等,得∠OBP =∠OAP =90°,故PB 是⊙O 的切线.(2)如图②,连接BC ,AB 与OP 交于点H ,易证OP ⊥AB ,∠OPC =∠PCB =∠CPB ,由△OAH ∽△CAB 得12OH CB =;由△HPB ∽△BPO ,求得HP OH ;再由△HPE ∽△BCE ,可得CE PE的值.解析:(1)证明:如图①,连接OB ,OP ,在△OAP 和△OBP 中,,,,OA OB OP OP AP BP =⎧⎪=⎨⎪=⎩∴△OAP ≌△OBP (SSS ).∴∠OBP =∠OAP ,∵PA 是⊙O 的切线,∴∠OBP =∠OAP =90°,∴PB 是⊙O 的切线.图②图①⑵如图②,连接BC ,AB 与OP 交于点H ,∵∠APC =3∠BPC ,设∠BPC =x ,则∠APC =3x ,∠APB =x +3x =4x , 由⑴知∠APO =∠BPO =2x ,∴∠OPC =∠CPB =x , ∵AC 是⊙O 的直径,∴∠ABC =90°,∵易证OP ⊥AB ,∴∠AHO =∠ABC =90°,即OP ∥BC , ∴∠OPC =∠PCB =∠CPB =x ,∴CB =BP ,易证△OAH ∽△CAB ,∴OH CB =OAAC=12,设OH =a ,∴CB =BP =2a ,易证△HPB ∽△BPO ,∴HP BP =BP OP,∴设HP =ya ,∴2ya a =2aa ya +,解得1y =(舍)或2y =,∵OP ∥CB ,易证△HPE ∽△BCE ,∴PE CE =HP CB=2ya a .考查内容: 全等三角形的判定性质;切线的判定;相似三角形的判定性质.命题意图:本题主要考查学生对圆的切线的判定方法的把握,相似三角形的判定与性质的运用,难度中等.22.分析:(1)求出A 、B 两点的坐标,①求出BP 的长即可写出C 点的坐标;②点B 在点P 的右边、点B 在点P 的左边两种情况,分别用t 表示点C 的坐标,代入反比例函数解析式,可求出t 的值.(2)分别用m 、n 表示出2OA 、2OD ,根据旋转的性质知OA OD =,求出m 和n 的数量关系.解析: ⑴将A x =-2代入y =8x 中得:A y =82-=-4,∴A (-2,-4),B (-2,0) ①∵t =1,∴P (1,0),BP =1-(-2)=3.∵将点B 绕点P 顺时针旋转90°至点C ,∴C x =P x =t ,PC =BP =3,∴C (1,3). ②∵B (-2,0),P (t ,0),第一种情况:当B 在P 的右边时,BP =-2-t , ∴C x =P x =t ,PC 1=BP =-2-t ,∴C 1(t ,t +2). 第二种情况:当B 在P 的左边时,BP =2+t , ∴C x =P x =t ,PC 2=BP =2+t ,∴C 2(t ,t +2). 综上:C 的坐标为(t ,t +2).∵C 在y =8x上,∴t (t +2)=8,解得t =2或-4.⑴ ⑵ ⑵作DE ⊥y 轴交y 轴于点E ,将A y =m 代入y =8x 得:A x =8m ,∴A (8m ,m ) ,∴AO 2=OB 2+AB 2=228m +m 2,将D y =n 代入y =8x 得:D x =8n ,∴D (-8n ,n ) ,∴DO 2=DE 2+OE 2=28n ⎛⎫- ⎪⎝⎭+n 2,∴228m +m 2=28n ⎛⎫- ⎪⎝⎭+n 2,228m -228n =n 2-m 2,222264()n m m n -=n 2-m 2, (64-m 2n 2)(n 2-m 2)=0①当n 2-m 2=0时,n 2=m 2,∵m <0,n >0,∴m +n =0; ②当64-m 2n 2=0时,m 2n 2=64,∵m <0,n >0,∴mn =-8. 综合得:m +n =0,或mn =-8.考查内容: 旋转的性质;反比例函数综合题命题意图:本题主要考查学生对反比例函数综合题、旋转变换、待定系数法、全等三角形的判定和性质等知识掌握,会用分类讨论的思想思考问题,会添加辅助线,构造全等三角形解决问题,难度中等.23.分析:(1)由已知得∠M =∠N =90°,易证∠1=∠2,故△ABM ∽△BCN .(2)过P 点作PN ⊥AP 交AC 于N 点,过N 作NM ⊥BC 于M 点,由(1)知△BAP ∽△MPN ,AP BA BPPN MP MN==;∵tan PN PAC PA ∠==,设MN =,PM =,则5BP a =,5AB b =,用b 表示PC ;由已知可证△BAP ∽△BCA ,求得a 与b 的关系,C求得tanC 的值;(3)过A 作AH EB ⊥交EB 于H ,过C 作CK EB ⊥交EB 的延长线于K ,则DE ∥AH ∥CK ,∴25EH DA HK AC ==,设3CK x =,由△AHB ∽△BKC ,求得4HB EH x ==,再求得HK =10x ,便可得tan ∠CEB 的值.解析: 证明: ⑴∵∠ABC =90°,∴∠3+∠2=180°-∠ABC =180°-90°=90°. 又∵AM ⊥MN ,CN ⊥MN ,∴∠M =∠N =90°,∠1+∠3=90°, ∴∠1=∠2.∴△ABM ∽△BCN . 23⑴答题图 (2)过P 点作PN ⊥AP 交AC 于N 点,过N 作NM ⊥BC 于M 点, ∵∠BAP +∠APB =90°,∠APB +∠NPC =90°, ∴∠BAP =∠NPC ,△BAP ∽△MPN ,AP BA BPPN MPMN==,又∵tan PN PACPA ∠==,设MN =,PM =,则5BP a =,5AB b =, 23(2)答题图又∵BAP BCA ∠=∠,∴NPC BCA ∠=∠,∴NP NC =,2PC PM ==. 又△BAP ∽△BCA ,BA BC BP BA=,∴2BABP BC =⋅, ()()2555b aa =⋅+,解得:a =,∴tan MN a C MC b ∠====. (3)过A 作AH EB ⊥交EB 于H ,过C 作CK EB ⊥交EB 的延长线于K ∵AE AB = ∴EH HB =,易知△AHB ∽△BKC ,25EH DA HK AC == 设3CK x =,∵△AHB ∽△BKC ,∴AB HBBC CK=,∴4HB EH x ==. ∴5201022EH x HK x ===,∴3tan 14CK CEB EK ∠==.KCBH AED23(3)答题图考查内容:相似三角形的判定性质 ,锐角三角函数的定义 ,等腰三角形的性质 命题意图:本题主要考查学生综合运用相似三角形的判定性质、锐角三角函数解决问题的能力,难度中等.24.分析:(1)由抛物线L 经过点A 求得c 的值;由抛物线L 的对称轴求得b 的值,得抛物线L 的解析式.(2)设直线y =kx -k +4(k <0)与抛物线L :y =-x 2+bx +c 的对称轴x =1交于点E ,则BMN EBN EBM S S S ∆∆∆=-()()()1111121222N M N M EB x EB x x x =---=⨯-=,用k 表示出N M x x -并代入上式,求得k 的值;(3)设1L 为:22y x x t =-++,∴1m t =-.设P (0,a ),①△PCD ∽△POF 时,3t a =,此时必有一点P 满足条件;②△DCP ∽△POF时,220a at -+=.∵符合条件的点P 恰有两个,分两种情况进行讨论:∴第一种情况:220a at -+=有两个相等的实数根,求出m 的值及相应点P 的坐标;第二种情况:220a at -+=有两个不相等的实数根,且其中一根为3t a =的解,求出m 的值及相应点P 的坐标.解析:(1)∵抛物线L :y =-x 2+bx +c 经过点A (0,1),∴c =1. ∵抛物线L :y =-x 2+bx +c 的对称轴是直线x =1, ∴12(1)b-=⨯-,解得2b =;∴221y x x =-++.(2)∵直线()40y kx k k =-+<,则()14y k x =-+, ∴直线MN 过定点P (1,4),联立24,2 1.y kx k y x x =-+⎧⎨=-++⎩ 得()2230x k x k +--+=,∴2M N x x k +=-,3M N x x k ⋅=-,∴BMN EBN EBM S S S ∆∆∆=-()()()1111121222N M N M EB x EB x x x =---=⨯-=. ∵()()()22242438N M M N M N x x x x x x k k k -=+-=---=-281k -=,∴3k =±. ∵0k <,∴3k =-.(3)设1L 为:22y x x t =-++,∴1m t =-且C (0,t ),D (2,t ),F (1,0),设P (0,a ),①△PCD ∽△POF 时,∴CD CP OF OP =,∴21t aa -=,∴3t a =,此时必有一点P 满足条件;②△DCP ∽△POF 时,∴CD CP OP OF =,∴21t a a -=,∴220a at -+=. ∵符合条件的点P 恰有两个, ∴第一种情况:220a at -+=有两个相等的实数根,0∆=,∴t =±0t >,∴t =11m =,将t =代入3t a =得:1a =1P (0),将t =代入220a at -+=得:2a =,∴2P (0). 第二种情况:220a at -+=有两个不相等的实数根,且其中一根为3t a =的解,∴0∆>,将3t a =代入220a at -+=得:22320a a -+=, ∴1a =±,∵0a >,∴1a =,∴3t =,22m =,将3t =代入220a at -+=得:31a =, ∴3P (0,1); 42a =,∴4P (0,2).综上所述:当11m =时,P (0,3)或P (0 当22m =时,P (0,1)或P (0,2).考查内容: 确定二次函数表达式;一元二次方程的根与系数的关系;一元二次方程根的判别式与方程的根的情况之间的关系;相似三角形的性质命题意图:本题主要考查学生综合运用二次函数与相似三角形的性质解决问题的能力,难度较大.。
2018年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃ B.﹣3℃C.11℃D.﹣11℃2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣23.(3分)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x24.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、405.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+66.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.68.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.9.(3分)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.201310.(3分)如图,在⊙O中,点C 在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O 的半径为,AB=4,则BC的长是()A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是12.(3分)下表记录了某种幼树在一定条件下移植成活情况移植总数n40015003500700090001400成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1)13.(3分)计算﹣的结果是.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是m.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.三、解答题(共8题,共72分)17.(8分)解方程组:18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.21.(8分)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB 于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.23.(10分)在△ABC 中,∠ABC=90°.(1)如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN ;(2)如图2,P 是边BC 上一点,∠BAP=∠C ,tan ∠PAC=,求tanC 的值;(3)如图3,D 是边CA 延长线上一点,AE=AB ,∠DEB=90°,sin ∠BAC=,,直接写出tan ∠CEB 的值.24.(12分)抛物线L :y=﹣x 2+bx+c 经过点A (0,1),与它的对称轴直线x=1交于点B . (1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线y=kx ﹣k+4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.2018年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.2.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.3.【解答】解:3x2﹣x2=2x2,故选:B.4.【解答】解:这组数据的众数和中位数分别42,38.故选:B.5.【解答】解:(a﹣2)(a+3)=a2+a﹣6,故选:B.6.【解答】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.7.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.8.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.9.【解答】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D.10.【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:原式=+﹣=故答案为:12.【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.13.【解答】解:原式=+=故答案为:14.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.15.【解答】解:t=4时,y=60×4﹣×42=240﹣24=216m,故答案为216.16.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.三、解答题(共8题,共72分)17.【解答】解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.18.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.19.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.20.【解答】解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,=﹣14×20+46000=45740元,∴当x=20时,wmax即:购买A型钢板20块,B型钢板80块时,获得的利润最大.21.【解答】(1)证明:连接OP、OB.∵PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵PA、PB都是切线,∴PA=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=PA=2a,∵△PAK∽△POA,∴PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.22.【解答】解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.23.【解答】解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠PAC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=b,AB=a=b,在Rt△ABC中,tanC==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.24.【解答】解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN =1,即S△BNG﹣S△BMG=BG•xN﹣BG•xM=1,∴xN ﹣xM=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则xN =、xM=,由xN ﹣xM=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).。