沈阳化工大学化工热力学第二三章习题课--答案
- 格式:doc
- 大小:192.50 KB
- 文档页数:5
作者:旧在几作品编号:2254487796631145587263GF24000022 时间:2020.12.13化工热力学课后答案(填空、判断、画图)第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对) 3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。
第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
【精品】化工热力学第二章习题解答化工热力学第二章习题解答1.一个理想气体在恒定温度下,其压强与体积的关系如下所示:P = A / V^2其中P是压强,V是体积,A是常数。
求该气体的热力学过程方程。
解答:根据热力学第一定律,对于恒温过程,有dU = dq + dw = dq - PdV,其中U是内能,q是热量,w是对外界做的功。
由于该气体是理想气体,可以假设其内能只与温度有关,即dU = Cdt,其中C 是常数,t是温度。
将上式代入热力学第一定律中,得到Cdt = dq - PdV。
根据理想气体状态方程PV = nRT,其中n为物质的量,R为气体常数,T为温度。
将P = A / V^2代入上式,得到Cdt = dq - (A / V^2)dV。
对上式两边同时积分,得到∫Cdt = ∫dq - ∫(A / V^2)dV。
即Ct = q - A / V + B,其中B为常数。
综上所述,该气体的热力学过程方程为Ct = q - A / V + B。
2.一个气体在等体过程中,其压强与温度的关系如下所示:P = A * T^2其中P是压强,T是温度,A是常数。
求该气体的热力学过程方程。
解答:根据热力学第一定律,对于等体过程,有dU = dq + dw = dq - PdV,其中U是内能,q是热量,w是对外界做的功。
由于该气体是理想气体,可以假设其内能只与温度有关,即dU = Cdt,其中C 是常数,t是温度。
将上式代入热力学第一定律中,得到Cdt = dq - PdV。
根据理想气体状态方程PV = nRT,其中n为物质的量,R为气体常数,T为温度。
将P = A * T^2代入上式,得到Cdt = dq - (A * T^2)dV。
对上式两边同时积分,得到∫Cdt = ∫dq - ∫(A * T^2)dV。
即Ct = q - (A / 3)T^3 + B,其中B为常数。
综上所述,该气体的热力学过程方程为Ct = q - (A / 3)T^3 + B。
思考题3-1气体热容,热力学能和焓与哪些因素有关?由热力学能和温度两个状态参数能否确定气体的状态?答:气体热容,热力学能和焓与温度压力有关,由热力学能和温度两个状态参数能够确定气体的状态。
3-2 理想气体的内能的基准点是以压力还是温度或是两者同时为基准规定的? 答:理想气体的内能的基准点是以温度为基准规定的。
3-3 理想气体热容差R p v c c -=是否也适用于理想气体混合物?答:理想气体热容差R p v c c -=不适用于理想气体混合物,因为混合物的组成对此有关。
3-4 热力学基本关系式d d d H T S V p =+是否只适用于可逆过程? 答:否。
热力学基本关系式d d d H T S V p =+不受过程是否可逆的限制3-5 有人说:“由于剩余函数是两个等温状态的性质之差,故不能用剩余函数来计算性质随着温度的变化”,这种说法是否正确?答:不正确。
剩余函数是针对于状态点而言的;性质变化是指一个过程的变化,对应有两个状态。
3-6 水蒸气定温过程中,热力学内能和焓的变化是否为零?答:不是。
只有理想气体在定温过程中的热力学内能和焓的变化为零。
3-7 用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多,为什么?能否交叉使用这些图表求解蒸气的热力过程?答:因为做表或图时选择的基准可能不一样,所以用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多。
不能够交叉使用这些图表求解蒸气的热力过程。
3-8 氨蒸气在进入绝热透平机前,压力为2.0 MPa ,温度为150℃,今要求绝热透平膨胀机出口液氨不得大于5%,某人提出只要控制出口压力就可以了。
你认为这意见对吗?为什么?请画出T -S 图示意说明。
答:可以。
因为出口状态是湿蒸汽,确定了出口的压力或温度,其状态点也就确定了。
3-9 很纯的液态水,在大气压力下,可以过冷到比0℃低得多的温度。
假设1kg 已被冷至-5℃的液体。
现在,把一很小的冰晶(质量可以忽略)投入此过冷液体内作为晶种。
第1章绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。
(错。
和,如一体积等于2V的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T,P的理想气体,右侧是T温度的真空。
当隔板抽去后,由于Q=W=0,,,,故体系将在T,2V,0.5P状态下达到平衡,,,)2. 封闭体系的体积为一常数。
(错)3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程P=P(T,V)的自变量中只有一个强度性质,所以,这与相律有矛盾。
(错。
V也是强度性质)7. 封闭体系的1mol气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T1和T2,则该过程的;同样,对于初、终态压力相等的过程有。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。
(错。
)9. 自变量与独立变量是一致的,从属变量与函数是一致的。
(错。
有时可能不一致)10. 自变量与独立变量是不可能相同的。
(错。
有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态。
2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。
3. 封闭体系中,温度是T的1mol理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V表示)或(以P表示)。
4. 封闭体系中的1mol理想气体(已知),按下列途径由T1、P1和V1可逆地变化至P ,则2mol ,温度为A 等容过程的 W = 0 ,Q = ,U = ,H =。
化工热力学第二章作业解答2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式解 (1)用理想气体方程(2-4) V =RT P =68.3146734.05310⨯⨯=1.381×10-3m 3·mol -1(2)用R-K 方程(2-6)从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b )2 2.50.42748c cR T a p ==2 2.560.42748(8.314)(190.6)4.610⨯⨯⨯=3.224Pa ·m 6·K 0.5·mol -20.0867c c RT b p ==60.08678.314190.64.610⨯⨯⨯=2.987×10-5 m 3·mol -1将有关的已知值代入式(2-6) 4.053×106=58.3146732.98710V -⨯-⨯-0.553.224(673)( 2.98710)V V -+⨯ 迭代解得V =1.390×10-3 m 3·mol -1(注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式6733.53190.6r T T Tc === 664.053100.8814.610r P P Pc ⨯===⨯ 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。
由式(2-44a )、式(2-44b )求出B 0和B 1B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43)010.02690.0080.1380.0281BPcB B RTcω=+=+⨯= 由式(2-42)得Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ⎛⎫⎛⎫=+=+⨯= ⎪⎪⎝⎭⎝⎭V =1.390×10-3m 3·mol -12.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算273.15K 时将CO 2压缩到比体积为550.1cm 3·mol -1所需要的压力。
第二、三章习题课答案一、填空题(1)处于单相区的纯物质,可以独立改变的参数为 2 。
(2)Pitzer 三参数普遍化方法以 偏心因子 为第三参数,其定义式为00.1)log(7.0T r--==S r p ω。
(3)纯物质的维里系数是 物质和温度 的函数,混合物的维里系数是 物质、温度和组成 的函数。
(4)纯物质的临界等温线在临界点的斜率和曲率均为零,数学上可以表示为 0=⎪⎭⎫⎝⎛∂∂=TcT v p022=⎪⎪⎭⎫ ⎝⎛∂∂=TcT v p 。
(5)由热力学基本关系式p V T S G d d d +-=,写出对应的Maxwell 关系式为p TT V p S ⎪⎭⎫⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂ 。
(6)理想气体等温过程的焓变为 0 ,等压过程的焓变为TC H T T ig p ig p d 21⎰=∆ 。
(7)剩余性质的定义式为 ()()p T M p T M M igR ,-,= 。
(8)某物质符合状态方程RT b V p =-)(,对应的剩余焓为 bp ;若理想气体的热容为ig p C ,则该真实气体的焓变()()1122,,p T H p T H -为TC p p b T T ig p d )(2112⎰+-。
二、判断题(1)恒温下的任何气体,当压力趋于零时,pV 乘积也趋于零。
( × ) (2)对给定的化合物来说,其临界性质Tc 、Vc 、Pc 和Zc 是常数。
( √ ) (3)压缩因子Z 总是小于或等于1。
( × )(4)纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
( × ) (5)纯物质的三相点随着所处的压力或温度的不同而改变。
( × )(6)RK 方程中,常数的混合规则分别为 ∑∑==i i m i i m b y b a y a 。
( × ) (7)热力学基本关系式d H=T d S+V d p 只适用于可逆过程。
2习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。
(错。
和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。
当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。
(错)3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。
(错。
V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。
(错。
) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。
(错。
有时可能不一致)10. 自变量与独立变量是不可能相同的。
(错。
有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。
3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。
4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。
2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。
实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,c s s r p p p =对于不同的流体,α具有不同的值。
但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。
对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。
Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。
2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。
由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。
2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗?答:同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs 自由能是相同的,这是纯物质气液平衡准则。
气他的热力学性质均不同。
3-1 思考下列说法是否正确① 当系统压力趋于零时,()()0,,≡-p T Mp T M ig(M 为广延热力学性质)。
(F ) ② 理想气体的H 、S 、G 仅是温度的函数。
(F ) ③ 若()⎪⎪⎭⎫⎝⎛+-=00ln p p R S S A ig,则A 的值与参考态压力0p 无关。
(T ) ④ 对于任何均相物质,焓与热力学能的关系都符合H >U 。
(T ) ⑤ 对于一定量的水,压力越高,蒸发所吸收的热量就越少。
(T ) 3-2 推导下列关系式:V T T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T p T V U VT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂()2RT H T RT G p ∆∆-=⎥⎦⎤⎢⎣⎡∂∂ ()RTV p RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 证明:(1)根据热力学基本方程 V p T S A d d d --= (a)因为A 是状态函数,所以有全微分:V V A T T A A TV d d d ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂= (b) 比较(a)和(b)得: p V A S T A TV -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂, 由全微分性质得:V V T T p T T p p A T T A p V S ⎪⎭⎫ ⎝⎛∂∂-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂-即 VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂(2)由热力学基本方程 V p S T U d d d -= 将上式两边在恒定的温度T 下同除以的d V 得:p V S T V U TT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂由(1)已经证明VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 则 p T p T V U VT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂(3)由热力学基本方程 p V T S G d d d +-= 当压力恒定时 SdT dG -=由Gibbs 自由能定义式得 S T H G ∆∆∆-=()()()222T H T S T H S T T GT GTT T G p∆∆∆∆∆∆∆-=---⋅=-∂∂=⎥⎦⎤⎢⎣⎡∂∂等式两边同乘以R 得()2RT H T RT G p∆∆-=⎥⎦⎤⎢⎣⎡∂∂(4)当温度恒定时Vdp dG =()T V p T G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 所以 ()RTVp RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 3-4 计算氯气从状态1(300K 、1.013×105Pa )到状态2( 500K 、1.013×107Pa )变化过程的摩尔焓变。
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
《化工热力学》(第二、三版-陈新志)课后习题答案第1章绪言一、是否题封闭体系中有两个相。
在尚未达到平衡时,两3.个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)第2章P-V-T关系和状态方程一、是否题2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)3. 当压力大于临界压力时,纯物质就以液态存在。
(错。
若温度也大于临界温度时,则是超临界流体。
)4. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。
(错。
如温度大于Boyle温度时,Z>1。
)7. 纯物质的三相点随着所处的压力或温度的不同而改变。
(错。
纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。
)8. 在同一温度下,纯物质的饱和液体与饱和蒸汽的热力学能相等。
(错。
它们相差一个汽化热力学能,当在临界状态时,两者相等,但此时已是汽液不分)9. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。
(对。
这是纯物质的汽液平衡准则。
)10. 若一个状态方程能给出纯流体正确的临界压缩因子,那么它就是一个优秀的状态方程。
(错。
)11. 纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。
(错。
只有吉氏函数的变化是零。
)12. 气体混合物的virial系数,如B,C…,是温度和组成的函数。
(对。
)13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。
(错。
三对数对应态原理不能适用于任何流体,一般能用于正常流体normal fluid)14. 在压力趋于零的极限条件下,所有的流体将成为简单流体。
(错。
简单流体系指一类非极性的球形流,如A r等,与所处的状态无关。
第二、三章习题课答案
一、填空题
(1)处于单相区的纯物质,可以独立改变的参数为 2 。
(2)Pitzer 三参数普遍化方法以 偏心因子 为第三参数,其定义式为
00
.1)log(7.0T r
--==S r p ω。
(3)纯物质的维里系数是 物质和温度 的函数,混合物的维里系数是 物质、温度和组成 的函数。
(4)纯物质的临界等温线在临界点的斜率和曲率均为零,数学上可以表示为 0=⎪
⎭⎫
⎝⎛∂∂=Tc
T v p
022=⎪⎪⎭⎫ ⎝⎛∂∂=Tc
T v p 。
(5)由热力学基本关系式p V T S G d d d +-=,写出对应的Maxwell 关系式为
p T
T V p S ⎪
⎭⎫
⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂ 。
(6)理想气体等温过程的焓变为 0 ,等压过程的焓变为
T
C H T T ig p ig p d 2
1
⎰=∆ 。
(7)剩余性质的定义式为 ()()p T M p T M M ig
R ,-,= 。
(8)某物质符合状态方程RT b V p =-)(,对应的剩余焓为 bp ;若理想气体的热容为ig p C ,则该
真实气体的焓变()()1122,,p T H p T H -为
T
C p p b T T ig p d )(2
1
12⎰+-。
二、判断题
(1)恒温下的任何气体,当压力趋于零时,pV 乘积也趋于零。
( × ) (2)对给定的化合物来说,其临界性质Tc 、Vc 、Pc 和Zc 是常数。
( √ ) (3)压缩因子Z 总是小于或等于1。
( × )
(4)纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
( × ) (5)纯物质的三相点随着所处的压力或温度的不同而改变。
( × )
(6)RK 方程中,常数的混合规则分别为 ∑∑==i i m i i m b y b a y a 。
( × ) (7)热力学基本关系式d H=T d S+V d p 只适用于可逆过程。
( × ) (8)理想气体的焓只与温度有关,与压力无关。
( √ )
(9)当系统压力趋于零时,()()0,,≡-p T M p T M ig (M 为广度性质)。
( × )
(10)普遍化压缩因子法计算剩余性质的表达式无应用条件限制。
( × )
三、选择填空
(1)T 温度下过热蒸气的压力p ③ 。
① >p s (T) ② =p s (T) ③ <p s (T) (2) R-K 方程中的a 和b ④ 。
①仅与p 有关 ②仅与V 有关 ③仅与T 有关 ④仅与物质有关
(3)指定温度下的纯物质,当压力高于该温度下的饱和蒸汽压时,则气体的状态为 ④ 。
①饱和蒸汽 ②超临界流体 ③过热蒸汽 ④压缩液体 (4)理想气体等温压缩过程 ③ 。
①△H>0 ②△H<0 ③ △S<0 ④ △S>0
四、在T-S 图上画出下列过程
(1)处于某压力p 下的饱和液体等焓膨胀; (2)将过冷液体定压加热为过热蒸气; (3)饱和蒸气的可逆绝热压缩;
(4)定容加热饱和蒸气;
(5)T 温度下的过冷液体等温膨胀为过热蒸汽。
五、欲在一7810cm 3的钢瓶中装入1kg 的丙烷,且在253.2℃下工作,若钢瓶的安全工作压力为10Mpa ,问是否有危险?
解法一:由RK 方程求装入1kg 丙烷后钢瓶的操作压力
从附录二中查得丙烷的临界参数为:c T =369.8 K ,c p =4.246 MPa ,ω=0.152
式中: ()()2-0.565
.22
5
.22mol K cm M Pa 183********
.48.369314.842748.0/42748.0⋅⋅⋅⨯⨯===c c
p T R a
13mol cm 62.74246
.48
.369314.808664.008664.0-⋅⨯⨯===c c p RT b
13mol cm 343.6444
10007810
/-⋅===
n V V t ()()M Pa 9.9 62.74343.64343.6435.52618300928 62.74343.6435.526314.8)(5.05
.0=+--=⨯⨯⨯+--=
b V V T a
b V RT p 安接近p p 所以危险
解法二:由普遍化方法求安全工作压力下允许装入的丙烷量
4233.18.36935.526===
C r T T T 3552.2246
.410===C r p p p 查图2-8,在曲线下方,用压缩因子法
由附录三表A 查得0.2062 0.7692
1
0==Z Z T S
则 Z=Z 0+ωZ 1=0.8005
g
1000g 98131.35044781044/31.3501035
.5268005.0<=⨯===⨯==
V V m p ZRT V t 所以危险。
六、一个0.5m 3的压力容器,其极限压力为2.75MPa ,出于安全的考虑,要求操作压力不得超过极限压力的一半。
试问容器在130℃条件下最多能装入多少丙烷? 解:从附录二中查得丙烷:c T =369.8 K ,c p =4.246 MPa ,c V =203 cm 3/mol ω=0.152
1.0902369.8
403.15
/T 0.3238246.42/75.2/r ====C C r T T p p p ==
(1)普遍化第二维里系数法
0.01930902
.1172.0139.0172.0139.0 0.28450902.1422.0083.0422.0083.02
.42.4)
1(6.16.1)0(=--=-=--
===r r T B T B (
)()9163.00193.0152.02845.011)
1()0(=⨯+-+=++=r
r
T
p
B B Z ω
mol cm p ZRT V /8.22332
/75.215
.403314.89163.03=⨯⨯==
g 98498
.223344105.06=⨯⨯==V V m t
2 11.2203
2233.8
/ V r >==
=C V V 在普遍化第二维里系数法适用区 (2)普遍化压缩因子法
由附录三表A 查得 0006.0
9112.01
==Z Z
mol cm p ZRT V / 5.22212
/75.215.403314.89113.03
=⨯⨯==g 90395.222144105.06=⨯⨯=
=V m 2 10.9203
2221.5
/ V r >==
=C V V 不在普遍化压缩因子法适用区
七、某气体符合状态方程RT b V p =-)(,其中b 为常数。
计算该气体由V 1等温可逆压缩到V 2的熵变。
R ig R S S S S 21-+∆+=∆
b
V b
V R p p R S S ig --==∆=∆1221ln ln
八、在一刚性的容器中装有1kg 水,其中汽相占90%(V ),压力是0.1985MPa ,加热使液体水刚好汽化完毕,试确定终态的温度和压力,计算所需的热量,内能、焓、熵的变化。
解:初态是汽液共存的平衡状态,初态的压力就是饱和蒸汽压,p s =0.1985MPa ,由此查饱和水性质
初态的干度 01059.09
.8919
.00603.11.09.8919.0=+
=x ()()59.10100001059.041.989100001059.011=⨯===⨯-=-=xm m g
m x m g l g
由()g l xM M x M +-=1,得
()()()()()()()()1
1-11
-11-1-131K kg kJ 5869.11296.701059.05276.101059.011kg
kJ 017.5273.270601059.03.50701059.011kg kJ 945.5243.252901059.05.50301059.011g cm 491.109.89101059.00603.101059.011-⋅⋅=⨯+⨯-=+-=⋅=⨯+⨯-=+-=⋅=⨯+⨯-=+-=⋅=⨯+⨯-=+-=g l g l g
l g l xS S x S xH H x H xU U x U xV V x V
终态是由于刚刚汽化完毕,故是一个饱和水蒸汽。
由于过程等容,所以其质量体积是
5.1012≈=V V cm 3g -1,
也就是饱和蒸汽的质量体积,即V sv =10.5cm 3g -1,
并由此查出终的有关性质如下表(为了方便,附录四表B 的V sv =10.34cm 3g -1一行的数据),列于下表中
所以,
()()6.1930945.5245.2455112=-⨯=-=∆U U m U t kJ ()()5.2083017.5275.2610112=-⨯=-=∆H H m H t kJ ()()7229.35869.13098.5112=-⨯=-=∆S S m S t kJK -1。
又因为,是一个等容过程,故需要吸收的热为
6.1930=∆=t V U Q kJ。