最新 北师大版 七年级数学下册:1.1《同底数幂的乘法》同步练习及答案
- 格式:doc
- 大小:185.00 KB
- 文档页数:2
1.1同底数幂的乘法一、情景导入,初步认知1.乘方:2.光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年.一年以3×107秒计算,比邻星与地球的距离约为多少千米?二、思考探究,获取新知1.计算下列各式:(1)102×103;(2)105×108;(3)10m×10n(m,n都是正整数).你发现了什么?【教学说明】小组合作探究,对于有的同学可能会由上面的分析感觉到了规律的存在,可鼓励他们进行验证.请部分学生代表说出自己小组的观点,其他组同学则进行评价或发表不同的见解.2. 2m×2n等于什么?呢?(m,n都是正整数)【教学说明】猜想,交流,验证,口答.3.合作交流:a m·a n等于什么?(m,n都是正整数)4.引导学生剖析法则.(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)你能总结同底数幂的乘法的法则吗?【教学说明】猜想,交流,验证,口答.【归纳结论】am·an=am+n(m,n都是正整数)同底数幂相乘,底数不变,指数相加.三、运用新知,深化理解1.见教材P3例1、例2.2.计算:(1)-b3·b2(2) (-a)·a3(3)(-y)2·(-y)3(4)(-a)3·(-a)4(5)-34×32(6)(-5)7×(-5)6(7)(-q)2n·(-q)3(8)(-m)4·(-m)2(9)-23 (10)(-2)4×(-2)5(11)-b9·(-b)6 (12)(-a)3·(-a3)答案:(1)-b5 (2)-a4 (3)-y5 (4)-a7 (5)-729 (6)-513(7)-q2n+3 (8)m6 (9)-8 (10)-512 (11)-b15(12)a63.下面的计算对不对?如果不对,应怎样改正?(1)23×32=65;(2)a3+a3=a6;(3)y n·y n=2y2n;(4)m·m2=m2;(5)(-a)2·(-a2)=a4; (6)a3·a4=a12;(7)(-4)3=43;(8)7×72×73=76;(9)-22=-4;(10)n+n2=n3.4.计算:5.计算:(结果可以化成以(a+b)或(a-b)为底时幂的形式).(1)(a-b)2·(a-b)3·(a-b)4(2)(a+b)m+1·(a+b)+(a+b)m·(a+b)2答案:(1)(a-b)9(2)2(a+b)m+26.我国自行研制的“神威”计算机的峰值运算速度达到每秒3840亿次.如果按这个速度工作一整天,那么它能运算多少次(结果保留3个有效数字)?提示:3840亿次=3.84×103×108次、24时=24×3.6×103秒解:(3.84×103×108)×(24×3.6×103)=(3.84×24×3.6)×(103×108×103)=331.776×1014≈3.32×1016(次)答:它能运算约3.32×1016次.四、师生互动,课堂小结先小组内交流收获和感想再以小组为单位派代表进行总结,教师作以补充.五、教学板书1.布置作业:教材“习题1.1”中第1、2、3题.2.完成对应习题.。
☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n ma a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1。
幂的乘方法则:mnnm a a =)((m ,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. ),()()(都为正数n m a a a mn mn nm ==.3。
底数有负号时,运算时要注意,底数是a 与(-a )时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成—a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。
5.要注意区别(ab )n与(a+b)n意义是不同的,不要误以为(a+b )n=a n+b n(a 、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnb a ab =)((n 为正整数)。
7.幂的乘方与积乘方法则均可逆向运用。
三. 同底数幂的除法1。
同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m 〉n ).2。
在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除"而且0不能做除数,所以法则中a ≠0。
北师大版七年级数学(下)同步辅导系列资料1.1 同底数幂的乘法基本知识:1.同底数幂的乘法公式:m n a a ⋅= , m n p a a a ⋅⋅= .2.同底数幂的乘法公式的逆用:m n a+= , 同步练习:一、填空题1.同底数幂相乘,底数 ,指数 。
2.a ()·a 4=a 20.(在括号内填数)3.若102·10m =102003,则m= .4.23·83=2n ,则n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= .6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= .8. 111010m n +-⨯=________,456(6)-⨯-=______.9. 234x x x x ⋅+⋅=________,25()()x y x y ++=_________________.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=___________.11. 若34m a a a =⋅,则m=________;若416a x x x ⋅=,则a=__________;12. 若2,5m n a a ==,则m n a +=________.13.-32×33=_________; -(-a )2=_________;(-x )2·(-x )3=_________; (a +b )·(a +b )4=_________;0.510×211=_________; a ·a m ·_________=a 5m +114.a 4·_________=a 3·_________=a 915.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m x x x(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5=(6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5=二、选择题1. 下面计算正确的是( )A.326mm m=a a a+=; D.56=; B.336+=; C.426x x xb b b2. 81×27可记为( )A.39B.73C.63D.1233. 若x y≠,则下面多项式不成立的是( )A.22-=- C.22()x x-= D.222()y y-=- B.33()()y x x yx y x y+=+()4.下列各式正确的是()A.3a2·5a3=15a6 B.-3x4·(-2x2)=-6x6C.3x3·2x4=6x12 D.(-b)3·(-b)5=b8m+=()5.设a m=8,a n=16,则a nA.24 B.32 C.64 D.1286.若x2·x4·()=x16,则括号内应填x的代数式为()A.x10 B. x8 C. x4 D. x27.若a m=2,a n=3,则a m+n=( ).A.5B.6C.8D.98.下列计算题正确的是( )A.a m·a2=a2mB.x3·x2·x=x5C.x4·x4=2x4D.y a+1·y a-1=y2a9.在等式a3·a2( )=a11中,括号里面的代数式应当是( ).A.a7B.a8C.a6D.a510.x3m+3可写成( ).A.3x m+1B.x3m+x3C.x3·x m+1D.x3m·x311已知算式:①(-a)3·(-a)2·(-a)=a6;②(-a)2·(-a)·(-a)4=a7;③(-a)2·(-a)3·(-a2)=-a7;④(-a2)·(-a3)·(-a)3=-a8.其中正确的算式是( )A.①和②B.②和③C.①和④D.③和④12一块长方形草坪的长是x a+1米,宽是x b-1米(a、b为大于1的正整数),则此长方形草坪的面积是( )平方米.A.x a-bB.x a+bC.x a+b-1D.x a-b+213.计算a-2·a4的结果是()A.a-2 B.a2C.a-8 D.a814.若x≠y,则下面各式不能成立的是()A.(x-y)2=(y-x)2 B.(x-y)3=-(y-x)3C.(x+y)(x-y)=(x+y)(y-x) D.(x+y)2=(-x-y)215.a16可以写成()A.a8+a8 B.a8·a2C.a8·a8 D.a4·a416.下列计算中正确的是()A.a2+a2=a4 B.x·x2=x3C.t3+t3=2t6 D.x3·x·x4=x717.下列题中不能用同底数幂的乘法法则化简的是()A.(x+y)(x+y)2 B.(x-y)(x+y)2C.-(x-y)(y-x)2 D.(x-y)2·(x-y)3·(x-y) 18. 计算2009200822-等于( )A、20082-2 B、 2 C、1 D、200919.用科学记数法表示(4×102)×(15×105)的计算结果应是()A.60×107B.6.0×107C.6.0×108D.6.0×1010三.判断下面的计算是否正确(正确打“√”,错误打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p2·(-p)4·(-p)3=(-p)9( ) 3.t m·(-t2n)=t m-2n( ) 4.p4·p4=p16( )5.m3·m3=2m3() 6.m2+m2=m4()7.a2·a3=a6() 8.x2·x3=x5()9.(-m)4·m3=-m7()四、解答题1.计算(1)(-2)3·23·(-2) (2)81×3n(3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+12、计算题(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅-(3) 23324()2()x x x x x x -⋅+⋅--⋅ (4)122333m m m x x x x x x ---⋅+⋅-⋅⋅。
新北师大版七年级年级下册第一章幂的运算训练题一、单选题1、下列运算:①(-x 2)3=-x 5;②3xy -3yx =0;③3100·(-3)100=0;④m ·m 5·m 7=m 12;⑤3a 4+a 4=3a 8 ⑥(x 2)4=x 16.其中正确的有( );A .1个B .2个C .3个D .4个2、计算(-a 2)3的结果是( )A .-a 5 B .a 6 C .-a 6D .a 53、下列各式计算正确的是( )A .(x 2)3=x 5 B .(x 3)4=x 12C .()3131n n x x ++= D .x 5·x 6=x 30 4、我们约定a ⊗b =10a ×10b ,如2⊗3=102×103=105,那么4⊗8为( )A .32B .1032C .1012D .1210>5、如果32m n x x x -=,则n 等于( )A .m -1 B .m +5 C .4-mD .5-m6、m 9可以写成( )A .m 4+m 5 B .m 4·m 5 C .m 3·m 3 D .m 2+m 77、下列几个算式:①a 4·a 4=2a 4;②m 3+m 2=m 5;③x ·x 2·x 3=x 5;④n 2+n 2=n 4.其中计算正确的有( )A .0个 B .1个 C .2个 D .3个8、计算(-2)2008+(-2)2009等于( )A .-22008 B .-2 C .-1 D .220089、在222( )y=y m m y -+中,括号内应填的代数式是( )A .y mB .4m y +C .2m y +D .3m y +10、设a m =8,a n =16,则a m+n =( )A .24 B .32 C .64 D .12811、如果23m=26,那么m 的值为( )A .2 B .4 C .6 D .8:12、下列各式能用同底数幂乘法法则进行计算的是( )A .(x+y )2(x-y )2B .(x+y )2(-x-y )C .(x+y )2+2(x+y )2D .(x-y )2(-x-y )13、若22a+3•2b-2=210,则2a+b 的值是( )A .8 B .9 C .10 D .1114、下列各式中,计算结果为x 7的是( )A .()()25x x -⋅- B .()25x x -⋅ C .()()34x x -⋅- D .34x x + 15、计算(﹣x 2)•x 3的结果是( )A . x 3 B .﹣x 5 C .x 6 D .﹣x 6 16、计算323x x ÷的结果是( )A .22x B .23x C .3x D .3 17、如果()2893n =,则n 的值是( )A .4 B .2 C .3 D .无法确定:18、下列各式中,①428x x x =,②3262x x x =,③437a a a =,④5712a a a +=,⑤()()437a a a --=.正确的式子的个数是( ) A .1个;B .2个;C .3个;D .4个.19、若a 2m =25,则a -m 等于( ) A .15 B .-5 C .15或-15 D .162520、下列计算错误的有( )①a 8÷a 2=a 4; ②(-m )4÷(-m )2=-m 2; ③x 2n ÷x n =x n ;④-x 2÷(-x )2=-1. A .1个 B .2个 C .3个 D .4个二、填空题21、计算:-a 2•(-a )2n+2=_______.(n 是整数).22、计算 2008×(﹣8)2009=______.23、计算:(1)(-a 5)5=________;(2)(-y 2)3·(-y 3)2=________;(3)(a 2)4·a 4=________;(4)=________.24、计算:(1)-22×(-2)3=________;(2)a m·a·=________;(3)10m×10000=________;(4)=________.]25、一台电子计算机每秒可作1012次运算,它工作5×106秒可作________次运算.26、(1)=81,则x=________;(2)=n,用含n的代表式表示3x=________.27、(1)a3·a m=a8,则m=________;(2)2m=6,2n=5,则=________.28、(1)32×32-3×33=________;(2)x5·x2+x3·x4=________;(3)(a-b)·(b -a)3·(a-b)4=________;(4)100·10n·=________;(5)a m··a2m·a =________;(6)2×4×8×2n=________.29、(1)107×103=________;(2)a3·a5=________;(3)x·x2·x3=________;(4)(-a)5·(-a)3·(-a)=________;(5)b m·=________;(6)=________.30、已知a m+1×a2m-1=a9,则m=______.31、4m·4·16=_______.:32、若x•x a•x b•x c=x2011,则a+b+c=______.33、计算:-32•(-3)3= ________(结果用幂的形式表示).34、已知10n=3,10m=4,则10n+m的值为______.35.计算:(-2)2013+(-2)2014=_______.三、解答题36、计算下列各题:(1)(-2)·(-2)2·(-2)3;(2)(-x)6·x4·(-x)3·(-x)2;|(3);(4).[37、已知,x+2y-4=0.求:的值.38、计算:%(1)(a-b)2(a-b)3(b-a)5;(2)(a-b+c)3(b-a-c)5(a-b+c)6;(3)(b-a)m·(b-a)n-5·(a-b)5;(4)x3·x5·x7-x2·x4·x9.>39、计算:(1)10×104×105+103×107;(2)m·m2·m4+m2·m5;;(3)(-x)2·(-x)3+2x(-x)4;(4)103×10+100×102.。
北师大版七年级下册数学1.1同底数幂的乘法同步测试一、单选题1.若a m=5,a n=3,则a m+n的值为()A. 15B. 25C. 35D. 452.计算(﹣4)2×0.252的结果是()A. 1B. ﹣1C. ﹣D.3.计算a2•a5的结果是()A. a10B. a7C. a3D. a84.计算a•a•a x=a12,则x等于()A. 10B. 4C. 8D. 95.下列计算错误的是()A. (﹣2x)3=﹣2x3B. ﹣a2•a=﹣a3C. (﹣x)9+(﹣x)9=﹣2x9D. (﹣2a3)2=4a66.下列计算中,不正确的是()A. a2•a5=a10B. a2﹣2ab+b2=(a﹣b)2C. ﹣(a﹣b)=﹣a+bD. ﹣3a+2a=﹣a7.计算x2•x3的结果是()A. x6B. x2C. x3D. x58.计算的结果是()A. B. C. D.9.计算3n· ( )=—9n+1,则括号内应填入的式子为( )A. 3n+1B. 3n+2C. -3n+2D. -3n+110.计算(-2)2004+(-2)2003的结果是()A. -1B. -2C. 22003D. -22004二、填空题(共5题;共5分)11.若a m=2,a m+n=18,则a n=________.12.计算:(﹣2)2n+1+2•(﹣2)2n=________。
13.若x a=8,x b=10,则x a+b=________.14.若x m=2,x n=5,则x m+n=________.15.若a m=5,a n=6,则a m+n=________。
三、计算题(共4题;共35分)16.计算:(1)23×24×2.(2)﹣a3•(﹣a)2•(﹣a)3.(3)m n+1•m n•m2•m.17.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.18.已知a3•a m•a2m+1=a25,求m的值.19.计算。
初中数学试卷北师大版数学七年级下册第一章1.1同底数幂的乘法课时练习一.选择题1.x2+5可以写成()a.x2.x5B.x2.x5C.2x.x5D.2x.5x答案:a解析:解答:x2.x5 =x2+5,故a项正确.分析:根据同底数幂的乘法法则可完成题.2.x n . x n+1等于()A.x2n.x5B.x2n+1.x C.x2n+1 D.2x n.x答案:C解析:解答:x n . x n+1=x2n+1,故C项正确.分析:根据同底数幂的乘法法则可完成题.3.a.a6等于()a.7a B.a a C.a7 D.a.a答案:C解析:解答:a.a6=a7 ,故C项正确.分析:根据同底数幂的乘法法则可完成题.4.(-2)4×(-2)3等于()a.(-2)12B.4×(-2)C.(-2)7 D.12×(-2)答案:C解析:解答:(-2)4×(-2)3=(-2)7 ,故C项正确.分析:根据同底数幂的乘法法则可完成题.5.x m.x3m+1等于()a.x m.3m+1 B.x4m+1 C..x m D.x m.x2答案:B解析:解答:x m.x3m+1=x4m+1,故B项正确.分析:根据同底数幂的乘法法则可完成题.6.下面计算正确的是()A.b5· b5=2b5B.b5 + b5= b10C.x5·x5 = x25D.y5 · y5= y10答案:D解析:解答:a项计算等于b10;B项计算等于2b5;C项计算等于x10 ;故D项正确.分析:根据同底数幂的乘法法则可完成题.7.下面计算错误的是()a.c . c3=c4 B.m.m3 =4m C.x5 .x20 = x25 D.y3 . y5 = y8答案:B.解析:解答: B.项m.m3 = m4;故B项错误.分析:根据同底数幂的乘法法则可完成题.8.a·a2m+2等于()A.a3mB.2a2m+2C.a2m+3 D.a m+a2m答案:C解析:解答:a.a2m+2=a2m+3 ,故C项正确.分析:根据同底数幂的乘法法则可完成题.9.(x+y)3·(x+y)4等于().a.7 (x+y)(x+y) B.(x+y)3 +(x+y)4 C.(x+y)7 D.12(x+y)答案:C解析:解答:(x+y)3 . (x+y)4=(x+y)7 ,故C项正确.分析:根据同底数幂的乘法法则可完成题.10.x5+n可以写成()a.x5 .x n B.x5 +x n C.x+x n D.5x n答案:a解析:解答:x5 .x n =x5+n ,故a项正确.分析:根据同底数幂的乘法法则可完成题.11.(2a+b)3(2a+b)m-4等于()a.3(2a+b)m-4 B.(2a+b)m-1 C.(2a+b)m-7 D.(2a+b)m答案:B解析:解答:(2a+b)3(2a+b)m-4=(2a+b)m-4+3=(2a+b)m-1,故B项正确.分析:根据同底数幂的乘法法则可完成题.12.(2a-b)3(2a-b)m-4等于()a.3(2a-b)m-4 B.(2a-b)m-1 C.(2a-b)m-7 D.(2a-b)m答案:B解析:解答:(2a-b)3(2a-b)m-4=(2a-b)m-4+3=(2a-b)m-1 ,故B项正确.分析:根据同底数幂的乘法法则可完成题.13.(2a)3(2a)m等于()a.3(2a)m-4 B.(2a)m-1 C.(2a)m+3 D.(2a)m+1答案:C解析:解答:(2a)3(2a)m=(2a)m+3,故C项正确.分析:根据同底数幂的乘法法则可完成题.14.a n·a m等于()a.a m-n B.a mn C.a m +a+n D.a m+n答案:D解析:解答:a n.a m= a m+n,故D项正确.分析:根据同底数幂的乘法法则可完成题.15.x a+n可以写成()a.x a .x n B.xa +x n C.x+x n D.ax n答案:a解析:解答:x a .x n=x a+n,故a项正确.分析:根据同底数幂的乘法法则可完成题.二.填空题.16.8 = 2x,则x = ;答案:3解析:解答:23=8,故x=3.分析:根据同底数幂的乘法法则可完成题. 17.8 × 4 = 2x,则x = ;答案:5解析:解答:8 × 4=32=25,故x=5.分析:根据同底数幂的乘法法则可完成题. 18.27×9×3= 3x,则x = .答案:6解析:解答:27×9×3=33×32×3=36,故x=6.分析:根据同底数幂的乘法法则可完成题. 19.y4.y3.y2.y=y10,则x =答案:4解析:解答:y10=y x+3+2+1=y4.y3.y2.y,故x=4.分析:根据同底数幂的乘法法则可完成题. 20.-a(-a)4(-a)b =a8,则b=答案:3解析:解答:-a(-a)4(-a)b =(-a)1+4+b=a8,故x=4.分析:根据同底数幂的乘法法则可完成题.三.计算题21.x p(-x)2p -x2p (p为正整数)答案:解:x p(-x)2p -x2p =x3p-2p =x p解析:解答:解:x p(-x)2p -x2p =x3p-2p =x p分析:由题可知(-x)2p=x2p(p为正整数),再根据同底数幂的乘法法则可完成题.22.32×(-2)2n(-2)(n为正整数)答案:解:32×(-2)2n(-2)=-9×22n+1解析:解答:解:32×(-2)2n(-2) =-9×22n+1分析:由题可知(-2)2n=22n(n为正整数),再根据同底数幂的乘法法则可完成题.23.(2a+b)3(2a+b)m-4(2a+b)2n+1答案:解:(2a+b)3(2a+b)m-4(2a+b)2n+1=(2a+b)3+m-4+2n+1=(2a+b)m+2n解析:解答:解:(2a+b)3(2a+b)m-4(2a+b)2n+1=(2a+b)3+m-4+2n+1=(2a+b)m+2n分析:根据同底数幂的乘法法则可完成题.24.(x—y)2(y—x)5答案:解:(x—y)2(y—x)5=(y—x)5+2=(y—x)7解析:解答:解:(x—y)2(y—x)5=(y—x)5+2=(y—x)7分析:由题可知(x—y)2=(y—x)2,再根据同底数幂的乘法法则可完成题.25.(x-y)2(y-x)3(x-y)2a(a为正整数)答案:解:(x-y)2(y-x)3(x-y)2a=(y-x)2+3+2a=(y-x)5+2a解析:解答:解:((x-y)2(y-x)3(x-y)2a=(y-x)2+3+2a=(y-x)5+2a分析:由题可知(x-y)2=(y-x)2,(x-y)2a=(y-x)2a(a为正整数),再根据同底数幂的乘法法则可完成题.。
第一章整式的乘除第1节同底数幂的乘法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.若(7×106)(5×105)(2×10)=a ×10n ,则a ,n 的值分别为( )A .a =7,n =11B .a =5,n =12C .a =7,n =13D .a =2,n =13 2.(﹣a )2•a 3=( )A .﹣a 5B .a 5C .﹣a 6D .a 63.如果xm =2,xn =14,那么xm +n 的值为( ) A .2 B .8 C .12 D .2144.我们知道:若am =an (a >0且a ≠1),则m =n .设5m =3,5n =15,5p =75.现给出m ,n ,p 三者之间的三个关系式:①m +p =2n ;①m +n =2p ﹣1;①n 2﹣mp =1.其中正确的是( )A .①①B .①①C .①①D .①①①5.计算28+(-2)8所得的结果是( )A .0B .216C .48D .296.下面是几位同学做的几道题,222(1)()a b a b +=+ 0(2)21a = 2 (3) (3)3±=± 3412 (4) a a a ⋅= 532(5)a a a ÷=其中做对了( )道A .1B .2C .3D .47.下列运算中,正确的是( )A .4312=a a aB .()32639a a =C .23•a a a =D .()224ab ab = 8.下列计算正确的是( )A .()()43224a a a a -⋅-⋅-=-B .()()43224a a a a -⋅-⋅-=C .()()4329a a a a -⋅-⋅-=-D .()()4329a a a a -⋅-⋅-= 9.201120102009222--其结果是( )A .20092B .20102C .20092-D .数太大,无法计算评卷人得分二、填空题10.已知92781m n⨯=,则646m n--的值为______.11.计算23()()a a-⋅-的结果等于_____________.12.已知2x+3y﹣1=0,则9x•27y的值为______.13.计算(x﹣y)2(y﹣x)3(x﹣y)=__(写成幂的形式).14.计算:235m m⋅=______.15.已知53x=,54y=,则25x y+的结果为______ .16.如图,正方形的边长为()1a a>,将此正方形按照下面的方法进行剪贴:第一次操作,先沿正方形的对边中点连线剪开,然后粘贴为一个长方形,其中叠合部分长为1,则此长方形的周长为_______,第二次操作,再沿所得长方形的对边(长方形的宽)中点连线剪开,然后粘贴为一个新的长方形,其中叠合部分长为l,……如此继续下去,第n次操作后得到的长方形的周长为________.17.观察等式:232222+=-;23422222++=-;按一定规律排列的一组数:5051529910022222+++++,若502a=,则用含a的代数式表示下列这组数50515299100222 (22)++++的和_________.评卷人得分三、解答题18.如果ac=b,那么我们规定(a,b)=c.例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=,(4,1)=,(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.判断a,b,c之间的等量关系,并说明理由.19.计算:(1)﹣b 2×(﹣b )2×(﹣b 3)(2)(x ﹣y )3×(y ﹣2)2×(y ﹣2)520.(1)先化简,再求值:2(x 2﹣xy )﹣(3x 2﹣6xy ),其中x =12,y =﹣1.(2)已知am =2,an =3,求①am +n 的值;①a 3m ﹣2n 的值.21.把下列式子化成()na b -的形式:()()()()()3452 a b b a a b b a a b -⋅----+-22.如果c a b =,那么规定(),a b c =. 例如:如果328=,那么()2,83=()1根据规定,()5,1= ______, 14,16⎛⎫= ⎪⎝⎭()2记()3,6a =,() 3,7b =, () 3,x c =,若a b c +=,求x 值.23.根据同底数幂的乘法法则,我们发现:m n m n a a a +=⋅(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=⋅,请根据这种新运算解决以下问题:(1)若()11h =-,则()2h =______;()2019h =______;(2)若()7128h =,求()2h ,()8h 的值;(3)若()()442h h =,求()2h 的值; (4)若()()442h h =,直接写出()()()()()()()()2462123h h h h n h h h h n ++++的值.24.(1)已知:210,a a +-=则43222000a a a +++的值是_____(2)如果记162a =,那么1231512222+++++=_____(3)若232122192,x x ++-=则x=_____(4)若5543254321021),x a x a x a x a x a x a -=+++++(则24a a +=_____25.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S ﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).参考答案:1.C【解析】【分析】根据科学记数法表示的数的计算方法,乘号前面的数相乘,乘号后面的数相乘,再根据同底数幂相乘,底数不变指数相加进行计算,最后再化成科学记数法即可得解.【详解】解:(7×106)(5×105)(2×10)=(7×5×2)×(106×105×10)=7×1013所以,a=7,n=13.故选:C.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则与科学记数法表示的数的计算方法是解题的关键.2.B【解析】【分析】根据同底数幂相乘,底数不变,指数相加解答,即am•an=am+n.【详解】解:(﹣a)2•a3=a2•a3=a2+3=a5,故选:B.【点睛】此题考查同底数幂的乘法计算,正确掌握同底数幂的乘法公式是解题的关键.3.C【解析】【分析】根据同底数幂的乘法进行运算即可.【详解】解:如果x m=2,x n=14,那么x m+n=x m×x n=2×14=12.故选:C.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法公式.4.B【解析】【分析】根据同底数幂的乘法公式即可求出m、n、p的关系.【详解】解:①5m=3,①5n=15=5×3=5×5m=51+m,①n=1+m,①5p=75=52×3=52+m,①p=2+m,①p=n+1,①m+p=n﹣1+n+1=2n,故此结论正确;①m+n=p﹣2+p﹣1=2p﹣3,故此结论错误;①n2﹣mp=(1+m)2﹣m(2+m)=1+m2+2m﹣2m﹣m2=1,故此结论正确;故正确的是:①①.故选:B.【点睛】本题考查同底数幂的乘法,解题的关键是熟练运用同底数幂的乘法公式.5.D【解析】【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.解:28+(-2)8=28+28=2×28=29.故选:D .【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.6.A【解析】【分析】利用完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则进行计算即可解答.【详解】解:222(1)()2a b a ab b +=++,故该选项错误;0(2)22a =,故该选项错误;2(3) (3)3±=,故该选项错误;347(4) a a a ⋅=,故该选项错误;532(5)a a a ÷=,故该选项正确;故选:A .【点睛】本题考查了完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则,熟练掌握并准确计算是解题的关键.7.C【解析】【分析】根据单项式乘单项式,可判断A ,根据同底数幂的乘法,可判断C ,根据积的乘方,可判【详解】A 、单项式与单项式相乘,把系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,故A 错误;B 、3得立方是27,故B 错误;C 、同底数幂的乘法底数不变指数相加,故C 正确;D 、积的乘方等于乘方的积,故D 错误;故选:C .【点睛】此题考查幂的运算,单项式与单项式的乘法,解题关键在于掌握幂的运算和单项式的运算.8.D【解析】【分析】根据积的乘方的运算法则,分别将各项的结果计算出来再进行判断即可.【详解】A . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项A 错误;B . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项B 错误; C . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项C 错误; D . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项D 正确. 故选:D .【点睛】此题主要考查了积的乘方与同底数幂的乘法运算,熟练掌握运算法则是解题的关键. 9.A【解析】【分析】先提取公因式20092,再进行计算,即可求解.【详解】201120102009222--=220091(221)2--⨯=200912⨯=20092故选A .【点睛】本题主要考查同底数幂的乘法法则的逆运用,掌握分配律以及同底数幂的运算法则,是解题的关键.10.2-【解析】【分析】将92781m n ⨯=进行整理,得到232349273333m n m n m n +⨯=⨯==,即234m n +=,代入即可求解.【详解】解:①232349273333m n m n m n +⨯=⨯==,①234m n +=,①()64662236242m n m n --=-+=-⨯=-,故答案为:2-.【点睛】本题考查同底数幂相乘的应用,将92781m n ⨯=变形得到234m n +=是解题的关键. 11.5a -【解析】【分析】根据同底数幂的乘法运算法则进行计算即可.【详解】225533=()(())()a a a a a +-⋅--=--=故答案为:5a -.【点睛】本题主要考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键. 12.3【解析】【分析】直接利用幂的乘方运算法则将原式变形,进而利用同底数幂的乘法运算法则求出答案.【详解】解:①2x +3y ﹣1=0,①2x +3y =1.①9x •27y =32x ×33y =32x+3y =31=3.故答案为:3.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键. 13.﹣(x ﹣y )6##-(y-x )6【解析】【分析】将原式第二个因式提取-1变形后,利用同底数幂的乘法法则计算,即可得到结果.【详解】解:(x ﹣y )2(y ﹣x )3(x ﹣y )=﹣(x ﹣y )2(x ﹣y )3(x ﹣y )=﹣(x ﹣y )6.故答案为:﹣(x ﹣y )6.【点睛】此题考查了同底数幂的乘法运算,熟练掌握法则是解本题的关键.14.55m【解析】【分析】按照同底数幂相乘运算法则进行计算即可.【详解】23(23)5555m m m m +⋅== 故答案为:55m【点睛】本题考查了同底数幂相乘,掌握同底数幂相乘底数不变,指数相加是解题的关键 15.144【解析】【分析】先将25x y +变形为22(5)(5)x y ⨯,然后结合同底数幂的乘法的概念和运算法则将53x =,54y =代入求解即可.【详解】解:53x =,54y =,25x y +∴2255x y =⨯22(5)(5)x y =⨯2234=⨯916=⨯144=.故答案为:144.【点睛】本题考查了同底数幂的乘法,解答本题的关键在于先将25x y +变形为22(5)(5)x y ⨯,然后结合同底数幂的乘法的概念和运算法则将53x =,54y =代入求解.16. 52a - 21112222nn n a +-+-+ 【解析】【分析】先求出长方形的长与宽,再根据长方形的周长公式即可得;然后利用同样的方法求出第二次、第三次操作后得到的长方形的周长,归纳类推出一般规律即可得.【详解】解:第一次操作后得到的长方形的宽为12a ,长为121a a a +-=-, 则第一次得到的长方形的周长为12(21)522a a a +-=-, 第二次操作后得到的长方形的宽为21142a a =,长为2(21)143a a --=-, 第三次操作后得到的长方形的宽为31182a a =,长为2(43)187a a --=-,归纳类推得:第n 次操作后得到的长方形的宽为12na , 观察发现,第一次操作后得到的长方形的长为212(1)1a a -=-+,第二次操作后得到的长方形的长为2434(1)12(1)1a a a -=-+=-+,第三次操作后得到的长方形的长为3878(1)12(1)1a a a -=-+=-+, 归纳类推得:第n 次操作后得到的长方形的长为2(1)1n a -+,则第n 次操作后得到的长方形的周长为21111222(1)12222n n n n n a a a +-+⎡⎤+-+=-+⎢⎥⎣⎦, 故答案为:52a -,21112222nn n a +-+-+. 【点睛】本题考查了图形规律探索、同底数幂的乘法,正确归纳类推出长与宽的一般规律是解题关键.17.22a a -【解析】【分析】观察发现规律,并利用规律完成问题.【详解】观察232222+=-、23422222++=-发现23n 1222222n +++++=- ①5051529910022222+++++ =()505024*********+++++ =50505122(22)+-=50505022(222)+⨯-(把502a =代入)=(22)a a a +-=22a a -.故答案为:22a a -.【点睛】此题考查乘方运算,其关键是要归纳出规律23n 1222222n +++++=-并运用之.18.(1)3,0,﹣2;(2)a +b =c ,理由见解析.【解析】【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a,b,c的等式,然后根据幂的运算法则求解即可.【详解】(1)①33=27,①(3,27)=3,①40=1,①(4,1)=0,①2﹣2=14,①(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a+b=c.理由:①(3,5)=a,(3,6)=b,(3,30)=c,①3a=5,3b=6,3c=30,①3a×3b=5×6=3c=30,①3a×3b=3c,①a+b=c.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.19.(1)b7;(2)(x﹣y)3(y﹣2)7.【解析】【分析】(1)直接利用同底数幂的乘法运算法则进而计算得出答案;(2)直接利用同底数幂的乘法运算法则进而计算得出答案.【详解】解:(1)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(2)(x ﹣y )3×(y ﹣2)2×(y ﹣2)5=(x ﹣y )3(y ﹣2)7.【点睛】本题考查幂的相关计算,有时候需要有整体思想,把底数可以为多项式的.20.(1)﹣x 2+4xy ,﹣94;(2)①6;①89. 【解析】【分析】(1)先利用整式的加减运算法则进行化简,再将x 、y 的值代入求解即可;(2)根据同底数幂的逆运算计算即可.【详解】(1)22()(23)6x xy x xy ---223262x xy x xy --+=24x xy =-+当1,12x y ==-时,原式2211194)4(1)222(44x xy =-=-⨯++⨯-=--=-; (2)2,3m n a a ==①236m n m n a a a +=⋅=⨯=;①323232328()()239m n m n m n a a a a a -=÷=÷=÷=. 【点睛】本题考查了整式的加减、同底数幂的运算,熟记整式的运算法则是解题关键.21.()53a b -【解析】【分析】将原式中的每项变成同度数幂,运用同底数幂的乘法法则进行计算即可得解.【详解】()()()()()3452 a b b a a b b a a b -⋅----+-, =()()()()()3245+a b a b a b a b a b -⋅---+-=()()()555 +a b a b a b --+-=()53a b -【点睛】此题主要考查了同底数幂的乘法,掌握并熟练运用同底数幂的忒覅覅买基金解题的关键. 22.(1)0,-2;(2)42【解析】【分析】(1)根据已知幂的定义得出即可;(2)根据已知得出3a =6,3b =7,3c =x ,同底数幂的乘法法则即可得出答案.【详解】(1)根据规定,(5,1)=0,(4,116)=-2, 故答案为:0;-2;(2)①(3,6)=a ,(3,7)=b ,(3,x )=c ,①3a =6,3b =7,3c =x ,又①a+b=c ,①3a ×3b =3c ,即x=6×7=42.【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.23.(1)1;-1;(2)4;256;(3)4;(4)122n +-【解析】【分析】(1)将()2h 变形为()11h +,根据新定义计算即可;(2)将()7h 变形为()71h ⎡⎤⎣⎦,得出()1h ,即可得出()2h ,()8h 的值; (3)将等式变形()()()()42222h h h h +=,即可得解; (4)根据变形发现规律,即求()()()()123h h h h n ++++的值,求解即可.【详解】(1)()()()()()()21111111h h h h =+=⋅=--=;()()()()()()()()100920191201812018122016121h h h h h h =+=⋅=-+=-=-(2)()()771128h h ==①()12h =①()()()2114h h h =⋅=,()()()()817172128256h h h h =+=⋅=⨯= (3)()()()()()()()()4222224222h h h h h h h h +==== (4)由(3)得出()24h =,①()12h =①()()()()()()()()2462123h h h h n h h h h n ++++=()()()()123h h h h n ++++=124816222n n ++++++=-【点睛】 此题主要考查同底数幂的乘法,定义新运算,熟练掌握运算性质和法则是解题关键. 24.(1)2001(2)1a -(3)52(4)﹣120【解析】【分析】(1)根据题意,得到21a a +=;再将原式进行变形即可得出答案(2)先设原式等于m ,利用2m -m 求出原式的值,最后将a 代入即可(3)根据幂的乘方运算公式对原式进行变形,然后进而的出答案(4)采用赋值法进行计算【详解】(1)由题意得:21a a +=;①43222000a a a +++=43322000a a a a ++++=()22322000a a a a a ++++=3222000a a a +++=()222000a a a a +++=12000+=2001 (2)设1231512222m =++++⋯+,则23416222222m =++++⋯+;①16221m m -=-,即1621m =-①原式=1a -(3)232122x x ++-=212x +∙22122x +-=2132x +⋅=192①21264x +=①216x +=①52x = (4)当x=1时,1=012345a a a a a a +++++ ……①当x=﹣1时,53-=012345a a a a a a -+--+ ……①当x=0时,-1=0a①+①=()0242a a a ++=513-即024a a a ++=5132- ①24a a +=5132-+1=﹣120 【点睛】本题主要考查了代数式的变形求值,掌握各类代数式求值的特点是解题关键25.(1)211﹣1(2)1+3+32+33+34+ (3)=1312n +-. 【解析】【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值.(2)同理即可得到所求式子的值.【详解】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n,两边乘以3得:3S=3+32+33+34+…+3n+3n+1,下式减去上式得:3S﹣S=3n+1﹣1,即S=1312n+-,则1+3+32+33+34+…+3n=1312n+-.。
1.1同底数幂的乘法一、单选题1.计算3()()x y x y -⋅-=( ).A.4()x y -B.3()x y -C.4()x y --D.4()x y +2.下列计算过程正确的是( )A.2358x x x x ⋅⋅=B.347x y xy ⋅=C.57(9)(3)3-⋅-=-D.56()()x x x --= 3.下列各式的计算结果为7a 的是( )A.25()()a a -⋅-B.25()()a a -⋅- C.25()()a a -⋅- D.6()()a a -⋅- 4.当0,a n <为正整数时,52()()n a a -⋅-的值 ( )A.正数B.负数c.非正数 D.非负数 5.10,10x ya b ==,则210x y ++等于( )A.2abB.a b +C.2a b ++D.100ab6.已知2,3,m n x x ==则m n x +的值是( )A.5B. 6C. 8D. 97.计算·53a a 正确的是( ) A. 2aB. 8aC. 10aD.15a8.在等式3211()a a a ⋅⋅=中,括号里面的代数式是( ).A.7aB.8aC.6aD.3a9.已知m n 34a a ==,,则m+n a 的值为( ).A.12B.7 二、解答题10.求下列各式中x 的值.(1)21381243;x +=⨯(2)3141664 4.x -⨯=⨯三、填空题11.已知34x =,则23x += .12.计算34x x x ⋅+的结果等于________.13.已知1428m +=,则4m = .14.若2m 5x x x ⋅=,则m =_____.参考答案1.答案:A解析:2.答案:D解析:选项A 中,2351359x x x x x ++⋅⋅==,故本选项错误;选项B 中,3x 与4y 不是同底数幕,不能运算,故本选项错误;选项C 中,5257(9)(3)3(3)3-⋅-=-⋅-=,故本选项错误;选项D 中,5516()()()x x x x +--=-=,故本选项正确.故选D3.答案:C解析:选项A 中,275()()a a a -⋅-=-,故此选项错误;选项B 中,257()()a a a -⋅-=-,故此选项错误;选项C 中,275()()a a a -⋅-=,故此选项正确;选项D 中,67()()a a a ⋅-=--.故此选项错误.4.答案:A解析:5225()()(),n n a a a +-⋅-=-∴当0,a n <为正整数,即0a ->时,25()0,n a +->是正数5.答案:D解析:2210101010100x y x y ab ++=⨯⨯=.6.答案:B解析:2,3,23 6.m n m n m n x x x x x +==∴=⋅=⨯=7.答案:B解析:8.答案:C解析:9.答案:A解析:10.答案:解(1)21381243x +=⨯2145333x +=⨯则219x +=解得4x =(2)31416644x -⨯=⨯3124444x -⨯=314x +=则1x =解得解析:11.答案:36解析:223334936x x +=⋅=⨯=.12.答案:42x解析:13.答案:7解析:因为11444m m +=⨯,所以4428m ⨯=,所以47.m =14. 答案:3 1.2幂的乘方与积的乘法一、单选题1.下列运算正确的是( )A.326x x x ⋅=11=C.224+=x x xD.()22436x x = 2.计算(-2x 2)3的结果是( )A.-8x 6B.-6x 6C.-8x 5D.-6x 53.下列各式计算正确的是( )A. 235ab ab ab +=B. ()22345a ba b -=C. =D. ()2211a a +=+4.计算(-xy 2)3的结果是( )A.-x 3y 6B.x 3y 6C.x 4y 5D.-x 4y 55.下列运算正确的是( )A.x 2·x 3=x 6B.x 3+x 2=x 5C.(3x 3)2=9x 5D.(2x)2=4x 26.计算正确的是( )A.a 3-a 2=aB.(ab 3)2=a 2b 5C.(-2)0=0D.3a 2·a -1=3a 7.下列计算正确的是( )A.a 3·a 2=a 6B.3a+2a 2=5a 2C.(3a)3=9a 3D.(-a 3)2=a 6 8.计算(-x 2)3的结果是( )A.-x 5B.x 5C.x 6D.-x 6 9.计算(-a 2)5的结果是( )A.a 7B.-a 7C.a 10D.-a 10 二、解答题10.已知 333,2,m n a b ==求()()332242m n m n m n a b a b a b ⋅+-的值 。