1相反数和倒数
- 格式:doc
- 大小:27.50 KB
- 文档页数:4
(小升初) 备课教员:×××第二讲 数轴、相反数和倒数一、教学目标: 1. 能正确掌握数的分类,理解数轴、相反数与倒数的重要概念。
2. 给一个数能求出它的相反数,并且在数轴上表示,掌握求倒数的方法。
3. 通过相反数的几何意义,进一步渗透数形结合的思想;经历倒数的意义和形成过程,培养学生观察、分析、归纳、举例及语言表达能力。
二、教学重点: 数形结合,理解相反数及倒数的意义 三、教学难点: 相反数及倒数,及比较有理数的大小。
四、教学准备: PPT ,温度计 五、教学过程:第一课时(50分钟)一、导入(5分种)师:同学们,还记得上节课我们学了什么吗?谁能来说说? 生:有理数。
师:上节课我们是不是学了有理数?还记得有理数的分类吗? 生:师:有理数是不是可以分为正有理数、负有理数和零?那同学们看老师手上拿的是什么?(温度计) 生:温度计。
师:是的,那它形状是什么样的?上面的刻度和数字有什么样的特点? 生:……师:是不是也有正的和负的还有零? 生:……师:好,那么今天就来学习和温度计有相似之处的数轴。
我们课本也给了数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
这三个统称为数轴的三要素。
三者缺一不可。
板书课题:数轴、相反数和倒数数轴定义:规定了原点、正方向和单位长度的直线叫做数轴。
相反数:数值相反的两个数,我们就说其中一个数是另一个数的相反数。
倒数:设一个数a 与其相乘的积为1的数,得到的a1就是a 的倒数。
二、星海遨游(43分钟) 例题一:(9分钟)如下图所示,数轴中正确的是( )。
师:同学们先看看这些数轴,发现了什么? 生:……师:我们可以先看看哪个是错的?是不是B 肯定是错的?因为它连原点都没有,再看看选项A 它少什么? 生:……师:是不是少了正方向?所以它也是不对的。
再看选项C ,它是哪里错了呢? 生:……师:因为我们已经判断了选项A 和选项B 是错的,那C 和D 肯定有一个是正确的,同学们看看C 和D 有什么不同的呢? 生:……师:它们是不是都有原点和正方向?但是大家仔细看一下选项C 的单位长度是不是不一样?0到-1的长度和0到1的长度都是一个单位长度,然而它们长度不一样,所以C 也是错的。
初一数学专题二:绝对值相反数倒数华东师大版【本讲教育信息】一. 教学内容:专题二:绝对值相反数倒数二、知识要点1. 知识点概要⑴了解有理数的绝对值、相反数、倒数的意义;⑵会求一个有理数的相反数、绝对值、倒数;⑶能借助数轴理解一个数的绝对值、相反数、倒数及完成相关计算.2. 重点难点⑴有理数(特别是负数)绝对值、相反数的意义;⑵数形结合的思想方法.三、考点分析(一)借助于数轴学习有理数的概念数轴不但是研究数形结合的典型的思想方法,而且是学习有理数的重要工具.借助于数轴可以加深对有理数的有关概念的理解和运用.1. 借助于数轴理解正负数数轴的建立,可以将所有的有理数在数轴上表示出来.即零可以用原点表示,正数可以用原点右边的点表示,负数可以用原点左边的点表示出来.如,-0.1,-1,-2,-100等等只能在数轴的左边表示出来,0在数轴的原点表示出来,0. 1,1,2,100等等只能在数轴的右边表示出来.2. 借助于数轴理解绝对值⑴数轴上表示一个数的点与原点的距离,叫做这个数的绝对值.绝对值的几何意义可以由数轴直接知道:一个数a的绝对值就是数轴上表示数a的点与原点的距离.a的绝对值记作|a|.⑵由数轴我们同样可以知道绝对值的代数意义:一个正数的绝对值就是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.用数学式子表示为() ()()0, 00,0.a aaa a⎧⎪=⎨⎪-⎩><⑶绝对值的主要性质:①若a为有理数,则|a|≥ 0;②绝对值为某一正数的有理数有两个,它们互为相反数;互为相反数的两个数的绝对值相等;③若|a|=a¸则a≥ 0;④若|a|+|b|=0¸则a=b=0;⑤绝对值没有最大的数,但有绝对值最小的数:0.3. 借助于数轴理解相反数⑴我们知道,只有符号不同的两个数,我们称它们互为相反数.如212与-212互为相反数,即212是-212的相反数,-212是212的相反数.零的相反数是零.由此可知,互为相反数的两个数表示在数轴上分别在原点的两旁,并且这两个数到原点的距离相等.⑵事实上,我们可以借助于数轴来这样理解相反数的概念,在数轴上,位于原点两旁,且到原点的距离相等的两个点表示的两个数即为互为相反数.如3与-2就不是互为相反数.要注意概念中的“只有”这个字眼,就是说在两个数中,只是符号不同,一个是正号,另一个是负号,其余什么都相同.另外,由数轴上原点两旁,且到原点的距离相等的两个数总是成对出现的,单独一个数或三个数等都不能说成是互为相反数.符号不同的两个数也不能说成是互为相反数,⑶相反数的表示方法:一般地,数a 的相反数是-a ,这里a 表示任意的一个数,可以是正数、0、负数,a 还可以代表任意一个代数式.一般地,在一个数前面添加一个“-”号,就成为原数的相反数.⑷相反数的重要性质:①如果a 、b 互为相反数,则a +b =0,反之,若a +b =0,则a 、b 互为相反数;②如果a 、b 互为相反数,则a 、b 在数轴上对应的点到原点的距离相等,即互为相反数的两个数的绝对值相等. 4. 借助于数轴比较有理数的大小 在数轴上表示的两个数,右边的数总比左边的数大.由此,利用数轴比较有理数的大小,采用数形结合的方法,简单、直观,同学们也一定易于掌握.(二)倒数⑴倒数的意义:乘积为1的两个数互为倒数,其中一个数是另一个数的倒数.即当ab=1时,则a 、b 互为倒数;反之,当a 、b 互为倒数时,则ab=1.⑵倒数与相反数的区别:①互为倒数的两个数的积为1,而互为相反数的两个数的和为0;②0的相反数是0,而0没有倒数;③互为倒数的两个数同号,而互为相反数的两个数(0除外)异号.⑶倒数的求解方法:①求一个整数的倒数时,直接写成这个数分之一即可.如- 3的倒数是 -31;②求一个分数的倒数时,就是把这个分数的分子和分母交换一下即可.如 -53的倒数是 -35;③若求小数的倒数时,先将小数化成分数再求.如求-0.5的倒数,由-0.5 = -21,-21的倒数是-2,则-0.5的倒数是-2。
二、概念、比较大小、平方、绝对值、相反数、倒数有关知识1、正数和负数正数和负数是表示两个具有相反意义的量,即正数和负数是相对的,规定不同,则正数和负数的表示不一样。
2、任何一个数字母(未知数)都要分三种情况来分析(例如a a是正数a>0a是0 a=0a是负数a<0)3 相反数:1、互为相反数的两个数到原点的距离相等2、a的相反数是-a3、-a不一定是负数,-a是a的相反数。
(a=-3,则-a=3)4、相反数和为0(即ab互为相反数,则a+b=0或a= -b)4、绝对值:1正数的绝对值是他本身(|a|=a |A-B|=A-B(A>B))2负数的绝对值是他的相反数(|a|=-a |A-B|=B-A(A<B))3、0的绝对值是0 (|A-B|=0(A=B))4、绝对值要考虑两种情况|a| =3,则a= +3或-35、倒数:⑴a的倒数是1 a2、1a的倒数是a3、倒数积为1,(即ab互为倒数则ab=1,a=1 b)6、平方:y2=9 y= +3或-37、七年级中不能为负的数只有两种情况即1、(|a|>=0 )2、y 2 >=08、比较大小的方法一般有三种情况:1,数轴比较法:(数轴上右边的数总比左边的大、正数大于0、负数小于0、正数大于负数)(一般适用于数字间的比较)2、绝对值比较:两个负数比较大小,绝对值大的反而小3、做差法:一般用于多项式之间的比较(A-B>0则A>B ,A-B<0则A<B 。
A-B=0则A=B )例如2x-3和2x+1比较大小,(2x-3)-(2x+1)=-4所以2x-3<2x+14、平方法:一般用于幂次数之间的比较32 和23比较大小 练习题讲解1、-9的倒数的相反数是______ ;2、平方等于9的数是__________ ;(y2=9 y= +3或-3)3、比较各对数的大小: -0.5____-2/3 ;(两个负数比较大小,绝对值大的反而小,分数化小数)4、如果把长江的水位比警戒水位高0.2米,记作+0.2米,那么比警戒水位低0.15米,记作____米5、在数轴上,距原点2个单位长度的点表示的数是 。
第3讲 数轴、相反数与倒数【学习目标】1、掌握数轴,相反数,倒数的概念并会灵活运用,能熟练地画数轴。
2、通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3、体验数形结合的思想。
【知识要点】1.数轴:规定了原点、正方向和单位长度的直线叫数轴。
原点,正方向和单位长度是数轴的三要素,缺一不可。
2、数轴的画法:①画一条直线。
②在直线上选取一点为原点,并用这点表示零。
③确定正方向,用箭头表示出来。
④选取适当的长度为单位长度,从原点向右,每隔一个单位长度取一点,依次表示为1,2,3,…;从原点向左,每隔一个单位长度取一点,依次表示为-1,-2,-3,…3、数轴上的点与有理数的关系:所有的点都可以用数轴上的点表示;反过来,不能说数轴上的点都表示有理数。
正有理数可以用原点右边的点表示,负有理数可以用原点左边的点表示,零用原点表示。
4、利用数轴比较有理数的大小:在数轴上表示的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0,;正数大于一切负数。
5.相反数从代数角度看,只有符号不同的两个数叫做互为相反数.从几何角度看,在数轴上的原点两旁,离开原点距离相等的两个点所表示的两个数称为相反数.6. 判断互为相反数的两种方法:①从式子上看,若0a b +=,则a b 与互为相反数;②从直观上看a a -与是互为相反数。
7、倒数:乘积为1的两个有理数互为倒数。
注意:正数的倒数是正数,负数的倒数是负数,0没有倒数,整数的倒数是分数。
【经典列题】例1、如下图所示,数轴中正确的是( )-1 0 1-1 0 1 -1 0 1例2、把下列各数在数轴上表示出来,并且从小到大用“<”连接起来:-2,132,0,14-,1,142-,152。
例3、写出5,-3,0,-1.25各数的相反数和倒数,并把它们都在数轴上表示出来,例4、已知A 、B 是数轴上的点。
(1)若点A 表示-3,以点A 出发,沿数轴移动4个单位长度到达B 点,则B 点表示的数是 。
数的相反数和倒数数学中,我们经常会遇到相反数和倒数的概念。
相反数是指与某个数相加后等于零的数,倒数则是指与某个数相乘后等于一的数。
这两个概念在数学运算和实际应用中都具有重要的意义。
本文将对相反数和倒数进行详细的介绍。
一、相反数相反数是一对数中的一种特殊关系。
对于任意一个实数a来说,其相反数记作−a,满足a + (−a) = 0。
简单来说,a的相反数就是与a相加后等于零的数。
例如,数1的相反数是−1,数−3的相反数是3。
相反数具有以下性质:1. 相反数的绝对值相等,符号相反。
例如,数a的相反数的绝对值等于a的绝对值,但符号相反。
2. 两个相反数的和是零。
例如,数a和其相反数−a相加等于零。
相反数在数轴上的表示方法:在数轴上,相反数的表示方法是在a 的位置上找到与之相对的点,这个点的坐标就是-a。
例如,在数轴上,数2的相反数是-2,在数轴上的表示就是从原点出发,往左移动2个单位长度。
二、倒数倒数是数学中另一个重要的概念。
对于任意一个非零实数a来说,其倒数记作1/a或a^(-1),满足a * (1/a) = 1。
简单来说,a的倒数就是与a相乘后等于1的数。
例如,数2的倒数是1/2,数3的倒数是1/3。
倒数具有以下性质:1. 零没有倒数。
因为任何数与0相乘都得0,所以零没有倒数。
2. 除数的倒数等于被除数的倒数。
如果a和b都是非零数,那么a/b 的倒数就等于b/a的倒数。
倒数在数轴上的表示方法:在数轴上,倒数的表示方法是通过分数来表示。
例如,数2的倒数是1/2,在数轴上就是将1等分成2份,所在的位置就是倒数的表示。
三、相反数和倒数的应用相反数和倒数在数学的运算和实际应用中具有广泛的应用,以下是一些常见的应用场景:1. 相反数常用于解决方程和平衡等式。
通过引入相反数,可以进行消元和抵消,简化问题的求解过程。
2. 倒数常用于分数的运算和比例的计算。
在分数的除法中,可以通过求倒数来将除法转化为乘法,简化运算过程。
(小升初)备课教员:×××第二讲数轴、相反数和倒数一、教学目标: 1. 能正确掌握数的分类,理解数轴、相反数与倒数的重要概念。
2. 给一个数能求出它的相反数,并且在数轴上表示,掌握求倒数的方法。
3. 通过相反数的几何意义,进一步渗透数形结合的思想;经历倒数的意义和形成过程,培养学生观察、分析、归纳、举例及语言表达能力。
二、教学重点:数形结合,理解相反数及倒数的意义三、教学难点:相反数及倒数,及比较有理数的大小。
四、教学准备:PPT,温度计五、教学过程:第一课时(50分钟)一、导入(5分种)师:同学们,还记得上节课我们学了什么吗?谁能来说说?生:有理数。
师:上节课我们是不是学了有理数?还记得有理数的分类吗?生:师:有理数是不是可以分为正有理数、负有理数和零?那同学们看老师手上拿的是什么?(温度计)生:温度计。
师:是的,那它形状是什么样的?上面的刻度和数字有什么样的特点?生:……师:是不是也有正的和负的还有零?生:……师:好,那么今天就来学习和温度计有相似之处的数轴。
我们课本也给了数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
这三个统称为数轴的三要素。
三者缺一不可。
板书课题:数轴、相反数和倒数数轴定义:规定了原点、正方向和单位长度的直线叫做数轴。
相反数:数值相反的两个数,我们就说其中一个数是另一个数的相反数。
倒数:设一个数a 与其相乘的积为1的数,得到的a1就是a 的倒数。
二、星海遨游(43分钟)例题一:(9分钟)如下图所示,数轴中正确的是( )。
师:同学们先看看这些数轴,发现了什么?生:……师:我们可以先看看哪个是错的?是不是B 肯定是错的?因为它连原点都没有,再看看选项A 它少什么?生:……师:是不是少了正方向?所以它也是不对的。
再看选项C ,它是哪里错了呢? 生:……师:因为我们已经判断了选项A 和选项B 是错的,那C 和D 肯定有一个是正确的,同学们看看C 和D 有什么不同的呢?生:……师:它们是不是都有原点和正方向?但是大家仔细看一下选项C 的单位长度是不是不一样?0到-1的长度和0到1的长度都是一个单位长度,然而它们长度不一样,所以C 也是错的。
绝对值、相反数、倒数的性质及应用一、【知识大串联】1.相反数的概念关键要理解“只有符号不同”的含义,规定零的相反数是零;2.互为相反数指的是一对数,甲、乙两数互为相反数包括甲是乙的相反数,乙也是甲的相反数;3.相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等。
4.多重符号化简的依据就是相反数的意义,化简的结果是由“-”号的个数来决定的,简称:奇负偶正。
5.什么是一个数的绝对值呢?从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离。
注意,这里的距离,是以单位长度为度量单位的,是一个非负的量。
6.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数;零的绝对值是零。
7.两个负数,绝对值大的反而小。
8.绝对值的性质:(1)若a为有理数,则︱a︱≥0.(2)绝对值为某一正数的有理数有两个,它们互为相反数;互为相反数的两个数的绝对值相等。
(3)若︱a︱=a,则a≥0.(4)若︱a︱+︱b︱+︱c︱+︱d︱+…+︱m︱=0,则︱a︱=0︱b︱=0,︱c︱=0,︱d︱=0,…,︱m︱=0, 即a=0,b=0,c=0,d=0,…,m=0.(5)最小的绝对值为0,但无最大的绝对值。
9.相反数的性质:若a、b互为相反数,则a+b=0.10.倒数的性质:若a、b互为倒数,则ab=1.【精练】若a、b互为相反数,c、d互为倒数,则a+b+cd+1= .解:因为a、b互为相反数,c、d互为倒数所以a+b=0,cd=1 所以a+b+cd+1=0+1+1=2二、【典例分析】1.利用概念例1.5的相反数是() A. -5 B. 5 C. D.解析:根据相反数的概念:只有符号不同的两个数叫做互为相反数,易知本题选A例2.绝对值为4的实数是 A. ±4 B. 4 C. -4 D. 2解析:求绝对值等于4的数用绝对值几何定义比较直观,绝对值等于4的整数即在数轴上到原点距离等于4的整数点表示的数,故本题选A2.用性质特征3.例3.-2的绝对值是()A.2 B.-2 C.±2 D.解析:由绝对值的特征:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 所以-2的绝对值是2例4.若a与2 互为相反数,则|a+2|等于() A. 0 B. -2 C.2 D. 4 解析:由相反数的特征若a、b两数互为相反数,则a+b=0,反之也成立.可知a+2=0,再由绝对值的特征可得本题选A例5若a、b、c都是负数,且︱x-a︱+︱y-b︱+︱z-c︱=0,则xyz是()A 负数B 非负数C 正数D非正数解:由绝对值性质,得:x-a=0,y-b=0,z-c=0 所以x=a,y=b,z=c 因为a<0,b<0,c<0 所以xyz=abc<0 即xyz为负数,故选A。
教师姓名 学生姓名 教材版本 北师大版学科名称 数学年 级七年级上课时间课题名称相反数和倒数教学目标1.使学生正确理解数轴的意义,掌握数轴的三要素。
2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来。
3.使学生初步理解数形结合的思想方法.教学重点初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,弄清相反数所表示的意义。
教 学 过 程备 注【知识要点】1.数轴:规定了原点、正方向和单位长度的直线叫做数轴。
利用数轴比较数的大小:数轴右边的数总比左边的数大。
2.相反数的定义:只有符号不同的两个数互为相反数,其中一个数叫做另一个数的相反数.例如+3与-3互为相反数,其中-3是+3的相反数.零的相反数是0.正数的相反数是负数,负数的相反数是正数.在一个数的前面添加“+”号,仍然与原数相同;在一个数的前面添上“-”号,就成为原数的相反数。
注意:写代数式的相反数时要注意添括号,如2a +的相反数应写成(2)a -+。
3.多重符号的化简:一个正数的前面不管有多少个“+”号,都可以把它们全部去掉;一个正数的前面有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,化简符号后只剩下一个“-”号.4.相反数的几何意义:互为相反数的两个数在原点的两旁,且离原点的距离相等.零的相反数是原点.5.相反数的性质:若a 与b 互为相反数,则0=+b a ;反之,若0=+b a ,则a 与b 互为相反数.互为相反数的两数商为-1,(0除外),即若a 与b 互为相反数,则)0(1≠-=b ab6.倒数的定义:乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,例如32与23互为倒数,其中23是32的倒数.乘积是-1的两个数互为负倒数。
7.1除以一个数(零除外)的商,叫做这个数的倒数,这是求一个求倒数的方法;如果两个数互为倒数,那么这两个数的积等于1.这是判定两个数是互为倒数的方法. 【典型例题】例1 如下图所示,数轴中正确的是( )B-10 1A-1 0 1 C-1 0 1D例2、试比较-0.3,13-,0.03,0,3,33%-的大小,并用“<”连接起来。
绝对值相反数倒数习题课Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT绝对值相反数倒数学习目标:1、进一步理解绝对值、相反数和倒数的意义。
2、会用绝对值、相反数和倒数的意义解决相关的问题。
学习重点:进一步理解绝对值、相反数和倒数的意义。
学习难点:会用绝对值、相反数和倒数的意义解决相关的问题。
学习过程: ★绝对值1、几何角度定义:①在数轴上表示一个数的点到原点的距离叫做这个数的绝对值。
0的距离,即线段AO 的长度。
②注意事项:在数轴上,数对应的是一个点;数的绝对值对应的是一条线段。
2、代数角度定义:①一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是0. ②非负数的绝对值等于它本身,非正数的绝对值等于它的相反数。
③用数学式子表示:|a|=⎩⎨⎧≤-≥)0()0(a a a a |a|=⎪⎩⎪⎨⎧<-=>)0()0(0)0(a a a a a3、去掉绝对值的方法:第一步通过比较大小确定出绝对值里面整体式子与0的大小关系;第二部根据代数角度的定义去掉绝对值。
4、常见的结论:①如果两个数的绝对值相等,那么这两个数相等或互为相反数。
例如:|±2|=2。
②如果|a|=|b|,那么a=b 或a=-b 。
③如果一个数的绝对值是它本身,那么这个数是0和正数(非负数)。
④|a|表示的是一个非负数,即|a|≥0. 练习1、绝对值小于的整数有。
2、绝对值大于2而不大于5的整数有。
3、|2|=,|-21|=,|-π|=, 4、对于实数x ,若有x +|x|=0,则x 是数,(或x0)。
5、对于实数x ,若有x -|x|=0,则x 是数,(或x0)。
6、已知|a|=2,那么a=,已知|2y|=6,那么y=。
7、已知|x +2|=3,那么x=;已知|2x-1|=1,那么x=。
8、已知|a|+|b|=0,那么a=,b=。
《数学思维与能力训练》辅导讲义
姓名 辅导日期
相 反 数 和 倒 数
【知识要点】
1、相反数是指绝对值相同而符号相反的两个数,两个互为相反数的和等于零。
如果两个数互为倒数,那么这两个数的积等于1,这是判断两个数互为倒数的方法。
2、在许多数学综合题中经常出现相反数和倒数,引进相反数,减法可以统一为加法,引进倒数,除法可以统一为乘法,灵活合理的运用相反数和倒数的概念及相关知识,解答某些数学问题往往起着非常重要且意想不到的作用。
【夯实基础】
[例题1]若a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于1,求a + b + x 2 – cdx 值
[例题2]若a 和b 互为相反数,b 和c 互为倒数,求23a
c b ac 的值
[例题3]若 | x – 1 | 与 | y + 2 | 互为相反数,试化简 (x + y ) 2003
〖小试牛刀〗
1、已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于2,求x 2 – c 2d 2x – a – b 的值
2、若 | m + 5 | 与 ( n – 2 ) 4互为相反数,求m n 的值
3、已知2 | 3a – 2b | + (4b – 12) 2 = 0,求
)42
1(41312++--b b a a a 的值
4、若| a + b | 与| a – b | 互为相反数,化简| a 1999 + b 1999 | + | a 1999– b 1999 |
5、有理数a等于它的相反数,有理数b等于它的倒数,则a 2002 + b 2002的值为多少?
6、若一个数的相反数与自身的绝对值的和为0,求这个数
[例题4]设y = ax 17 + bx 13 + cx 11– 5,其中a、b、c为常数,已知当x = 7时y = 7,则x = – 7时y的值等于多少?
〖小试牛刀〗
已知y = ax 5 + bx 3 + cx + 665,且当x = 365时,y = 665,求x = – 365时y 的值
【拓展探究】
1、已知 | ab – 2 | 与 | b – 1 | 互为相反数,试求下列代数式的值
)
2002)(2002(1)2)(2(1)1)(1(11++++++++++a a b a b a ab
2、若a 、c 是整数,b 是正整数,且满足a + b = c ,b + c = d ,c + d = a ,求a + b + c + d 的最大值。