第14讲、圆的周长与面积
- 格式:pdf
- 大小:390.38 KB
- 文档页数:9
《圆的面积》教学设计 篇1 目标预设: 1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。
教学过程: 一、引导估计,初步感知。
1、出示圆形电脑硬盘。
引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关? 2、估计圆面积大小与半径的关系。
师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系? 二、动手操作,共同探索。
1、引发转化,形成方案。
(1)我们如何推导三角形,平行四边形,梯形的面积公式的? (2)准备如何去推导圆的面积? 2、动手操作,共同探究 (1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗? (2)动手操作。
同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。
(3)比较:与刚才老师拼成的图形有何不同? (4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢? 如果一直这样分下去,拼成的图形会怎么样? 3、引导比较,推导公式。
圆与拼成的长方形之间有何联系? 引导学生从长方形的面积,长宽三个角度去思考。
根据学生回答,相机板书。
长方形的面积=长×宽 ↓↓↓ 圆的面积=∏rr =∏r2 追问:课始我们的估算正确吗? 求圆的面积一般需要知道什么条件? 三、应用公式,解决问题 1、基本训练,练练应用公式,求圆的面积。
2、解决问题 (1)出示例9,引导学生理解题意。
要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么? (2)学生计算 (3)交流,突出5平方的计算 四、巩固练习 1、练习十九1求课始出示的光盘的面积 2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草? 五、这节课你有什么收获?你认为重点的 地方有哪些? 引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法) 六、课堂作业 补充习题51页2、3、4题 拓展右图中正方形的面积是8平方厘米。
《圆的周长和面积的复习》教案《圆的周长和面积的复习》教案(通用14篇)作为一名优秀的教育工作者,常常要写一份优秀的教案,教案是教材及大纲与课堂教学的纽带和桥梁。
那么应当如何写教案呢?以下是小编为大家整理的《圆的周长和面积的复习》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《圆的周长和面积的复习》教案篇1教学素材:根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。
教学目标:1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。
2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。
3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。
教学设计思想:复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。
复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。
这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。
教学过程:一、创设情境,揭示课题。
二、回顾整理,讨论交流。
1、怎样求圆的周长?求圆的面积有几种情况?2、圆的周长和面积公式是怎样推导出来的?3、精彩会放。
(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)4、圆的周长和面积公式的推导过程对我们学习的启示。
(转化思想)5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?三、发现生活中的数学问题教师结合图片演示,让学生提出有关圆的周长和面积的问题。
图片内容:农村的喷灌、碾子、拴在木桩上的小羊。
四、走进美丽的图形世界教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。
五、开心词典以开心词典的形式,让学生做六道选择题。
第14讲 圆与扇形的面积1. 圆的面积公式:设圆的半径长为r ,面积为S ,那么圆的面积2==S r r r ππ⨯ 2. 圆环面积圆环的计算公式(r 表示小圆半径,R 表示大圆半径)22=S R r ππ-圆环 3. 扇形面积公式:设组成扇形的半径为r ,圆心角为o n ,弧长为l ,那么21==3602n S r lr π扇形 特别地:360S nS=扇 4. 组合图形面积(1)计算图形面积时,经常用到割补法,要善于添加辅助线,把图形分割成几个基本图形,再分别求出它们的面积.(2)一些复杂的图形,要经常用到平移、翻转等方法,把复杂图形转化为基本图形,再分别计算它们的面积.【例题1】填空:1. 在一个正方形里面画一个最大的圆,这个圆的周长是6.28厘米,这正方形的面积是_________平方厘米.剩下的面积是__________平方厘米.2. 大圆半径是3分米,小圆半径是2分米,小圆面积是大圆面积的__________.3. 已知外圆的半径为2cm ,内圆半径为1cm ,圆环的面积为 .4.小圆的半径为2,大圆的直径为8,那么大圆的面积是小圆的__________倍.5. 甲圆的半径是乙圆的43,则甲圆与乙圆的周长之比为 面积之比为_______ 6. A B 两圆的周长之比为2:3,其中一个大圆的面积是18,另外一个圆的面积为:______ 7. 若两圆的周长和为87.92cm ,并且大圆的直径是小圆直径的3倍,则小圆的面积为______【例题2】(圆的面积)已知甲圆的半径长等于乙圆的直径长,且它们的面积之和是100平方厘米,那么甲圆的面积是多少?【例题3】(圆环面积)已知一个圆形花坛的直径是4米,沿它的外侧铺一条1米宽的小路,求这条小路的面积。
【例题4】(扇形面积)已知圆心角为60 ,OC=6厘米,AC=2厘米,求阴影部分的面积.【例题5】(组合图形问题)求图中阴影部分的面积.【例题6】如图,长方形ABCD的长AD=8cm,宽AB=6cm,求阴影部分的周长和面积.【例题7】有一只狗被拴在建筑物的墙角上,这个建筑物是边长600厘米的正方形,拴狗的绳子长20米,现在狗从A点出发,将绳子拉紧顺时针跑,求狗跑过的图形面积【练习1】填空:1. 有相同周长的长方形、正方形、圆,它们的面积从大到小是_________________________.2. 如果一个扇形所含圆弧的长是相同半径圆周长的51,那么这个扇形的面积是这个圆面积的 .3. 如图,三个同心圆的半径分别为2、6、10,则图中阴影部分占大圆面积的____________%.(第3题)(第4题)(第5题)4. 如图,大小两个圆重叠部分的面积是20平方厘米,是大圆面积的18,是小圆面积的16,则大圆面积比小圆面积多__________平方厘米.5. 如图所示,圆1O 、圆2O 、圆3O 的半径均为1厘米,则阴影部分的面积为_______平方厘米.【练习2】 两个圆的周长之比是3∶2,面积之差是10平方厘米,两个圆的面积之和是多少?【练习3】如图中两个相连的正方形的边长分别是8厘米、3厘米,求阴影部分的面积.【练习4】求阴影部分的面积.【练习5】某已知直角三角形三边长为12、16、20,求阴影部分的面积.【练习6】如图,已知AB=10cm,以AB为直径的半圆绕A点旋转了30 ,求阴影部分的面积.(结果保留π)【练习7】如图A与B两个圆(只有14)的圆心,那么两个阴影部分的面积相差多少平方厘米?【练习8】如图,小杨将自家宠物A栓在墙角,若绳长为3米,求小狗在地面活动的最大区域面积.【练习1】如图所示,Rt△ABC中,∶C=90°,AB=10,那么图中两个扇形(即阴影部分)的面积之和为___________.【练习2】已知正方形的边长为2,求右图中阴影部分的面积.A B【练习3】求下列阴影部分的面积.(1) (2)【练习4】已知小正方形的边长是2,大正方形的边长是4,求阴影部分的面积.【练习5】如图是以边长为40米的正方形ABCD 的顶点A 为圆心,AB 长为半径的弧与以CD 、BC 为直径的半圆构成的花坛(图中阴影部分).小杰沿着这个花坛边以相同的速度跑了6圈,用去了8分钟,求小杰平均每分钟跑多少米?A BCD【例题精讲】【例题1】(1)4、0.86 (2)49(3)3π (4)4 (5)3:4、9:16 (6)8 (7)494π 【例题2】280cm 【例题3】5π2m 【例题4】143π2cm 【例题5】(1)32 (2)816-π 【例题6】()10cm π+8、2(2648)cm -π 【例题7】166π2m【学习巩固】【练习1】(1)圆、正方形、长方形 (2)15(3)33 (4)40 (5)2π【练习2】26【练习3】9(214-π)2cm【练习4】()88-π 【练习5】96 【练习6】253π2cm 【练习7】()238cm -π 【练习8】52π2m【家庭作业】 【练习1】254π 【练习2】24-π【练习3】(1)8π (2)24-π 【练习4】2+π【练习5】()6030/min m +π。
圆及圆的周长一、圆的认识1、圆的定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
如图,用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示。
连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,半径的长度就是圆规两个角之间的距离。
通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
在同一个圆里,有无数条直径,且所有的直径都相等。
在同一个圆里,有无数条半径,且所有的半径都相等。
直径与半径的关系:d=2r2、圆的对称性如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
如下图:练习:判断对错(1)半径的长短决定圆的大小。
()(2)圆心决定圆的位置。
()(3)同一个圆的直径是半径的2倍。
()(4)圆的半径都相等。
()3、圆的周长圆的周长测量方法:A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。
B、把圆放在直尺上滚动一周,直接量出圆的周长。
以下是通过上述方法测得的圆的周长与直径的大致关系:周长C(厘米)直径d(厘米))的比值(保留两位小数dC3.1421 3.14 9.53 3.16 12.64 3.1515.85 3.1631.410 3.14其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。
它是一个无限不循环小数, π但在实际应用中常常只取它的近似值,例如π。
⋅⋅⋅⋅⋅≈1415926535.314.3≈如果用C 表示圆的周长,就有:C=πd 或C=2πr例1 求下列圆的周长练习:1、求下列圆的周长2、在一个长10厘米,宽8厘米的长方形中画一个最大的圆,这个圆的周长是( )厘米。
3、大圆直径是小圆直径的3倍,大圆周长是小圆周长的()倍。
4、看图填空(单位:cm )正方形的周长是()cm ,圆的周长是()cm 。
其中一个圆的周长是( )cm ,长方形的周长是( )cm 。
第14课时 圆和扇形的面积知识精要1、圆的面积(1)圆的概念:圆所占平面的大小叫做圆的面积。
(2)圆的面积公式:设圆的半径为r ,面积为S ,那么圆的面积为2S r π=2、扇形的面积(1)扇形的概念:由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。
(2)扇形的面积公式:设组成扇形的半径为r ,圆心角为0n ,弧长为l ,则213602n S r lr π==扇形 3、扇形统计图 扇形统计图是用圆的面积表示一组数据的整体,用圆中扇形面积与圆面积的比来表示各组成部分在总体中所占的百分比的统计图。
扇形统计图有时也称做饼分统计图,扇形统计图可以直观地反映出各个部分数量在总量中所占的份额。
热身练习1、已知圆的周长为12.56厘米,则这个圆的面积是__12.56___平方厘米。
2、已知圆的面积是50.24平方厘米,那么这个圆的半径是___4___厘米。
3、已知扇形面积是1.413平方分米,圆心角是72°,那么它的半径是__15___厘米。
4、一个雷达圆形屏幕的半径是50厘米,那么屏幕的面积是__7850__平方厘米。
5、在一边长是12厘米的正方形铁片上,剪一个最大的圆,剪去的面积是__113.04___平方厘米。
6、大圆半径是小圆半径的3倍,大圆的面积是84.78平方厘米,则小圆的面积是__9.42___平方厘米。
精解名题例1、新华学校有个圆形花池,池边周围栏杆长50.24米,那么这个花池的圆形底面积是多少平方米? 解:半径:50.24÷2÷3.14=8(米)面积:3.14×8×8=200.96(平方米)例2、某挂钟的分针长6厘米,如果走过20分钟,这根分针在钟面上扫过的面积是多少平方厘米? 解:68.37614.336012036022=⨯⨯==r n S π(平方厘米)例3、一所中学准备搬迁到新校舍,在迁入新校舍之前就该校500名学生如何到新校舍的问题进行了一次调查,得到如下数据:步行90人,骑自行车160人,坐公共汽车220人,其他30人,请算出各部分学生数占学生总数的百分比,并用扇形统计图表示。
圆的面积教案圆的面积教案与反思(一)、分一分拼一拼把圆平均分(偶数份)后,沿半径剪开,再拼成一个不是圆的图形。
1、把准备的圆平均分成4份,沿半径剪开,再拼一拼,看看可以拼成什么样的图形?2、把准备的圆平均分成8份,沿半径剪开,再拼一拼,看看拼成的图形像什么图形?3、把准备的圆平均分成16份,沿半径剪开,再拼一拼,看看拼成的图形更接近什么图形?4、你想象一下,如果把圆平均分成32份,再这样拼一拼,拼成的图形会怎样?进一步想一想,如果平均分成64份,甚至更多呢?根据你的操作和观察,你得到了什么结论?(二)、想一想根据上面的探究结果,你试着想一想:1、我们拼成的图形和原来的圆有什么关系?你怎样才能求出这个图形的面积呢?2、圆的面积又怎么计算呢?二、《圆的面积》教学设计(一)、教学目标:1、知识与技能(1)知道圆的面积公式推导过程;(2)会用圆的面积公式计算圆的面积;2、过程与方法经历动手操作讨论等探索圆的面积公式的过程;3、情感态度与价值观积极参加数学活动,体验圆的面积公式推导的探索性和挑战性,感受公式的确定性和转化的数学思想。
(二)、教学重点:圆的面积的计算;(三)、教学难点:推导圆的面积公式的过程;(四)、教具准备:多媒体课件,学生操作用圆形纸片(3个,分别平均分成4份、8份、16份),胶水、剪刀,教师板书演示用的圆(在学生的操作图形基础上放大的4个分别平均分成4份、8份、16份、32份的圆)及拼成后的图形。
(五)、导学过程:1、情境引入1(1)、师:同学们,这些天我们一直在和圆打交道,也掌握了很多关于圆的知识,今天我又请来一个圆,大家请看。
(课件出示主题图)(2)、师:请同学们认真的观察这幅图片,你能从中发现哪些数学信息呢?(3)、师:题中的两个问题,一个是求圆的周长,一个是求圆的面积,你能说说周长和面积有什么区别吗?(学生说出圆的周长计算算式。
)(4)、师:圆的周长我们会计算了,你想不想计算圆的面积呢?今天我们就共同来探究圆的面积的计算方法。
初三数学圆的周长、面积公式及其应用知识精讲 首师大版【同步教育信息】 一. 本周教学内容:圆的周长、面积公式及其应用公式:设圆的半径为R ,1. 圆的周长公式:C=2πR ;2. 圆的面积公式:S=πR 2;3180.弧长公式:在半径为的圆中,°圆心角所对的弧长为:;R n l l n R=π 4. 扇形面积公式:S n R lR 扇形;==π2360125. 弓形面积:()1当弓形所含的弧是劣弧时,AmB ⋂S S S OAB 弓形扇形△;=-()2当弓形所含的弧是优弧时,AmB ⋂S S S OAB 弓形扇形△;=+()3当弓形所含的弧是半圆时,AmB ⋂S S 弓形圆。
=126. 圆柱的侧面积:圆柱的底面半径为R ,母线长为l 。
S Rl 圆柱侧=2π7. 圆锥的侧面积:设底的周长为C 。
S Cl Rl 圆锥侧==12π二. 重点、难点:重点是扇形的面积,圆柱和圆锥的侧面展开图。
难点是求不规则图形的面积及利用公式的变形进行计算。
【典型例题】例1. 已知如图,C 、D 为半圆O 上的三等分点,E 是⊙O 直径BA 延长线上的点,求阴影部分的面积。
(已知⊙O 的半径等于R )分析:阴影部分是一个不规则的图形,如果连结CD ,我们可以把阴影部分分割为△ECD 和弓形CFD 。
但是我们可以把这个不规则图形转化为规则图形。
首先根据题意,C 、D O AC BD CD AB OC OD 是半圆的三等分点,那么,可证∥,如果连结和,则⋂=⋂△OCD 与△ECD 有共同的底边CD ,且这两个三角形的高相等。
∴∴△△阴影扇形S S S S OCD ECD OCD == 有了这样的转化,求阴影部分的面积就很容易了。
解:连结CD 、OC 、OD ,∵C 、D 是半圆O 上的三等分点,∴,∴∠∠,∴∥,AC DB CDA DAB CD AB ⋂=⋂=根据平行线间的距离处处相等, ∴△ECD 的高等于△OCD 的高, ∴△△S S ECD OCD =∴阴影扇形S S OCD =∵C 、D 是半圆O 上的三等分点,∴∠COD=60°,∴阴影扇形S S n R R R OCD====πππ222360603606点评:本题运用了转化的思想,把不规则图形转化为规则图形。
第14讲、圆的周长与面积(一)
【学法指导】
1、理解并熟练运用以下几个公式:
2、对于一些复杂的组合图形,可以通过分解、重组等策略求得图形的周长和面积。
(在未告知的情况下π一般取3.14)
【经典例题】
例1、已知AB=120米,BC=80米,从A到C有3条半圆弧线路可走,请你判断哪一条路的距离最短。
举一反三:
1、如图,两只蚂蚁比赛,红蚂蚁跑外圈的大半圆,黑蚂蚁跑内圈的2个小半圆。
如果它们的速度相同,谁会赢?为什么?
2、小明为学生会设计会徽,如图,已知会徽由1个圆和4个半圆组成,它们的直径都在图中的虚线上,其中虚线长为5,虚线在图中被截成长度之比为2∶1∶2的三段。
把会徽沿曲线剪开成三部分,这三部分的周长之和为 π。
3、某运动会上,200米赛跑的跑道如图所示,其终点部分及起点部分是直道,因中间绕过半圆形跑道,所以外跑道的起点必须前移。
如果跑道宽1.22米,求外跑道的起点应该前移多少米?
例2、装卸工人把4根圆柱形的钢管用铁丝捆扎在一起,钢管的横截面直径是10厘米,如果铁丝的接头处忽略不计,捆扎2圈,需要多长的铁
丝?
举一反三:
1、用铁丝将两根同样粗的钢管捆三圈,钢管的外直径是20厘米,下图是其横截面。
如果铁丝接头处的长度忽略不计,这根铁丝最少需要多长?
2、如图所示,把半径为3分米的3个圆筒捆在一起,如果接头处的长度忽略不计,需要多少分米的铁丝才能绕它们一圈?
3、有7根直径都是5厘米的圆柱形木头,现在用绳子分别在两处把它们捆在一起,则至少需要绳子米。
(接头处的绳子长度忽略不计,π取3.14)
例3、如图所示,阴影部分的周长是多少厘米?
举一反三:
1、以一个面积为100平方厘米的正方形的边长的一半为直径向外作8个
半圆,如图所示,现在沿着线将图形剪开,形成8个半圆及一个正方形,则8个半圆的周长之和比正方形的周长大厘米。
(π取3)
2、求下图的阴影部分的周长。
(单位:厘米)
3、下图中的圆与正方形面积相等,圆半径为2厘米,那么阴影部分的周长为厘米。
例4、如图,ABCD是边长为10厘米的正方形,且AB是半圆的直径,则阴影部分的面积是平方厘米。
举一反三:
1、求下列图形的阴影部分面积。
(单位:厘米)
2、试求下列图形的阴影部分面积。
(单位:厘米)
3、下图是由正方形和半圆组成的图形,其中P点为半圆的周的中点,Q 点为正方形一边的中点,求阴影部分的面积。
(单位:厘米)
例5、如图所示,有一座房子,长12米,宽8米,在房子外面的一个墙角用一根长14米的绳子拴一条狗,这条狗可能活动的最大范围的面积是平方米。
举一反三:
1、如图所示,草场上有一个边长10米的正方形木屋,在靠近地面的木屋的一角用绳子拴住一只牧羊犬,绳子长12米,这只牧羊犬拉紧绳子最
多可跑米。
2、如图所示,一头羊被8米长的绳子拴在底座为边长6米的正三角形建筑物的墙角上,周围都是草地,求这头羊能吃到草的草地面积最大可达到都是平方米?
3、一个正六边形的房子一角拴着一条狗,六边形边长为1米,拴狗绳子长2米,狗绕着房子行走,它最多能走出多少面积?。