热传递的基本原理.
- 格式:pdf
- 大小:3.74 MB
- 文档页数:135
热传递热量通过流体的对流传递热量传递是指热量从高温物体传递到低温物体的过程。
传热的方式有三种:传导、对流和辐射。
在介绍流体的对流传热之前,先了解一下传热的基本知识。
一、热传递的基本原理热传递是能量的传递方式,能量从高温物体到低温物体传递,使两者达到热平衡。
热传递的方式有传导、对流和辐射三种。
(一)传导传导是指通过物质内部的分子热振动传递热量的过程。
热量沿温度梯度从高温区域传递到低温区域。
传导率取决于物质的导热性质和温度梯度。
常见的固体和液体都能够传导热量。
(二)对流对流是指通过物体表面上的流体(比如液体或气体)的运动传递热量的过程。
对流分为自然对流和强制对流两种形式。
自然对流是指在温差的驱动下,流体由于密度的差异而形成的运动。
比如,加热后的空气密度减小,上升形成对流。
强制对流是指通过外部力(如风或泵)使流体运动,从而传递热量。
强制对流可以通过风扇或泵等设备来搅动流体,加速热量传递。
(三)辐射辐射是指通过电磁波将热量从发光物体传递到其他物体的过程。
辐射可以在真空中传递,无需介质传递。
常见的辐射形式有电磁波、红外线和可见光等。
二、流体的对流传热流体的对流传热是指通过流动的流体传递热量的过程。
流体的对流传热包括自然对流和强制对流。
(一)自然对流传热自然对流传热是指在温差作用下,流体通过密度的差异而产生的运动,从而传递热量。
自然对流传热的机理是流体受热后密度下降,体积膨胀,从而使流体向上运动。
同时,冷却后的流体密度增加,使流体向下运动。
形成这种循环运动的力称为浮力。
自然对流传热最常见的例子就是热气球。
在热气球中,空气被加热后变得轻,从而使热气球得以上升。
(二)强制对流传热强制对流传热是通过外部力(如风或泵)使流体运动,从而传递热量。
强制对流传热的机理是外部力搅动流体,使流体中的高温部分与低温部分混合,加速热量的传递。
在实际工程中,强制对流传热是非常常见的应用。
比如,利用风扇将空气吹向加热元件,加速热量传递。
简述三种传热基本方式及其传热基本原理
三种传热基本方式及其传热基本原理如下:
一、热传导。
热传导是介质内无宏观运动时的传热现象,其在固体、液体和气体中均可发生,但严格而言,只有在固体中才是纯粹的热传导,而流体即使处于静止状态,其中也会由于温度梯度所造成的密度差而产生自然对流,因此,在流体中热对流与热传导同时发生。
二、热辐射。
热辐射,物体由于具有温度而辐射电磁波的现象。
热量传递的3种方式之一。
一切温度高于绝对零度的物体都能产生热辐射,温度愈高,辐射出的总能量就愈大,短波成分也愈多。
热辐射的光谱是连续谱,波长覆盖范围理论上可从0直至∞,一般的热辐射主要靠波长较长的可见光和红外线传播。
由于电磁波的传播无需任何介质,所以热辐射是在真空中唯一的传热方式。
三、热对流。
热对流是热传递的重要形式,它是影响火灾发展的主要因素:
1、高温热气流能加热在它流经途中的可燃物,引起新的燃烧。
2、热气流能够往任何方向传递热量,特别是向上传播,能引起上层楼板、天花板燃烧。
3、通过通风口进行热对流,使新鲜空气不断流进燃烧区,供应持续燃烧。
热传递过程的原理与应用在日常生活中,热传递是一个不可避免的过程。
从吃饭到洗澡,我们几乎无时无刻不在经历着热传递。
那么,热传递到底是什么?它是如何发生的?又有哪些应用呢?本文将介绍热传递过程的原理与应用。
一、热传递是什么?热传递是一种自然现象,它指的是热量从高温物体传递到低温物体的过程。
热传递可以分为三种形式:热传导、热对流和热辐射。
热传导是指物质内部传递热量的过程。
在这个过程中,热量是通过物质内部的分子间传递来的。
热传导的速度和物体的材料、温度、截面积以及距离等因素有关。
热对流是指物体表面附近流动的流体(气体或液体)传递热量的过程。
在这个过程中,热量是通过流体带走的。
热对流的速度和流体的流速、温度差以及物体表面形状等因素有关。
热辐射是指物体通过发射电磁波的方式传递热量的过程。
在这个过程中,热量是通过电磁波传递过去的。
热辐射的速度和物体的温度、表面颜色以及表面的粗糙程度等因素有关。
二、热传递的原理热传递的原理可以用傅里叶传递定律、牛顿冷却定律和斯特藩-玻尔兹曼定律来描述。
傅里叶传递定律指出,物质内部传递热量的速率与温度梯度成正比。
也就是说,越是温度高的地方,热传递速率就越快。
同时,热传递速率还与物体的热导率、截面积和距离有关。
牛顿冷却定律指出,物体表面和流体之间传递热量的速率与温度差成正比。
也就是说,温度差越大,热传递速率就越快。
同时,热传递速率还与流速、流体粘度以及物体表面的积纹等因素有关。
斯特藩-玻尔兹曼定律则是指出,物体通过辐射传递热量的速率与物体的温度的四次方成正比。
也就是说,物体的温度越高,热传递速率就越快。
同时,热传递速率还与物体表面的颜色、粗糙度等因素有关。
三、热传递的应用热传递在生产和生活上有着广泛的应用。
例如,热传导可以用于制造导热材料和保温材料;热对流可以用于制造散热器和换热器;热辐射可以用于烤箱、高温炉等场合。
另外,人类还通过对热传递的深入研究,开发出了许多应用于现代生产、生活和科技的设备和材料。
烧水过程中的热传递规律烧水是我们日常生活中常见的活动,而在烧水的过程中涉及到的热传递规律是理解整个过程的关键。
本文将简要介绍烧水过程中的热传递规律,并探讨其影响因素。
1. 热传递的基本原理热传递是指热量从高温物体传递到低温物体的过程。
在烧水过程中,热量会从热源(例如炉火)传递到水中,使水温升高。
热传递可以通过三种方式进行:传导、对流和辐射。
在烧水过程中,主要涉及到的热传递方式是传导和对流。
2. 传导的作用传导是通过物体内部的分子振动使热量传递的方式。
在烧水过程中,热量会通过水中的分子振动传递。
烧水时,热源会加热水底部的一小部分水分子,导致这部分水分子振动加剧,温度升高。
随着时间的推移,这部分热量会逐渐传递给周围的水分子,使整个水体温度均匀提高。
传导的速率取决于物体的导热性质,水的导热性相对较低,因此烧水过程中的传导速率相对较慢。
3. 对流的作用对流是通过物体内部的流体运动使热量传递的方式。
在烧水过程中,对流起到了重要作用。
当水受热,底部水分子温度升高,密度减小,使其上浮。
同时,上层冷水下沉补充底部被加热后上浮的水分子的位置。
这种热量传递方式称为自然对流。
对流的速率相对较快,可以加速烧水的过程。
此外,搅拌水体也可以增加对流效果,使热量更均匀地传递。
4. 影响因素烧水过程中的热传递速率受到多个因素的影响,包括以下几个方面:- 初始水温:较高的初始水温意味着水中分子振动较大,传导和对流速率较快。
- 热源温度:较高的热源温度会加快热传递速率。
- 材料:不同材料的热导率不同,会影响传导速率。
- 搅拌程度:适度搅拌水体可以增加对流效果,加快热传递速度。
- 环境温度:较低的环境温度可以提供更大的温度差,促进热质的传递。
总之,烧水过程中的热传递规律由传导和对流两种方式共同作用。
了解热传递的基本原理以及影响因素可以帮助我们更好地理解和控制烧水过程中的温度变化。
参考资料:- Doeuff, S., & Renaud, A. (2008). Heat Transfer. CRC Press.。
热传递与传热原理热传递是一个物体或者介质内部热量的传递过程,即热能从高温区域传递到低温区域的过程。
这个过程在我们的日常生活中无处不在,从喝热水到感受太阳的温暖,都与热传递有关。
理解热传递的原理对于工程设计、能源利用以及生活中的安全都至关重要。
本文将介绍热传递的基本原理及其相关的概念。
1. 热传递的基本模式热传递可以通过三种基本模式进行,分别为传导、对流和辐射。
1.1 传导热传递传导是通过介质直接传递热量的过程。
以金属导热为例,金属中的热能通过原子之间的碰撞和电子传递来实现。
传导过程中,热量会自高温区域传递到低温区域,直到达到热平衡。
材料的导热性能与其物理性质有关,例如热导率、密度和温度梯度。
1.2 对流热传递对流是介质内部以及介质与外界之间的热量传递方式。
其通过液体或气体的流动来实现,将热量从高温区域带到低温区域。
对流热传递分为自然对流和强制对流两种形式。
自然对流是通过密度差引起的流体循环,强制对流则需要外力的作用,如风扇或泵。
1.3 辐射热传递辐射是通过电磁波的辐射来传递热能。
热辐射不需要介质,可以在真空中传播,因此在太空或高空的传热中起到重要作用。
辐射的热传递主要和物体的温度、表面性质以及辐射频率有关。
2. 热传递的基本方程热传递的基本方程可以表述为热流密度的形式,即单位时间内通过单位面积的热量流量。
根据热传递的不同模式,热传递方程也有所不同。
2.1 传导热传递方程对于传导热传递,热传递率(Q)可以用傅里叶定律表示:Q = -kA(dT/dx)其中,Q 表示热通量,k 是物质的热导率,A 是传热截面的面积,dT/dx 表示温度变化率。
2.2 对流热传递方程对于对流热传递,热传递率(Q)可以用牛顿冷却定律表示:Q = hA(T1 - T2)其中,Q 表示热通量,h 是对流传热系数,A 是传热面积,T1 和T2 分别表示高温和低温区域的温度。
2.3 辐射热传递方程对于辐射热传递,热传递率(Q)可以用斯特藩-玻尔兹曼定律表示:Q = σAε(T1^4 - T2^4)其中,Q 表示热通量,σ 是斯特藩-玻尔兹曼常数,A 是传热面积,ε 是辐射率,T1 和 T2 分别表示高温和低温区域的温度。
热传递的基本原理热传递是指热量在物体之间传递的过程。
热传递的基本原理可以通过热传导、热对流和热辐射来解释。
热传导是由于分子之间的碰撞和相互作用引起的热量传递。
在物体的内部,热量通过固体材料的导热性质在分子之间传递。
导热的原理是分子以高频率振动,并将这种振动能量从一个分子传递到与其相邻的分子。
这种传递形式下,热量从高温物体的分子传递到低温物体的分子。
热导率是描述物体传导热传递性能的物理量。
热传导是在没有物质移动的情况下进行的。
热对流是指热量通过流体介质传递的现象。
当液体或气体被加热时,它们的密度会降低,使其较热的部分上升,而较冷的部分则下降。
这种上升和下降的运动形成了被称为对流的大规模流动。
对流传热发生在液体或气体中,因为其分子是自由移动的。
对流传热可以将热量迅速从高温区域传递到低温区域。
热对流是伴随着物质的移动而进行的。
热辐射是指物体通过放射电磁波的方式传递热量。
所有物体都以热辐射的形式向外发射能量。
热辐射是由于物体分子和原子的无规则振动引起的。
根据斯特藩-玻尔兹曼定律,热辐射的总发射功率与物体的温度的四次方成正比。
这意味着随着温度的升高,物体的热辐射功率会显著增加。
热辐射是通过真空或透明介质传输热量的唯一方式。
在现实世界中,热传递往往是这三种机制的组合。
例如,当我们烹饪食物时,热量会通过底部的热源通过热传导进入锅中的食物。
与此同时,由于食物的加热,液体中的热对流也开始。
同时,煮食过程中锅的外表面也会通过热辐射释放热量。
热传递的速率可以通过热传导率、对流传热系数和辐射传热系数来描述。
热传导率是物质传导热传递的能力,对流传热系数是描述液体或气体传导热的速度和效率的参数,而辐射传热系数是描述物体通过辐射传递热量的效果的参数。
需要注意的是,不同材料的热传导机制和速率可能不同。
例如,金属通常具有高热传导率,因为金属中的电子在分子之间快速传递热量。
相反,绝缘体如木材则具有较低的热导率,因为木材中的分子之间的电子传导能力较差。
传热的基本原理
传热是指热量从一个物体传递到另一个物体的过程。
热量传递可以通过三种基本途径发生:传导、对流和辐射。
传导是指热量通过物质内部的分子或离子的振动和碰撞来传递的过程。
当一个物体的一部分受热时,其分子通过振动和碰撞将能量传递给周围的分子,从而逐渐使整个物体达到热平衡。
传导的速率取决于物体的导热性质,即物体的热导率。
热导率越高,传导速率越快。
对流是指流体(气体或液体)的传热过程。
当一个物体受热时,周围的流体也会受热并产生密度变化,从而形成对流流动。
对流能够有效地传递热量,因为流体的流动会带走热量并将其传递到其他地方。
对流的速率取决于流体的热扩散性质和流体的流动性质。
辐射是指热量以电磁波的形式传递,无需通过物质进行传导或对流。
所有物体都会辐射热量,其强度取决于物体的温度和辐射特性。
辐射热量可以在真空中传递,也可以在透明的介质(例如空气或玻璃)中传递。
在实际情况中,传热往往是以上三种方式的综合作用。
例如,在烹饪中,热量通过盖子底部的传导传递给锅内的食物,然后通过对流将热量均匀分布到整个食物中。
而太阳的热量则通过辐射传递到地球表面,然后通过导热和对流进一步分布到大气层和海洋中。
了解传热的基本原理对于很多日常生活和工程应用都非常重要。
通过控制传热过程,我们可以更好地设计和改进热交换设备、节能系统以及热管理系统,从而提高能源利用效率,减少能源消耗。
热力学中的热传递过程热力学是研究能量转移与转化的科学,其中热传递是热力学的一个重要概念。
热传递是指由高温物体到低温物体的热量传递过程,它是自然界中普遍存在的现象。
本文将介绍热力学中的热传递过程,并探讨其基本原理和影响因素。
一、热传递的基本原理热传递是通过能量的传递来实现的,它遵循热量由高温到低温的原则,即热量会从高温物体传递到低温物体,直到两者温度达到平衡。
根据热传递的基本原理,我们可以得到以下几个重要的热传递方式:1. 热传导:热传导是一种通过物质分子的热点传递热量的过程。
当两个物体接触时,它们之间的热传导会导致热量的传递,直到两个物体达到热平衡为止。
热传导的速率受到物质的热导率、温度差和物体间的接触面积等因素的影响。
2. 辐射传热:辐射传热是指物体通过辐射的方式传递热量。
所有温度高于绝对零度的物体都会辐射热量,无论是否有物质存在,因为辐射传热不需要物质作为传热媒介。
辐射热量的传递速率与物体的发射率、温度差和表面积等因素有关。
3. 对流传热:对流传热是指通过流体(气体或液体)的流动实现热量传递。
当物体表面的流体与物体接触时,流体会带走物体表面的热量并进行对流传热。
对流传热的速率受到流体的流速、温度差和物体表面积等因素的影响。
二、影响热传递的因素热传递的速率受到多种因素的影响,下面将详细介绍几个重要的影响因素:1. 温度差:温度差是影响热传递速率的主要因素之一。
温度差越大,热传递速率越快。
因此,当需要加快热传递速率时,可以通过增加温度差来实现。
2. 界面特性:界面特性包括接触面积、物质的界面状态和热导率等因素。
增大接触面积可以增加热传导和对流传热的效果,从而提高热传递速率。
而材料的热导率越大,热传导的速率也越快。
3. 界面条件:界面条件包括对流传热中的流体流速和物体表面质量等因素。
当流体流速增加时,对流传热的速率也会增加。
而物体表面的光洁度和形状会影响辐射传热的效果,因此在实际应用中需要注意优化物体的表面条件。
热力学中的热传递热传递是热力学中一个重要的概念,它描述了热量在物体之间的传递过程。
在自然界中,热传递是普遍存在的,无论是烹饪食物、取暖、还是自然界中的各种现象,热传递都起着关键的作用。
本文将从热传递的基本原理、传热方式以及实际应用等方面进行探讨。
一、热传递的基本原理热传递是热量从高温物体传递到低温物体的过程,其基本原理是热量通过各种传热方式传导,从而达到温度均衡。
热传递的本质是热分子间能量的传递,当两个物体的温度不同时,热分子将从高温物体向低温物体传递,直至温度达到一致。
二、传热方式热传递常常通过三种方式进行,分别是导热、对流和辐射。
1. 导热导热是热传递中最常见的一种方式,它在固体和液体中起主导作用。
导热通过物质内部的分子碰撞实现热量传递。
固体的导热性能较好,因为其分子密度较大,分子之间的距离短,热能传递快速。
而液体的导热性能相对较差,因为其分子间距离较远,分子运动受到阻碍。
2. 对流对流是指热量通过流体(气体或液体)的传递。
对流分为自然对流和强制对流两种形式。
自然对流是指在流体中,由于温度差引起的密度不同,产生的浮力使得流体发生运动,从而实现热量传递。
强制对流则是通过外力(如风扇)促使流体发生对流运动,加快热传递过程。
3. 辐射辐射是指通过电磁波的传递进行热量传递。
辐射可以在真空中进行,不需要借助传导介质。
热辐射的强弱取决于物体的温度和表面特性,如表面的发射率和吸收率等。
三、实际应用热传递在生活和工业中有着广泛的应用。
以下是一些常见的实际应用案例:1. 烹饪食物热传递在烹饪食物的过程中起着至关重要的作用。
当我们将锅放在火上时,热量通过导热方式快速传递到锅底,然后通过对流和辐射的方式将热量传递给食物,使食物得以加热煮熟。
2. 取暖和制冷在冬季,我们使用取暖设备,如暖气片和空调,以调节室内的温度。
这些设备利用对流和辐射的方式将热量传递给周围空气或吸收室外热量,从而实现室内温度的控制。
3. 电子设备散热电子设备在运行过程中会产生大量热量,若不能及时散热会影响设备的正常运行甚至损坏。