信号波形合成实验电路设计

  • 格式:doc
  • 大小:1.90 MB
  • 文档页数:14

下载文档原格式

  / 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号波形合成实验电路

小组成员:李于飞、耿红鹏、赵珑

摘要:本设计通过产生不同频率和幅值的正弦信号,并将这些信号合成为近似的方波和三角波,构成了信号波形合成实验电路。本系统主要由8个部分构成:由NE555构成的方波振荡电路;主要由集成计数器74LS90和作为D触发器的CD4013构成的分频电路;使用LM318构成的窄带通滤波电路;由双运放LM318构成的移相电路;加法器合成电路;三角波合成电路;使用AD637构成的真有效值检测电路;MSP430F149单片机控制液晶显示电路。在本设计中,方波振荡电路可产生300KHZ频率的方波,经过分频电路和隔直电容以后成为双极性方波。再经过滤波和放大以后得到了所需的各次谐波,其经过移相电路之后初相位相同,即可通过加法器合成为近似的方波和三角波。各次谐波有效值可检测并由单片机控制对幅度进行显示。系统工作稳定,基本达到了题目的所有要求。

关键字:方波振荡电路;分频;移相;真有效值;信号合成。

目录

一、系统方案………………………………………………………

1.1方波发生电路方案………………………………………….……

1.2分频电路设计方案………………………………………….......

1.3 滤波电路设计方案………………………………………………

1.4移相电路设计方案.....................................

1.5 信号合成电路设计方案………………………………………....

1.6信号检测和显示方案………………………………………

二、理论分析与计算………………………………………

2.1系统原理框图……………………………………

2.2方波信号的合成与分解…………………………………...

2.3三角波信号合成………………………………………..

2.4反相加法电路.......... .............................................

三、总体方案的设计与实现……………………………………….

3.1 555振荡电路原理分析与计算...........................................

3.2 分频电路...............................................................

3.3方波——三角波变换电路............................................

3.4三角波——正弦波变换电路........................................

3.5移相电路..................................................................

3.6比例运算和合成电路......................................................

3.7AD转换和液晶显示..............................................

四、实验测试及测试结果分析

4.1测试仪器.............................

4.2整机标准 ...............................

4.3合成电路结果..........................

4.4测试结果和分析........................

五、总结

一.系统方案

1.1 方波发生电路方案

方案一:采用分立元件实现非稳态的多谐振振荡器,然后根据需要加入积分电路等构成正弦、矩形、三角等波形发生器。这种信号发生器输出频率范围窄,而且电路参数设定较繁琐,相位也不一致,其频率大小的测量往往需要通过硬件电路的切换来实现,操作不方便。

方案二:采用555振荡电路或函数信号发生器ICL8038集成模拟芯片,它是一种可以同时产生方波、三角波、正弦波的专用集成电路。波形的频率可以通过调节555定时器电路的外接滑动变阻器来进行调节。该电路具有成本低廉,频率可调,电路灵活方便,结构简单,低功耗,输入阻抗高,上升沿陡等的特点,不用依靠单片机。根据题意,本系统需要一个300kHz的方波,所以选择方案二,可满足要求。

方案三:由UA741集成运算放大器构成的方波信号发生器具有结构简单,调试方便,但它产生方波信号的可靠性差,易失真,稳定性差。

1.2 分频电路设计方案

方案一:利用数字电路设计分频电路。通过计数器计数来实现,由待分频的时钟边沿触发集成计数器计数,当计数器到规定值时,输出时钟进行翻转,并给计数器一个复位信号,使得下一个时钟从零开始计数。以此循环下去。这种方法可以实现任意的整数分频电路,根据题意,选择方案一作为系统的分频方案。

方案二:使用编程方法实现分频电路。其原理与利用集成计数器相同,实现起来也十分简单,但分频得到的时钟可能会出现毛刺或不稳定的因素,适用于时钟要求不高的基本设计,且对于整数分频可以很容易地用计数器来实现,故不采用此方案。

1.3 滤波电路设计方案

由分频电路产生的单极性方波需要经过窄带通滤波电路形成正弦波。其带通的范围很窄,要与各次谐波的频率接近。

方案一:使用由LC网络组成的无源高阶巴特沃斯滤波器。其通带内相应最为平坦,衰减特性和相位特性都很好,对器件的要求也不高。但其在低频范围内有体积重量大,价格昂贵和衰减大等缺点。

方案二:采用实时DSP数字滤波技术,数字信号灵活性大,可以在不增加硬件成本的基础上对信号进行有效的滤波,但要进行滤波,需要A/D、D/A既有较高的转换速率,处理器具有较高的运算速度,成本高。