编译原理 第二章习题答案
- 格式:doc
- 大小:68.00 KB
- 文档页数:13
第二章 文法和语言p48 4、6(6)、11、 12(2)(6)、18(2)4 证明文法G=({E,O},{(,),+,*,v ,d},P ,E )是二义的,其中P 为 E → EOE | (E) | v | d O → + | * 证明:因为E=〉 EOE =〉EOEOE =〉EOEOv =〉EOE+v=〉EOv+v =〉E*v+v =〉v*v+v , 句子v*v+v 有两棵不同的语法树所以文法G 是二义的。
问题:1)只有文字说明,比如v*v+v 有两棵语法树,但没有画出语法树或者最左(最右)推导过程2)给出的是不同句子(v*v+d v+v*d )的语法树 6、已知文法G :EEEE OO v*v+ vE EE E O O v+v* v〈表达式〉∷=〈项〉|〈表达式〉+〈项〉〈项〉∷=〈因子〉|〈项〉*〈因子〉〈因子〉∷=(〈表达式〉)| i试给出下述表达式的推导及语法树(6)i+i*i推导过程:〈表达式〉=〉〈表达式〉+〈项〉E=〉E+T =〉〈表达式〉+〈项〉*〈因子〉=〉E+ T*F=〉〈表达式〉+〈项〉* i =〉E+ T*i=〉〈表达式〉+ 〈因子〉* i =〉E+F*i=〉〈表达式〉+ i* i =〉E+i*i=〉〈项〉+ i* i =〉T +i*i=〉〈因子〉+ i* i =〉F +i*i=〉i +i*i =〉i +i*i 共8步推导语法树:〈表达式〉+〈因子〉〈项〉i 〈因子〉i〈项〉〈项〉〈因子〉i*11、一个上下文无关文法生成句子abbaa的推导树如下:(1)给出该句子相应的最左推导和最右推导(2)该文法的产生式集合P可能有哪些元素?(3)找出该句子的所有短语、简单短语、句柄。
(1)最左推导:S=〉ABS=〉aBS=〉aSBBS=〉aBBS=〉abBS=〉abbS =〉abbAa=〉abbaa最右推导:S =〉ABS=〉ABAa=〉ABaa=〉ASBBaa=〉ASBbaa=〉ASbbaa=〉Abbaa=〉abbaa(2)该文法的产生式集合P可能有下列元素:S→ABS | Aa|εA→a B→SBB|b(3)因为字符串中的各字符有相对的位置关系,为了能相互区别,给相同的字符标上不同的数字。
第二章 高级语言及其语法描述4.令+、*和↑代表加,乘和乘幂,按如下的非标准优先级和结合性质的约定,计算1+1*2↑2*1↑2的值:(1) 优先顺序(从高至低)为+,*和↑,同级优先采用左结合。
(2) 优先顺序为↑,+,*,同级优先采用右结合。
解:(1)1+1*2↑2*1↑2=2*2↑1*1↑2=4↑1↑2=4↑2=16 (2)1+1*2↑2*1↑2=1+1*2*1=2*2*1=2*2=46.令文法G6为 N →D|NDD →0|1|2|3|4|5|6|7|8|9 (1) G6 的语言L (G6)是什么?(2) 给出句子0127、34和568的最左推导和最右推导。
解:(1)L (G6)={a|a ∈∑+,∑=﹛0,1,2,3,4,5,6,7,8,9}}(2)N =>ND => NDD => NDDD => DDDD => 0DDD => 01DD => 012D => 0127 N => ND => N7=> ND7=> N27=> ND27=> N127=> D127=> 0127 N => ND => DD => 3D => 34 N => ND => N4=> D4 =>34N => ND => NDD => DDD => 5DD => 56D => 568 N => ND => N8=> ND8=> N68=> D68=> 5687.写一个文法,使其语言是奇数集,且每个奇数不以0开头。
解:A →SN, S →+|-|∑, N →D|MDD →1|3|5|7|9, M →MB|1|2|3|4|5|6|7|8|9 B →0|1|2|3|4|5|6|7|8|9 8. 文法:E T E T E T TF T F T F F E i→+-→→|||*|/()| 最左推导:E E T T TF T i T i T F i F F i i F i i i E T T F F F i F i E i E T i T T i F T i i T i i F i i i ⇒+⇒+⇒+⇒+⇒+⇒+⇒+⇒+⇒⇒⇒⇒⇒⇒+⇒+⇒+⇒+⇒+⇒+********()*()*()*()*()*()*()最右推导:E E T E TF E T i E F i E i i T i i F i i i i i E T F T F F F E F E T F E F F E i F T i F F i F i i i i i ⇒+⇒+⇒+⇒+⇒+⇒+⇒+⇒+⇒⇒⇒⇒⇒+⇒+⇒+⇒+⇒+⇒+⇒+**********()*()*()*()*()*()*()*()语法树:/********************************EE FTE +T F F T +iiiEEFTE-T F F T -iiiEEFT+T F FTiii*i+i+ii-i-ii+i*i*****************/9.证明下面的文法是二义的:S → iSeS|iS|I解:因为iiiiei 有两种最左推导,所以此文法是二义的。
第二章 词法分析2.1 完成下列选择题:(1) 词法分析器的输出结果是。
a. 单词的种别编码b. 单词在符号表中的位置c. 单词的种别编码和自身值d. 单词自身值(2) 正规式M1和M2等价是指。
a. M1和M2的状态数相等b. M1和M2的有向边条数相等c. M1和M2所识别的语言集相等d. M1和M2状态数和有向边条数相等(3) DFA M(见图2-1)接受的字集为。
a. 以0开头的二进制数组成的集合b. 以0结尾的二进制数组成的集合c. 含奇数个0的二进制数组成的集合d. 含偶数个0的二进制数组成的集合【解答】(1) c (2) c (3) d图2-1 习题2.1的DFA M2.2 什么是扫描器?扫描器的功能是什么?【解答】 扫描器就是词法分析器,它接受输入的源程序,对源程序进行词法分析并识别出一个个单词符号,其输出结果是单词符号,供语法分析器使用。
通常是把词法分析器作为一个子程序,每当词法分析器需要一个单词符号时就调用这个子程序。
每次调用时,词法分析器就从输入串中识别出一个单词符号交给语法分析器。
2.3 设M=({x,y}, {a,b}, f, x, {y})为一非确定的有限自动机,其中f 定义如下:f(x,a)={x,y} f {x,b}={y}f(y,a)=Φ f{y,b}={x,y}试构造相应的确定有限自动机M ′。
【解答】 对照自动机的定义M=(S,Σ,f,So,Z),由f 的定义可知f(x,a)、f(y,b)均为多值函数,因此M 是一非确定有限自动机。
先画出NFA M 相应的状态图,如图2-2所示。
图2-2 习题2.3的NFA M 用子集法构造状态转换矩阵,如表表2-1 状态转换矩阵1b将转换矩阵中的所有子集重新命名,形成表2-2所示的状态转换矩阵,即得到 M ′=({0,1,2},{a,b},f,0,{1,2}),其状态转换图如图2-3所示。
表2-2 状态转换矩阵将图2-3所示的DFA M ′最小化。
第2章习题解答1.文法G[S]为:S->Ac|aBA->abB->bc写出L(G[S])的全部元素[答案]S=>Ac=>abc或S=>aB=>abc所以L(G[S])={abc}2.文法G[N]为:N->D|NDD->0|1|2|3|4|5|6|7|8|9G[N]的语言是什么?[答案]G[N]的语言是V。
V={0,1,2,3,4,5,6,7,8,9}N=>ND=>NDD.... =>NDDDD...D=>D……D3.已知文法G[S]:Sf dAB Af aA|a B|bB问:相应的正规式是什么?G[S]能否改写成为等价的正规文法? [答案]正规式是daa*b* ;相应的正规文法为(由自动机化简来):G[S]:S —dA A —a|aB B —aB|a|b|bC C —bC|b也可为(观察得来):G[S]:S —dA A —a|aA|aB B —bB| &4.已知文法G[Z]:Z->aZb|ab写出L(G[Z])的全部元素。
[答案]Z=>aZb=>aaZbb=>aaa..Z...bbb=> aaa..ab...bbbL(G[Z])={a n b n|n>=1}5.给出语言{a n b n c1 n>=1,m>=0}的上下文无关文法。
[分析]本题难度不大,主要是考上下文无关文法的基本概念。
上下文无关文法的基本定义是:A-> B ,A € Vn ,B€( VnU Vt) *,注意关键问题是保证a n b n的成立,即“ a与b的个数要相等”,为此,可以用一条形如A->aAb|ab的产生式即可解决。
[答案]构造上下文无关文法如下:S->AB|AA->aAb|abB->Bc|c[扩展]凡是诸如此类的题都应按此思路进行,本题可做为一个基本代表。
基本思路是这样的:要求符合a n b n c m,因为a与b要求个数相等,所以把它们应看作一个整体单元进行,而c m做为另一个单位,初步产生式就应写为S->AB,其中A推出a n b n,B推出c m。
第二章3.何谓“标志符”,何谓“名字”,两者的区别是什么答:标志符是一个没有意义的字符序列,而名字却有明确的意义和属性。
4.令+、*和↑代表加、乘和乘幂,按如下的非标准优先级和结合性质的约定,计算1+1*2↑2*1↑2的值。
(1)优先顺序(从高到低)为+、*和↑,同级优先采用左结合。
(2)优先顺序为↑、+、*,同级优先采用右结合。
答:(1)1+1*2↑2*1↑2=2*2↑2*1↑2=4↑2*1↑2=4↑2↑2=16↑2=256(2)1+1*2↑2*1↑2=1+1*2↑2*1=1+1*4*1=2*4*1=2*4=86.令文法G6为N-〉D|NDD-〉0|1|2|3|4|5|6|7|8|9(1)G6的语言L(G6)是什么(2)给出句子0127、34、568的最左推导和最右推导。
答:(1)由0到9的数字所组成的长度至少为1的字符串。
即:L(G6)={d n|n≧1,d∈{0,1,…,9}}(2)0127的最左推导:N=>ND=>NDD=>NDDD=>DDDD=>0DDD=>01DD=>012D=>0127 0127的最右推导:N=>ND=>N7=>ND7=>N27=>ND27=>N127=>D127=>0127(其他略)7.写一个文法,使其语言是奇数集,且每个奇数不以0开头。
答:G(S):S->+N|-NN->ABC|CC->1|3|5|7|9A->C|2|4|6|8B->BB|0|A|ε[注]:可以有其他答案。
[常见的错误]:N->2N+1原因在于没有理解形式语言的表示法,而使用了数学表达式。
8.令文法为E->T|E+T|E-TT->F|T*F|T/FF->(E)|i(1)给出i+i*i、i*(i+i)的最左推导和最右推导。
(2)给出i+i+i、i+i*i和i-i-i的语法树,并给出短语,简单短语和句柄。
第2章习题2-1 设有字母表A1 ={a,b,c,…,z},A2 ={0,1,…,9},试回答下列问题:(1) 字母表A1上长度为2的符号串有多少个?(2) 集合A1A2含有多少个元素?(3) 列出集合A1(A1∪A2)*中的全部长度不大于3的符号串。
2-2 试分别构造产生下列语言的文法:(1){a n b n|n≥0};(2){a n b m c p|n,m,p≥0};(3){a n#b n|n≥0}∪{c n#d n|n≥0};(4){w#w r# | w∈{0,1}*,w r是w的逆序排列 };(5)任何不是以0打头的所有奇整数所组成的集合;(6)所有由偶数个0和偶数个1所组成的符号串的集合。
2-3 试描述由下列文法所产生的语言的特点:(1)S→10S0S→aA A→bA A→a(2)S→SS S→1A0A→1A0A→ε(3)S→1A S→B0A→1A A→CB→B0B→C C→1C0C→ε(4)S→aSS S→a2-4 试证明文法S→AB|DC A→aA|a B→bBc|bc C→cC|c D→aDb|ab为二义性文法。
2-5 对于下列的文法S→AB|c A→bA|a B→aSb|c试给出句子bbaacb的最右推导,并指出各步直接推导所得句型的句柄;指出句子的全部短语。
2-6 化简下列各个文法(1) S→aABS|bCACd A→bAB|cSA|cCC B→bAB|cSB C→cS|c(2) S→aAB|E A→dDA|e B→bE|fC→c AB|dSD|a D→eA E→fA|g(3) S→ac|bA A→c BC B→SA C→bC|d2-7 消除下列文法中的ε-产生式(1) S→aAS|b A→cS|ε(2) S→aAA A→bAc|dAe|ε2-8 消除下列文法中的无用产生式和单产生式(1) S→aB|BC A→aA|c|aDb B→DB|C C→b D→B(2) S→SA|SB|A A→B|(S)|( ) B→[S]|[ ](3) E→E+T|T T→T*F|F F→P↑F|P P→(E)|i第2章习题答案2-1 答:(1) 26*26=676(2) 26*10=260(3) {a,b,c,...,z, a0,a1,...,a9, aa,...,az,...,zz, a00,a01,...,zzz},共有26+26*36+26*36*36=34658个2-2 解:(1) 对应文法为G(S)=({S},{a,b},{ S→ε| aSb },S)(2) 对应文法为G(S)=({S,X,Y},{a,b,c},{S→aS|X,X→bX|Y,Y→cY|ε },S)(3)对应文法为G(S)=({S,X,Y},{a,b,c,d,#}, {S→X,S→Y,X→aXb|#, Y→cYd|# },S)(4) G(S)=({S,W,R},{0,1,#}, {S→W#, W→0W0|1W1|# },S)(5) G(S)=({S,A,B,I,J},{0,1,2,3,4,5,6,7,8,9},{S→J|IBJ,B→0B|IB|ε, I→J|2|4|6|8, J→1|3|5|7|9},S)(6)对应文法为S→0A|1B|ε,A→0S|1C,B→0C|1S,C→1A|0B2-3 解:(1) 本文法构成的语言集为:L(G)={(10)n ab m a0n|n,m≥0}。
第2章习题解答1.文法G[S]为:S->Ac|aBA->abB->bc写出L(G[S])的全部元素。
[答案]S=>Ac=>abc或S=>aB=>abc所以L(G[S])={abc}==============================================2. 文法G[N]为:N->D|NDD->0|1|2|3|4|5|6|7|8|9G[N]的语言是什么?[答案]G[N]的语言是V+。
V={0,1,2,3,4,5,6,7,8,9}N=>ND=>NDD.... =>NDDDD...D=>D......D===============================================3.已知文法G[S]:S→dAB A→aA|a B→ε|bB问:相应的正规式是什么?G[S]能否改写成为等价的正规文法?[答案]正规式是daa*b*;相应的正规文法为(由自动机化简来):G[S]:S→dA A→a|aB B→aB|a|b|bC C→bC|b也可为(观察得来):G[S]:S→dA A→a|aA|aB B→bB|ε===================================================================== ==========4.已知文法G[Z]:Z->aZb|ab写出L(G[Z])的全部元素。
[答案]Z=>aZb=>aaZbb=>aaa..Z...bbb=> aaa..ab...bbbL(G[Z])={a n b n|n>=1}===================================================================== =========5.给出语言{a n b n c m|n>=1,m>=0}的上下文无关文法。
[分析]本题难度不大,主要是考上下文无关文法的基本概念。
上下文无关文法的基本定义是:A->β,A∈Vn,β∈(Vn∪Vt)*,注意关键问题是保证a n b n的成立,即“a与b的个数要相等”,为此,可以用一条形如A->aAb|ab的产生式即可解决。
[答案]构造上下文无关文法如下:S->AB|AA->aAb|abB->Bc|c[扩展]凡是诸如此类的题都应按此思路进行,本题可做为一个基本代表。
基本思路是这样的:要求符合a n b n c m,因为a与b要求个数相等,所以把它们应看作一个整体单元进行,而c m做为另一个单位,初步产生式就应写为S->AB,其中A推出a n b n,B推出c m。
因为m可为0,故上式进一步改写为S->AB|A。
接下来考虑A,凡是要求两个终结符个数相等的问题,都应写为A->aAb|ab形式,对于B就很容易写成B->Bc|c了。
===================================================================== =========6 .写一文法,使其语言是偶正整数集合。
要求:(1)允许0开头;(2)不允许0开头。
[答案](1)允许0开头的偶正整数集合的文法E->NT|G|SFMT->NT|GN->D|1|3|5|7|9D->0|GG->2|4|6|8S->NS|εF->1|3|5|7|9|GM->M0|0(2)不允许0开头的偶正整数集合的文法E->NT|DT->FT|GN->D|1|3|5|7|9D->2|4|6|8F->N|0G->D|0===================================================================== ========7.已知文法G:E->E+T|E-T|TT->T*F|T/F|FF->(E)|i试给出下述表达式的推导及语法树(1)i; (2)i*i+i (3)i+i*i (4)i+(i+i)[答案](1)E=>T=>F=>i(2)E=>E+T=>T+T=>T*F+T=>F*F+T=>i*F+T=>i*i+T=>i*i+F=>i*i+i(3)E=>E+T=>T+T=>F+T=>i+T=>i+T*F=>i+F*F=>i+i*F=>i+i*i(4)E=>E+T=>T+T=>F+T=>i+T=>i+F=>i+(E)=>i+(E+T)=>i+(T+T)=>i+(F+T)=>i+(i+T)=>i+(i+F)=>i+(i+i)8 .为句子i+i*i构造两棵语法树,从而证明下述文法G[<表达式>]是二义的。
〈表达式〉->〈表达式〉〈运算符〉〈表达式〉|(〈表达式〉)|i〈运算符〉->+|-|*|/[答案]可为句子i+i*i构造两个不同的最右推导:最右推导1〈表达式〉=>〈表达式〉〈运算符〉〈表达式〉=>〈表达式〉〈运算符〉i=>〈表达式〉* i=>〈表达式〉〈运算符〉〈表达式〉* i=>〈表达式〉〈运算符〉i * i=>〈表达式〉+ i * i=> i + i * i最右推导2〈表达式〉=>〈表达式〉〈运算符〉〈表达式〉=>〈表达式〉〈运算符〉〈表达式〉〈运算符〉〈表达式>=>〈表达式〉〈运算符〉〈表达式〉〈运算符〉 i=>〈表达式〉〈运算符〉〈表达式〉 * i=> 〈表达式〉〈运算符〉i * i=>〈表达式〉+ i * i=> i + i * i所以,该文法是二义的。
================================================================= =====9. 文法G[S]为:S->Ac|aBA->abB->bc该文法是否为二义的?为什么?[答案]对于串abc(1)S=>Ac=>abc(2)S=>aB=>abc即存在两不同的最右推导所以,该文法是二义的。
===================================================================== ======10.考虑下面上下文无关文法:S->SS*|SS+|a(1)表明通过此文法如何生成串aa+a*,并为该串构造语法树。
(2) G[S]的语言是什么?[答案](1)此文法生成串aa+a*的最右推导如下S=>SS*=>SS*=>Sa*=>SS+a*=>Sa+a*=>aa+a*(2)该文法生成的语言是即加法和乘法的逆波兰式,===================================================================== =========11. 令文法G[E]为:E->E+T|E-TT->T*F|T/F|FF->(E)|I证明E+T*F是它的一个句型,指出这个句型的所有短语、直接短语和句柄。
[答案]此句型对应语法树如右,故为此文法一个句型。
或者:因为存在推导序列: E=>E+T=>E+T*F,所以 E+T*F句型此句型相对于E的短语有:E+T*F;相对于T的短语有T*F,直接短语为:T*F;。
句柄为:T*F12.已知文法G[E]:E→ET+|T T→TF* | F F→F^ | a试证:FF^^*是文法的句型,指出该句型的短语、简单短语和句柄.[答案]该句型对应的语法树如下:该句型相对于E的短语有FF^^*;相对于T的短语有FF^^*,F;相对于F的短语有F^;F^^;简单短语有F;F^;句柄为F.13.一个上下文无关文法生成句子abbaa的推导树如下:(1)给出串abbaa最左推导、最右推导。
(2)该文法的产生式集合P可能有哪些元素?(3)找出该句子的所有短语、直接短语、句柄。
(1)串abbaa最左推导:S=>ABS=>aBS=>aSBBS=>aεBBS=>aεbBS=>aεbbS=>aεbbAa=>aεbbaa 最右推导:S=>ABS=>ABAa=>ABaa=>ASBBaa=>ASBbaa=>ASbbaa=>Aεbbaa=>aεbbaa (2)产生式有:S→ABS |Aa|εA→aB→SBB|b(3)该句子的短语有a1b1b2a2a3、a1、b1、b2、b1b2、a2a3、a2;直接短语有a1、b1、b2、a2;句柄是a1。
===================================================================== 14.给出生成下列语言的上下文无关文法。
(1){ a n b n a m b m |n,m>=0} (2) { 1n0m 1m0n| n,m>=0}(3){WaW r|W属于{0|a}*,W r表示W的逆}[答案](1){a n b n a m b m| n,m>=0}S->AAA->aAb|ε(2) { 1n0m 1m0n| n,m>=0}S->1S0|AA->0A1|ε(3){WaW r|W属于{0|a}*,W r表示W的逆}S->0S0|1S1|ε=================================================================== 15 .给出生成下列语言的三型文法。
(1){ a n|n >=0 }(2){ a n b m|n,m>=1 }(3){a n b m c k|n,m,k>=0 }[答案](1) { a n|n >=0 }的三型文法为:S->aS|ε(2){ a n b m|n,m>=1 }的三型文法为:S->aAA->aA|bBB->bB|ε(3){a n b m c k|n,m,k>=0 }的三型文法为:A->aA|bB|cC|εB->bB|cC|εC->cC|ε===================================================================== =====16.构造一文法产生任意长的a,b串,使得|a|<=|b|<=2|a|其中,“|a|”表示a字符的个数;“|b|”表示b字符的个数。