计量经济学第五讲---模型的函数形式
- 格式:ppt
- 大小:4.58 MB
- 文档页数:72
计量模型公式计量模型公式是指数学模型中所使用的数学公式。
计量模型是指用数学方法对经济现象进行描述、分析和预测的方法。
计量模型公式是计量模型中最基本的部分,它为计量模型提供了数学基础。
计量模型公式主要包括线性回归模型公式、时间序列模型公式、面板数据模型公式等。
这些公式是计量经济学的基础,也是计量经济学的核心内容。
一、线性回归模型公式线性回归模型是计量经济学中最常用的模型之一,它可以用来描述两个或多个变量之间的关系。
线性回归模型的一般形式为:y = β0 + β1x1 + β2x2 + … + βkxk + ε其中,y表示被解释变量,x1,x2,…,xk表示解释变量,β0,β1,β2,…,βk表示系数,ε表示误差项。
线性回归模型的公式包括估计系数的公式和误差项的公式。
估计系数的公式为:β = (XTX)-1XTY其中,β表示系数向量,X表示自变量矩阵,Y表示因变量向量,T表示矩阵的转置,-1表示矩阵的逆。
误差项的公式为:ε = Y - Xβ其中,ε表示误差向量,Y表示因变量向量,X表示自变量矩阵,β表示系数向量。
二、时间序列模型公式时间序列模型是计量经济学中用来描述时间序列数据的模型。
时间序列数据是指一组按时间顺序排列的数据。
时间序列模型的一般形式为:Yt = f(Yt-1, Yt-2, …, Yt-p) + εt其中,Yt表示t时刻的观测值,f表示时间序列的函数形式,p 表示滞后期数,εt表示误差项。
时间序列模型的公式包括自回归模型的公式、移动平均模型的公式和ARMA模型的公式等。
自回归模型的公式为:Yt = α + β1Yt-1 + β2Yt-2 + … + βpYt-p + εt 其中,α表示常数项,β1,β2,…,βp表示系数,εt表示误差项。
移动平均模型的公式为:Yt = α + εt + θ1εt-1 + θ2εt-2 + … + θqεt-q 其中,θ1,θ2,…,θq表示移动平均系数,εt表示误差项。
计量经济学讲义投资函数模型和货币需求函数模型投资函数模型和货币需求函数模型是财务管理和投资管理领域中常用的计量经济学模型。
这些模型可以帮助分析和解释投资决策和货币需求的关键因素,进而指导企业和个人进行有效的财务和投资管理。
本文将就这两个模型进行详细介绍。
一、投资函数模型投资函数模型是描述投资支出与其决定因素之间关系的经济模型。
投资支出是指企业和个人为购买和增加生产资产而进行的支出,通常包括固定资产投资和存货投资。
投资函数模型通过分析各种因素对投资支出的影响,帮助企业和个人预测和规划投资支出。
投资函数模型通常采用线性回归模型表示,基本形式为:I=α+βY+γR+δI其中,I表示投资支出,Y表示收入,R表示利率,α、β、γ、δ分别表示参数。
在这个模型中,收入是影响投资支出最重要的因素之一、通常情况下,较高的收入会促使企业和个人增加投资支出。
利率也是影响投资支出的重要因素之一,一般来说,较低的利率会鼓励更多的投资支出。
此外,企业和个人的预期收入和投资支出也会对实际投资支出产生影响。
根据这个模型,企业和个人可以根据自身情况预测和规划未来的投资支出。
同时,政府和金融机构也可以通过调控利率和提供相关政策,影响企业和个人的投资决策。
货币需求函数模型是描述货币需求与其决定因素之间关系的经济模型。
货币需求是指企业和个人为进行交易和储备而持有的货币数量。
货币需求函数模型通过分析各种因素对货币需求的影响,帮助企业和个人预测和规划货币需求。
货币需求函数模型通常采用经济学模型表示MD=f(Y,R,P)其中,MD表示货币需求,Y表示收入,R表示利率,P表示物价水平。
在这个模型中,收入是影响货币需求的最重要因素之一、一般来说,较高的收入会促使企业和个人增加货币需求。
利率也是影响货币需求的关键因素,一般情况下,较低的利率会减少货币需求。
物价水平也会对货币需求产生影响,一般来说,较高的物价水平会增加货币需求。
根据这个模型,企业和个人可以根据自身情况预测和规划未来的货币需求,例如确定适当的储蓄和投资计划。
第五章 多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。
需要我们建立多元线性回归模型。
一、多元线性模型及其假定 多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。
最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为 假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。
假定2. ,0][][][][21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。
(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示 βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵 这意味着X 列满秩,X 的各列是线性无关的。
在需要作假设检验和统计推断时,我们总是假定: 假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量βˆ,它要求β的估计βˆ满足下面的条件 22min ˆ)ˆ(ββββX y X y S -=-∆ (2)其中()()∑∑==-'-=⎪⎪⎭⎫ ⎝⎛-∆-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。
3.5回归模型的其他函数形式一、模型的类型与变换1.倒数模型、多项式模型与变量的直接置换法2.幂函数模型、指数函数模型与对数变换法3.复杂函数模型与级数展开法 二、非线性回归实例 三、非线性最小二乘估计 1.普通最小二乘原.2.高斯-牛顿迭代法(对原始模型展开台劳级数,取一阶近似值)⒊ 牛顿-拉夫森迭代法大部分非线性关系又可以通过一些简单的数学处理, 使之化为数学上的线性关系, 从而可以运用线性回归模型的理论方法。
⒋应用中的一个困难如何保证迭代所逼近的是总体极小值(即最小值)而不是局部极小值?一般方法是模拟试验:随机产生初始值→估计→改变初始值→再估计→反复试验, 设定收敛标准(例如100次连续估计结果相同)→直到收敛。
⒌非线性普通最小二乘法在软件中的实现给定初值 写出模型 估计模型 改变初值 反复估计1一般情况下, 线性化估计和非线性估计结果差异不大。
如果差异较大, 在确认非线性估计结果为总体最小时, 应该怀疑和检验线性模型。
2非线性估计确实存在局部极小问题。
3根据参数的经济意义和数值范围选取迭代初值。
4NLS 估计的异方差和序列相关问题。
NLS 不能直接处理。
应用最大似然估计。
3.6受约束回归– 在建立回归模型时, 有时根据经济理论需要对模型中的参数施加一定的约束条件。
例如: – 需求函数的0阶齐次性条件 – 生产函数的1阶齐次性条件模型施加约束条件后进行回归, 称为受约束回归(restricted regression ); 未加任何约束的回归称为无约束回归(unrestricted regression )。
一、模型参数的线性约束 1.参数的线性约束2.参数线性约束检验具体问题能否施加约束?需进行相应的检验。
常用的检验有: F 检验、x2检验与t 检验。
F 检验: 1构造统计量;2检验施加约束后模型的解释能力是否发生显著变化。
第一步:给出参数估计值 β的初值 ()β0,将f x i(, )β在 ()β0处展开台劳级数, 取一阶近似值;第二步:计算 z df x d i i =(, ) ()βββ0和 ~(, ) ()()y y f x z i i i i =-+⋅ββ00的样本观测值; 第三步:采用普通最小二乘法估计模型 i i i z y εβ+=~,得到β的估计值 ()β1; 第四步:用 ()β1代替第一步中的 ()β0,重复这一过程,直至收敛。
第五章回归模型的函数形式1.引言回归分析是统计学中一种重要的数据分析方法,用于研究自变量与因变量之间的关系。
在回归分析中,我们需要确定一个合适的函数形式来描述变量之间的关系,这个函数形式即为回归模型的函数形式。
本章将介绍回归模型的函数形式的基本概念和常用的函数形式。
2.线性回归模型线性回归模型是最简单的回归模型之一,其函数形式为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,Xi是自变量,βi是参数,ε是误差项。
线性回归模型假设自变量与因变量之间的关系是线性的,并且误差项服从正态分布。
3.多项式回归模型多项式回归模型是线性回归模型的一种扩展形式,其函数形式为:Y=β0+β1X+β2X^2+...+βnX^n+ε多项式回归模型允许自变量的幂次大于1,通过引入幂项和交互项,可以更好地拟合非线性关系。
4.对数回归模型对数回归模型是一种特殊的回归模型,其函数形式为:ln(Y) = β0 + β1X1 + β2X2 + ... + βnXn + ε对数回归模型适用于因变量为正数且取值范围较广的情况,通过取对数可以将因变量的范围缩小,使得模型更易拟合。
5.非线性回归模型除了线性回归模型和多项式回归模型外,还存在许多其他形式的非线性回归模型。
非线性回归模型的函数形式通常不容易直接确定,需要通过试验和拟合来确定参数。
常见的非线性回归模型包括指数模型、幂函数模型、对数模型等。
在实际应用中,选择适当的函数形式是回归分析的一个重要问题。
选择不合适的函数形式可能导致模型的预测效果较差。
为了选择适当的函数形式,可以通过观察变量之间的散点图、拟合曲线图、残差图等进行初步判断,然后利用统计方法进行模型的比较和选择。
7.总结回归模型的函数形式是回归分析的基础,选择合适的函数形式对于模型的拟合和预测效果至关重要。
线性回归模型、多项式回归模型、对数回归模型和非线性回归模型是常用的函数形式。
选择适当的函数形式需要综合考虑变量之间的实际关系和统计分析的要求,可以通过观察图形和利用统计方法进行模型的比较和选择。
计量经济学试题计量经济模型的函数形式与非线性回归计量经济学试题:计量经济模型的函数形式与非线性回归一、简介计量经济学是一门将经济理论与统计方法结合的学科,用于量化经济关系和进行经济预测。
在计量经济学中,经济模型的函数形式和回归分析是两个重要的概念。
本文将探讨计量经济模型的函数形式和非线性回归的相关内容。
二、计量经济模型的函数形式1. 线性函数形式线性函数形式是计量经济学中常见的函数形式之一。
线性模型假定自变量和因变量之间的关系是线性的,可以用一条直线表示。
例如,经济增长与投资之间的关系可以用线性模型表示为:Y = α + βX,其中Y代表经济增长,X代表投资,α和β是模型中的参数。
2. 对数函数形式对数函数形式是计量经济学中另一种常见的函数形式。
对数模型假定自变量和因变量之间的关系是对数的,可以通过取对数将非线性关系转化为线性关系。
例如,消费与收入之间的关系可以用对数模型表示为:ln(Y) = α + βln(X),其中ln(Y)代表对Y取对数,ln(X)代表对X 取对数,α和β是模型中的参数。
3. 多项式函数形式多项式函数形式是一种更为灵活的函数形式。
多项式模型假定自变量和因变量之间的关系可以用多项式方程表示。
例如,通货膨胀率与货币供应量之间的关系可以用多项式模型表示为:Y = α + βX + γX²,其中Y代表通货膨胀率,X代表货币供应量,α、β和γ是模型中的参数。
三、非线性回归非线性回归是计量经济学中一种重要的数据拟合方法。
当经济关系不符合线性假设时,可以使用非线性回归模型来分析。
非线性回归模型可以是基于某种理论假设或者基于经验数据。
常见的非线性回归模型包括指数模型、幂函数模型等。
在进行非线性回归时,通常需要根据经济理论或者实际情况选取适当的函数形式,并使用最小二乘法等方法估计模型参数。
非线性回归需要通过迭代的方式来寻找最优解,具有一定的复杂性。
然而,非线性回归模型可以更好地捕捉经济关系中的非线性特征,提高模型的拟合度和预测准确性。