超声波探伤的物理基础——(第四节超声平面在平界面上斜入射的行为)
- 格式:doc
- 大小:1.73 MB
- 文档页数:10
第一章 超声波探伤的物理基础第三节 超声平面波在大平界面上垂直入射的行为超声波在异质界面上的反射、透射和折射规律是超声波探伤的重要物理基础。
当超声波垂直入射于平面界面时,主要考虑超声波能量经界面反射和透射后的重新分配和声压的变化,此时的分配和变化主要决定于界面两边介质的声阻抗。
一、超声波在单一的平面界面的反射和透射(1) 反射、透射规律的声压声强表示当平面超声波垂直入射于两种声阻抗不同的介质的大平界面上时,反射波以与入射波方向相反的路径返回,且有部分超声波透过界面射入第二介质,见图1–17所示。
平面界面上入射声强为I ,声压为P ;反射声强为I a ,声压为P a ;透射声强为I t ,声压为P t 。
若声束入射一侧介质的声阻抗为Z 1,透射一侧介质声阻抗为Z 2,根据界面上声压连续和振速连续的原则,并令21Z Z m =(称声阻抗比),就可得到:声压反射系数m1m1Z Z Z Z P P 2112a P +-=+-==γ (1–21a) 声压透射系数m12Z Z Z 2P P 212t P +=+==τ (1–21b) 若把声压看作是单位面积上受的力,那么作用于同一平面的力应符合力的平衡原理,因此,声压变化就可写作t P Pa P =+,等式两边除以P ,得PP P Pa 1t =+即P P 1τ=γ+ (1–22)若把Ia/I 和It/I 分别定义为声强反射率(R)和声强透射率(D),就可得到:声强反射率22a 1212a P P Z 2P Z 2P I Ia R === (1–23)声强透射率II D t=(1–24) 声强是一种单位能量,作用于同一界面的声强,应满足能量守恒定律,所以声强变化可写作I = Ia+It ,等式两边除以I ,得到图1–17 平面波在大平面上的反射和透射1D R I I I Ia I I t =++= (1–25) 从式(1–23)可知2221122P m 1m 1Z Z Z Z R ⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫ ⎝⎛+-=γ= (1–26) 从式(1–22)和(1–25)可知2221212P )m 1(m4)Z Z (Z Z 41D +=+⋅=γ-= (1–27)(2) 声压往复透过率实际探伤中的探头常兼作发射和接收声波用,并认为透射至工件底面的声压在钢/空气界面上被完全反射后,再次透过界面后被探头所接收,因此,探头接收到的返回声压t P '与入射声压之比,即为声压往复透过率Tp 。
第一章超声波探伤的物理基础By adan超声波探伤是目前应用最广泛的无损探伤方法之一。
超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。
超声波探伤中,主要涉及到几何声学和物理声学中的一些基本定律和概念。
如几何声学中的反射、折射定律及波型转换,物理声学中波的叠加、干涉、绕射及惠更斯原理等。
深入理解几何声学和物理声学中的有关概念,掌握其中的基本定律,对于灵活运用超声波理论去解决实际探伤中的各种问题无疑是十分有益的。
第一节振动与波宇宙间的一切物质,大至宏观天体,小至微观粒子都处于一定的运动状态,振动和波动是物质运动的基本形式一、振动1.振动的一般概念物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。
日常生活中到处可以见到振动现象,如弹簧振子的运动、钟摆的运动和汽缸中活塞运动等都是可以直接觉察到的振动现象。
另外,如固体分子的热运动,一切发声物体的运动以及超声波波源的运动等则是人们难以觉察到的振动现象。
物体(或质点)受到一定力的作用,将离开平衡位置,产生一个位移,该力消失后,它将回到其平衡位置;并且还要越过平衡位置移到相反方向的最大位移位置,然后返回平衡位置。
这样一个完整运动过程称为一个“循环”或叫一次“全振动”。
振动是,往复、周期性的运动,振动的快慢常用振动周期和振动频率两个物理量来描述。
周期T——振动物体完成一次全振动所需要的时间,称为振动周期,用T表示。
常用单位为秒(s)。
频率f——振动物体在单位时间内完成全振动的次数,称为振动频率,用f表示。
常用单位为赫兹(H s),1赫兹表示1秒钟内完成全振动,即1H s=1次/秒。
此外还有千赫(KH z),兆赫(MH z)。
1kH z=103H z,1MH z由周期和频率的定义可知,二者互为倒数(1.1)如某人说话的频率f=1000H z,表示其声带振动为1000次/秒,声带振动周期T=1/f=1/1000=0.001秒。
2.谐振动最简单最基本的直线强动称为谐振动。
第一章 超声波探伤的物理基础第四节 超声平面在平界面上斜入射的行为超声平面波以一定的倾斜角入射到异质界面上时,就会产生声波的反射和折射、并且遵循反射和折射定律。
在一定条件下,界面上还会产生波型转换现象。
一、斜入射时界面上的反射、折射和波型转换(1) 超声波在固体界面上的反射1. 固体中纵波斜入射于固体——气体界面图1–25中,L α为纵波入射角,1L α为纵波反射角,1S α为横波反射角,其反射定律可用下列数学式表示:1S 1S 1L 1L L L sin C sin C sin C α=α=α (1–34) 因入射纵波L 与反射纵波L 1在同一介质内传播,故它们的声速相同,即1L L C C =,所以1L L α=α。
又因同一介质中纵波声速大于横波声速,即1S 1L C C >,所以1S 1L αα>。
2. 横波斜入射于固体——气体界面图1–26中,S α为横波入射角,1S α为横波反射角,1L α为纵波反射角。
由反射定律可知:1L 1L 1S 1S S S sin C sin C sin C α=α=α (1–35)图1–25 纵波斜入射 图1–26 横波斜入射因入射横波S 与反射横波S 1在同一介质内传播,故它们的声速相同,即1S S C C =,所以1S S α=α。
又因同一介质中1S 1L C C >,所以,1S 1L αα>。
结论:当超声波在固体中以某角度斜入射于异质面上,其入射角等于反射角,纵波反射角大于横波反射角,或者说横波反射声束总是位于纵波反射声束与法线之间。
图(1–27)表示钢及铝材中纵波入射时的横波反射角,也可以看成横波入射时的纵波反射角。
(2) 超声波的折射 1. 纵波斜入射的折射图1–28中L α为第一介质的纵波入射角,L β为第二介质的纵波折射角,S β为第二介质的横波折射角,其折射定律可用下列数学式表示:S2S L 2L L L sin C sin Csin C β=β=α (1–36)图1–27 钢及铝村中纵波入射时的横波反射角(或横波入射时的纵波反射角) 图1–28 纵波斜入射在第二介质中,因2S 2L C C >,所以S L sin sin ββ>,S L ββ>,横波折射声束总是位于纵波折射声束与法线之间。
超声波探伤基础知识
超声波探伤是利用超声波在材料中传播和反射的特性来检测材料内部缺陷的一种无损检测技术。
以下是一些超声波探伤的基础知识:
1. 超声波:超声波是频率超过20kHz的机械波,它在材料中
的传播速度跟材料的密度、刚度等物理性质有关。
2. 超声波的传播:超声波在均匀材料中沿直线传播,当遇到界面或缺陷时会发生折射、反射和散射等现象。
3. 超声波的传感器:超声波传感器通常由压电材料制成,其中压电片会产生机械振动,将电能转换为超声波能量。
4. 超声波探头:超声波探头由超声波传感器和库仑耦合剂组成,用于将超声波能量传递到被检测材料中,并接收反射的超声信号。
5. 超声波的传播方式:超声波的常见传播方式包括纵波(沿着传播方向的振动方向与传播方向一致)和横波(沿着传播方向的振动方向与传播方向垂直)。
6. 超声波的缺陷检测:当超声波遇到材料中的缺陷(如裂纹、夹杂、气泡等),它会反射一部分能量回到探头。
通过分析反射信号的幅度、时间和形状等参数,可以判断缺陷的类型、大小和位置。
7. 超声波的图像生成:通过多次探测,将分析得到的超声信号以图像形式展示,可以获得材料内部缺陷的位置和形状信息。
超声波探伤在工业领域广泛应用,可用于检测金属、塑料、陶瓷等材料的缺陷,如焊接质量、母线接头、管道内部等。
它具有无损、快速、准确、可重复性好等优点,成为重要的材料检测技术。
第一章 超声波探伤的物理基础第四节 超声平面在平界面上斜入射的行为超声平面波以一定的倾斜角入射到异质界面上时,就会产生声波的反射和折射、并且遵循反射和折射定律。
在一定条件下,界面上还会产生波型转换现象。
一、斜入射时界面上的反射、折射和波型转换(1) 超声波在固体界面上的反射1. 固体中纵波斜入射于固体——气体界面图1–25中,L α为纵波入射角,1L α为纵波反射角,1S α为横波反射角,其反射定律可用下列数学式表示:1S 1S 1L 1L L L sin C sin C sin C α=α=α (1–34) 因入射纵波L 与反射纵波L 1在同一介质内传播,故它们的声速相同,即1L L C C =,所以1L L α=α。
又因同一介质中纵波声速大于横波声速,即1S 1L C C >,所以1S 1L αα>。
2. 横波斜入射于固体——气体界面图1–26中,S α为横波入射角,1S α为横波反射角,1L α为纵波反射角。
由反射定律可知:1L 1L 1S 1S S S sin C sin C sin C α=α=α (1–35)图1–25 纵波斜入射 图1–26 横波斜入射因入射横波S 与反射横波S 1在同一介质内传播,故它们的声速相同,即1S S C C =,所以1S S α=α。
又因同一介质中1S 1L C C >,所以,1S 1L αα>。
结论:当超声波在固体中以某角度斜入射于异质面上,其入射角等于反射角,纵波反射角大于横波反射角,或者说横波反射声束总是位于纵波反射声束与法线之间。
图(1–27)表示钢及铝材中纵波入射时的横波反射角,也可以看成横波入射时的纵波反射角。
(2) 超声波的折射 1. 纵波斜入射的折射图1–28中L α为第一介质的纵波入射角,L β为第二介质的纵波折射角,S β为第二介质的横波折射角,其折射定律可用下列数学式表示:S2S L 2L L L sin C sin Csin C β=β=α (1–36)图1–27 钢及铝村中纵波入射时的横波反射角(或横波入射时的纵波反射角) 图1–28 纵波斜入射在第二介质中,因2S 2L C C >,所以S L sin sin ββ>,S L ββ>,横波折射声束总是位于纵波折射声束与法线之间。
2. 横波斜入射的折射横波在固体中斜入射至固/固、固/液介面时,其折射规律同样符合式(1–36)所示的形式,可写成:L2L 2S 2S S S sin Csin C sin C β=β=α (1–37) (3) 由于气体和液体不能传播波横波,所以不是任何情况下反射波和折射波都有波型的转换,这一点要注意。
图1–29是几种不同情况界面的波型转换,(a) I —固体,II —液体,纵波入射,在II 中没有折射横波;(b) 介质情况同(a),但是横波入射,在II 中也只有折射的纵波;(c)中I 是液体,II 是固体,纵波入射在介质I 中只有反射纵波;(d)二种介质都是液体,则反射和折射波都是纵波;(e)(f)二种介质都是固体,入射波是纵波及横波,在一般情况下反射波和折射波中既有纵波又有横波。
若声波从固体斜射到空气界面,则在固体中才存在反射纵波和(或)横波。
图1–29 声波的各种反射、折射情况纵波第一临界角1LK α定义如下:纵波射入斜,使固体中L β=90°的纵波入射角就是纵波第一临界角,见图1–30所示,此时2L 2L 1LK L C 90sin C sin C ==α2L L11LK C C sin -=α (1–38) 对于入射角大于纵波第一临界角的所有纵波入射声束均会使纵波不传入第二介质,产生纵波全反射的现象。
(2) 纵波第二临界角纵波第二临界角2LK α定义如下:纵波斜入射,使固体中=βS 90°的纵波入射角就是纵波第二临界角,见图1–31所示。
此时2S 22LK L C 90sin C sin C ==α图1–30 纵波第一临界面 图1–31 横波全反射和第二临界角SL12LK C C sin -=α (1–39) 对于入射角大于纵波第二临界角的所有纵波入射声束,均会使变形横波不传入第二介质,产生横波全反射的现象。
图1–32为有机玻璃/钢(铝)界面入射角和折射角的关系曲线。
常用介质的纵波第一临界和第二临界角见表1–4所列。
图1–32 有机玻璃/钢(铝)界面入射角和折射角的关系曲线10° 20° 30° 40° 50° 60°βc ·βs由表1–4可知,采用有机玻璃透声楔的斜探头进行横波探伤时,要在钢中得到单一横波,其入射角的选择27.2°~56.7°。
(3) 第三临界角横波斜入射于固体/空气界面,αS 为横波射角;1L α为纵波反射角,1S α为横波反射角,此时认为横波在空气中不产生折射现象。
因同一介质中,C S <C L ,所以αS <1L α。
当入射角αS 达到某一数值时,就可使1L α=90°,产生纵波全反射现象。
定义横波斜入射至固体/空气界面并产生纵波全反射的横波入射角为第三临界角,用符号3SK α表示。
1L 1L 3SK S C 90sin C sin C ==α1L S13SK C C sin -=α (1–40) 常用介质的第三临界角见表1–5所列。
表1–5 常用介质第三临界角三、斜入射时反射系数、折射系数和往复透射率超声波斜入射时,运用反射定律和折射定律可以确定,遇到界面后反射和折射超声波束的传播方向,但不能确定入射波和反射波、折射波之间的声压关系。
实际上,斜入射波尤其是在产生波型转换的情况下,反射波及折射波的声压变化不仅随入射波型的不同而不同,而且还与入射角的大小和界面两侧介质性质有关。
由于理论计算十分复杂,因此实际应用中常以相应的曲线进行分析。
下面仅以几种常用情况加以讨论:(1) 纵波从水斜入射至固体当纵波从水斜入射至固体(如钢或铝)时,随着纵波入射角的变化,反射声压和折射声压迹随之变化,图1–33所示为入射纵波在水/铝界面上的反射和折射。
从图中可见,当纵波在水中的入射角小于13.5°时,纵波在铝中的折射角和声压随水中纵波入射角的增大而很快增中,铝中折射横波比较弱,水中反射纵波声压为入射声压的80%左右。
当入射角达到13.5°(水/铝纵波临界角)后,铝中纵波不存在,只有横波,相应的横波折射角βS 在30°以上,并且随入射角的增大,折射横波声压随之增加。
当L α≥29.2°以后,横波全反射,铝中不再存在折射波,水中纵波反射声压系数为100%,从图中还可以看出,在L α=13.5°时,铝中横波声压几乎为零,而反射声压(纵波)为100%,透射的纵波声压亦为100%,在L α>13.5°,特别是>15°到29.2°之间,铝中折射波声压较大,这就是对于水浸横波探伤铝时,选用的纵波入射角必须在13.5°~29.2°之间的原因。
图1–33 入射纵波在水和铝界面上的反射和折射(2) 纵波从有机玻璃斜入射至固体目前,各种斜探头大多以有机玻璃作为透声楔,晶片产生的纵波通过有机玻璃入射到有机玻璃/固体界面(耦合层),并在耦合层与固体之间接合面上波型转换后,在固体中得到所需要的波型(横波、表面波及板波)。
由于耦合层极薄,运用反向定律、折射定律计算反射角、折射角和分析界面上声压反射系数、透射系数、往复透过率时,可忽略耦合层的影响,只以界面两侧的有机玻璃和固体的声学性质为计算和分析的依据。
纵波斜入射在有机玻璃/钢界面的情况如图1–34所示,从图中可见,有二个临界角,即纵波临界角27.6°和横波临界角(57.8°),只有当入射角27.6°~57.8°之间时,钢中才能得到纯的横波折射,随着入射角的增大,横波折射角随之增大,折射横波声压平缓地增加。
而往复透射率却随折射角增大而下降。
图1–34 纵波斜入射在有机玻璃/钢界面上的反射和折射规律而在超声波探伤法中,脉冲反射式探伤仪示波屏上的反射回波高代表了发射声波在界面上的回波幅度,这就是我们感兴趣的往复透过率问题。
图1–34所示即为有机玻璃钢/界面的情况。
图中斜入波的往复透过率T P 可由下式计算:2P 1P t t t P pP p P p P T τ⋅τ='⋅='=式中:P 为入射声压;P t 为透射声压;经固体/空气界面100%反射后变为第二介质向第一介质入射的声压。
2P τ为第一介质波向第二介质内透射的声压透射率;1P τ为第二介质返回声波向(a)第一介质内透射的声压透射率。
从图中可看出:1. 有机玻璃与固体工件之间采用耦合剂液态接触比固体接触的横波声压往复透过率高得多;2. 声压往复透过率随入射角L α或折射角S β的不同而有所变化。
有机玻璃/钢界面声压往复透过率一般不超过30%,有机玻璃/铝界面声压透过率高于前者,但最高不超过65%。
(3) 固体/空气界面上的声压反射系数实际工件底面往往就是固体/空气界面,研究固体/空气界面上的声压反射系数对分析工件底面返回声压有实用意义。
图1–35和1–36为入射波在固体/空气界面声压反射系数P γ与入射角L α的关系曲线。
图1–35 纵波入射钢/空气界面声压 图1–36 横波入射钢/空气、钢/水铝/空气、铝/水界面声压反反射系数与αL 的关系曲线 射系数与αL 的关系曲线从图1–35中可以看出:1. 纵波入射角L α=20°~70°(对应的横波反射角S α=10°~30°)范围内,反射横波的声压反射系数据LS γ较大,LS γ>40%,最高可达60%,此时的横波反射声压很强。
2. 纵波入射角L α=60°~70°范围内反射纵波的声压反射系数LL γ最小,此时LL γ一般不大于20%,纵波反射声压很弱。
图1–36为横波斜入射钢/空气、钢/水、铝/空气、铝/水界面声压反射系数P γ与横波入射角S α的关系曲线。
从图1–36中可以看出:1. 在钢/空气界面,当钢中横波入射角为30°左右时,反射横波的声压反射系数SS γ最低,其值小于15%。
入射角继续增大,横波反射声压就激增,直到33.2℃时横波声压反射系数SSγ=100%,此时纵波反射角L α= 90°,钢中只有横波而无反射纵波,3SK α=33.2°为第三临界角,铝/空气界面的63003080s i n13SK -=α=29.5°。
2. 当横波斜入射于固体/液体界面(如钢/水、铝/水)时,由于一部分声能在液体中折射为纵波传播,故其横波声压反射系数比固体/空气界面小,如图1–36中虚线所示,这种差异在小于第三临界角时并不明显。