超声波检测基础知识
- 格式:doc
- 大小:197.00 KB
- 文档页数:4
超声波检测基础知识简介超声波检测通常是指通过声波的反射、散射等物理现象对实物进行检测和分析的一种非破坏性检测技术。
超声波具有频率高、穿透力强、灵敏度高、特性稳定等优点,被广泛应用于工业、医学、环保等领域中。
超声波的基本原理超声波是指频率大于20kHz的声波。
超声波在物质中传播的速度受到物质密度、弹性模量和泊松比等因素的影响。
当超声波遇到物体表面或内部结构发生反射或散射时,会在探头中产生电信号,通过信号处理和分析,就可以获得物体的内部结构信息。
超声波探测技术超声波探测系统主要包含以下三个部分:超声发生器、超声探头和信号分析仪。
超声发生器负责产生超声波信号,超声探头负责将超声波信号传递到被测物体中,信号分析仪负责对超声波信号进行处理和分析。
超声波探测技术可以分为接触式和非接触式两种方式。
接触式超声波探测需要将超声探头直接贴附于被测物体表面,适用于对表面缺陷进行检测。
非接触式超声波探测通过传播空气中的超声波来检测物体内部结构,适用于一些特殊要求的场合。
超声波检测应用领域超声波检测技术被广泛应用于工业、医学、环保等领域。
在工业领域中,超声波检测技术可以用于检测金属、非金属材料的缺陷、变形等情况,被广泛应用于航空、汽车、管道等领域。
在医学领域中,超声波检测技术可以用于对人体内部组织器官进行检测和诊断,被广泛应用于心脏、腹部、肝脏等区域。
在环保领域中,超声波检测技术可以用于对大气、水等环境因素进行监测和分析。
超声波检测的优缺点超声波检测技术具有频率高、分辨率高、不破坏被测物体等优点。
同时,超声波检测技术也存在检测深度限制、检测结果易受表面状态影响等缺点。
因此,在选择超声波检测技术时,需要综合考虑其优缺点和适用场合。
超声波检测技术是一种非破坏性检测技术,具有广泛的应用领域和优点。
未来,随着科技的不断发展,超声波检测技术将会发挥更加重要的作用,为人们的生产生活带来更多的便利和贡献。
第一单元超声波检测的物理基础1、机械振动:有些物体在某一固定的位置(即平衡位置)附近作周期性的往复运动,这种运动形式被称为机械振动,简称振动。
2、自由振动:做振动的系统在外力的作用下物体离开平衡位置以后就能自行按其固有频率振动,而不再需要外力的作用,这种不在外力作用下的振动称为自由振动。
3、无阻尼自由振动:理想情况下的自由振动叫无阻尼自由振动。
自由振动时的周期叫固有周期,自由振动时的频率叫固有频率,它们由振动系统自身条件所决定,与振幅无关。
4、简谐振动:最简单最基本的直线无阻尼自由振动称为简谐振动,简称谐振。
5、在周期性外力的作用下产生的振动称为受迫振动,这个周期性的外力称为策动力。
6、机械波:机械振动在弹性介质中的传播过程,称为机械波。
机械波产生的条件:有机械振动振源和传播振动的弹性介质。
7、波长:在同一波线上两个相邻的振动相位相同的质点之间的距离,称为波长(即一个“波”的长度),用符号λ表示。
波长的常用单位是毫米(mm)或米(m)。
8、频率:单位时间内波动通过某一位置的完整波的数目,称为波动频率,也是质点在单位时间内的振动次数,用符号f表示。
频率的常用单位是赫兹(Hz),即(次)/秒。
波的频率是波源的振动频率,与介质无关。
9、周期:周期在数值上等于频率的倒数,它是波动前进一个波长的距离所需要的时间,用符号T表示。
周期的常用单位有秒(s)。
10、波速:在波动过程中,某一振动状态(即振动相位)在单位时间内所传播的距离叫做波速,用c表示,其常用单位为米/秒(m/s)。
波速的影响因素有:(1)介质的弹性模量和密度;(2)波的类型;(3)传播过程中的温度。
11、惠更斯原理:媒质中波动传到的各点,都可以看作是发射子波的波源,在其后的任一时刻,这些子波的包迹就决定新的波阵面。
惠更斯原理对任何波动过程都适用,不论是机械波或电磁波,不论这些波动经过的媒质是均匀的或非均匀的。
利用惠更斯原理可以确定波前的几何形状和波的传播方向。
《超声波检测技术基础知识概述》一、基本概念超声波检测技术是一种利用超声波在材料中传播的特性来检测材料内部缺陷、测量材料厚度、确定材料性质等的无损检测方法。
超声波是指频率高于 20kHz 的机械波,其在不同材料中的传播速度、衰减程度和反射特性各不相同,这些特性为超声波检测提供了基础。
超声波检测主要涉及到超声波的发射、传播和接收。
通常使用超声波探头作为发射和接收超声波的装置。
探头中的压电晶体在电信号的激励下产生超声波,并将接收到的超声波信号转换为电信号,以供后续分析处理。
二、核心理论1. 超声波的传播特性- 超声波在均匀介质中沿直线传播,其传播速度取决于介质的弹性模量和密度。
不同材料中的传播速度差异较大,例如在钢中的传播速度约为 5900m/s,在水中的传播速度约为 1480m/s。
- 超声波在传播过程中会发生衰减,衰减的原因主要包括散射、吸收和扩散等。
散射是由于材料中的不均匀性引起的,吸收是由于材料对超声波能量的吸收,扩散则是由于超声波在传播过程中的扩散效应。
- 当超声波遇到不同介质的界面时,会发生反射、折射和透射等现象。
反射波的强度取决于界面两侧介质的声阻抗差异,声阻抗差异越大,反射波越强。
2. 超声波检测原理- 脉冲反射法:通过发射短脉冲超声波,当超声波遇到缺陷或界面时,会产生反射波。
根据反射波的到达时间、幅度和波形等信息,可以确定缺陷的位置、大小和性质。
- 穿透法:将超声波发射探头和接收探头分别放置在被检测材料的两侧,通过检测透射超声波的强度和波形变化,来判断材料内部是否存在缺陷。
- 共振法:利用超声波在被检测材料中产生共振的原理,通过测量共振频率和共振幅度等参数,来确定材料的厚度、弹性模量等性质。
三、发展历程超声波检测技术的发展可以追溯到 19 世纪末期。
当时,人们开始研究超声波的特性和应用。
20 世纪初期,超声波检测技术开始应用于工业领域,主要用于检测金属材料的内部缺陷。
在第二次世界大战期间,超声波检测技术得到了快速发展,被广泛应用于军事工业中,如检测飞机、舰艇等装备的零部件。
超声波检测基础知识一、超声波的发生及其性质1、超声波探伤:利用超声波探测材料内部缺陷的无损检验法。
2、超声波探伤示意图二、超声波检测的原理:超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在萤光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。
三、试块四、焊缝超声波检测工艺要点1. 适用范围⑴、用A型脉冲反射式超声探伤仪器,以单斜探头接触法为主的检测方法。
⑵、适用于焊接件对接处厚度8~400mm的全熔化焊承压设备对接焊缝的超声波检测。
承压设备壁厚大于或等于4mm,外径为32mm~159mm或者壁厚为4~6mm,外径大于或者等于159mm的管子2、检测人员资格:⑴、检测人员必须经过培训,经理论和实际考试合格,取得相应等级资格证书的人员担任。
⑵、检测由II级以上人员进行,I级人员仅作检测的辅助工作。
3、检测设备、器材和材料⑴、使用的超声波仪器满足① JB/T9214-1999 A型脉冲反射式超声波探伤系统工作性能测试方法② JB/T10061-1999 A型脉冲反射式超声波探伤仪通用技术条件⑵、仪器、探头和系统性能a.在达到所探工件的最大检测声程时,其有效灵敏度余量应不小于10dB.b.仪器和探头的组合频率与公称频率误差不得大于10%.c.仪器和直探头组合的始脉冲宽度(在基准灵敏度下):对于频率为5HZ的探头,宽度不大于10 mm,对于频率为10HZ的探头,宽度不大于15 mm。
d.直探头的远场分辨力应不小于30dB. 斜探头的远场分辨力应不小于6dB。
e.探头①、晶片面积一般不应大于500mm2,且任一边长原则上不应大于25mm②、单斜探头声束轴线水平偏离角不应大于2°,主声束垂直方向不应有明显的双峰。
(3)试块a试块应采用与被检工件相同或近似声学性能的材料制成,该材料用直探头检测时,不得有大于ф2mm平底孔当量直径的缺陷。
超声基础部分1.何谓超声波?诊断用超声波是如何产生的?人耳能感知的声波频率范围为20—20000Hz。
低于20Hz者称为雌声波,高于20000Hz者称为超声波。
医用诊断用超声波的范围多在1—15MHz。
超声波是机械波。
可由多种能量通过换能器转变而成。
医用超声波是由压电晶体(压电陶瓷等)产生。
压电晶体在交变电场的作用下发生厚度的交替改变,即机械振动。
其振动频率与交变电场的变化频率相同。
当电场交变电频率等于压电晶片的固有频率时其电能转换为声能(电—声)效率最高,即振幅最大。
压电晶体只有两种可逆的能量转变效应。
上述在交变电场的作用下,由电能转换为声能,称为逆压电效应。
相反,在声波机械压力交替变化的作用下,晶体变形而表面产生正负电位交替变化,称压电效应。
超声探头(换能器)中的压电晶片,在连接电极电压交替变化的作用下产生逆压电效应,称为超声发生器;而在超声波机械压力下产生压电效应,又成为超声波接收器。
这是超声波产生和接收的物理学原理。
2.超声波物理特性及其在介质中传播的主要物理量有哪些?它们之间有何关系?(1)频率(frequency):质点单位时间内振动的次数称为频率(f)。
(2)周期(cycle):波动传播一个波长的时间或一个整波长通过某一点的时间(T)。
(3)波长(wavelength):声波在同一传播方向上,两个相邻的相位相差2π的质点间的距离为波长(λ)。
(4)振幅(amplitude):振动质点离开平衡位置的最大位移称振幅,或波幅(A)。
(5)声速(velocity of sound,sound velocity):单位时间内,声波在介质中传播的距离称声速(C)。
介质不同,超声在介质中的声速度也不同,但是在同一介质中,诊断频段超声波的声速可认为相同。
声波在介质中的传播速度与介质的弹性系数(k)和介质密度(ρ)有关。
其声速与k和ρ比值的平方根成正比,即式中C为声速,E为杨式模量。
根据物理学意义,c、f、T、λ之间有下列关系:f=1/T,c=λf=λ/ T,λ=c/ f超声在人体软组织(包括血液、体液)中的声速约为1540m/s;骨与软骨中的声速约为软组织中的2.5倍;而在气体中的声速仅为340m/s左右。
超声基础知识入门超声基础知识总结
超声基础知识入门:
1. 超声波:超声波是一种频率高于人耳可听到的声音的声波。
在医学中,常用的超声
波频率范围是1~20兆赫(MHz)。
2. 超声传感器:超声传感器是将声波转化为电信号的装置。
它由发射器和接收器组成,发射器发出超声波,接收器接收到反射回来的超声波并转化为电信号。
3. 超声图像:超声波在人体组织内反射、折射和散射产生回波,这些回波可用来形成
超声图像。
超声图像显示了人体器官、血管、肿块等结构的形态和位置。
4. 超声成像模式:常见的超声成像模式包括B模式(二维图像)、M模式(时间-振幅图像)、Doppler模式(血流图像)等。
5. 超声引导下穿刺:超声引导下穿刺是一种常见的医疗技术,通过超声图像引导医生
准确定位并操作穿刺针,用于取样、注射药物等操作。
6. 超声检查:超声检查是一种无创、无辐射的影像学检查方法,广泛应用于临床诊断。
常见的超声检查包括腹部超声、妇科超声、心脏超声等。
7. 超声诊断:通过观察和分析超声图像,医生可以对疾病进行诊断。
超声诊断可以发
现各种器官的异常结构、肿块、囊肿、积液等。
8. 超声治疗:超声波的能量可以用于治疗某些疾病,如肌肉拉伤、骨折、肿瘤等。
超
声治疗可以促进组织修复,减轻疼痛和炎症。
以上是超声基础知识的简要总结,希望对您有帮助。
超声波基础必学知识点1. 声音的特性:声音是一种机械波,是由物体振动产生的。
它可以传播在气体、液体和固体中,并需要介质作为传播媒介。
2. 声波的频率和波长:声音的频率是指每秒钟振动的次数,单位是赫兹(Hz)。
声波的波长是指声波在介质中传播一个完整周期所需的距离。
3. 超声波的频率:超声波是指频率超过人类听觉范围(20 Hz至20 kHz)的声波。
一般认为超声波的频率范围在20 kHz到1 GHz之间。
4. 超声波的产生和检测:超声波的产生可以通过电压信号施加在压电材料上,使其振动产生超声波。
超声波的检测可以使用超声波传感器来接收和转换超声波成电信号。
5. 超声波的传播速度:超声波在空气中的传播速度约为343米/秒。
在其他介质中,传播速度会有所不同。
6. 超声波在医学中的应用:超声波在医学中应用广泛,如超声检查用于诊断疾病、超声治疗用于物理疗法等。
7. 超声波在工业中的应用:超声波被广泛应用于工业领域,如无损检测、清洗、焊接、切割、涂层、粉末冶金等。
8. 超声波的反射和折射:超声波在界面上会发生反射和折射。
反射是指超声波与物体界面相交时,部分能量被物体反射回来。
折射是指超声波在不同介质之间传播时,发生速度和方向的变化。
9. 超声波的干扰和衰减:超声波在传播过程中会受到杂波的干扰,干扰会对超声波的检测和测量造成影响。
此外,超声波在传播过程中也会受到介质的衰减,衰减会导致超声波的能量逐渐降低。
10. 超声波的成像原理:超声波成像通过对物体内部超声波的反射进行接收和处理,生成图像来显示物体的内部结构。
成像原理包括回波时间测量、超声波在不同介质中的传播速度、超声波的强度等。
超声波检测基础知识第一章超声波检测超声波检测定义:使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。
超声检测的优点:(1)适用于金属、非金属和复合材料等多种制件的无损检测;(2)穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。
如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;(3)缺陷定位较准确;(4)对面积型缺陷的检出率较高;(5)灵敏度高,可检测试件内部尺寸很小的缺陷;(6)检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。
超声检测的局限性:(1)对试件中的缺陷进行精确的定性、定量仍须作深入研究;(2)对具有复杂形状或不规则外形的试件进行超声检测有困难;(3)缺陷的位置、取向和形状对检测结果有一定影响;(4)材质、晶粒度等对检测有较大影响;(5)以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。
超声波检测的适用范围:从检测对象的材料来说,可用于金属、非金属和复合材料;从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;从检测对象的形状来说,可用于板材、棒材、管材等;从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。
1.1超声波检测的基础知识1.1.1 超声波声波:频率在20~20KHz之间;次声波:频率低于20Hz;不容易衰减,不易被水和空气吸收.而次声波的波长往往很长,因此能绕开某些大型障碍物发生衍射.某些次声波能绕地球2至3周.某些频率的次声波由于和人体器官的振动频率相近,容易和人体器官产生共振,对人体有很强的伤害性,危险时可致人死亡超声波:频率大于20KHz。
方向性好,穿透能力强,易于获得较集中的声能,Vp Z = (1.4) 声阻抗表示声场中介质对质点振动的阻碍作用。
第一章超声波检测超声波检测定义:使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。
超声检测的优点:(1)适用于金属、非金属和复合材料等多种制件的无损检测;(2)穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。
如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;(3)缺陷定位较准确;(4)对面积型缺陷的检出率较高;(5)灵敏度高,可检测试件内部尺寸很小的缺陷;(6)检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。
超声检测的局限性:(1)对试件中的缺陷进行精确的定性、定量仍须作深入研究;(2)对具有复杂形状或不规则外形的试件进行超声检测有困难;(3)缺陷的位置、取向和形状对检测结果有一定影响;(4)材质、晶粒度等对检测有较大影响;(5)以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。
超声波检测的适用范围:从检测对象的材料来说,可用于金属、非金属和复合材料;从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;从检测对象的形状来说,可用于板材、棒材、管材等;从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。
1.1超声波检测的基础知识1.1.1 超声波声波:频率在20~20KHz之间;次声波:频率低于20Hz;不容易衰减,不易被水和空气吸收.而次声波的波长往往很长,因此能绕开某些大型障碍物发生衍射.某些次声波能绕地球2至3周.某些频率的次声波由于和人体器官的振动频率相近,容易和人体器官产生共振,对人体有很强的伤害性,危险时可致人死亡超声波:频率大于20KHz。
方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。
第一章超声波检测超声波检测定义:使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。
超声检测的优点:(1)适用于金属、非金属和复合材料等多种制件的无损检测;(2)穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。
如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;(3)缺陷定位较准确;(4)对面积型缺陷的检出率较高;(5)灵敏度高,可检测试件内部尺寸很小的缺陷;(6)检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。
超声检测的局限性:(1)对试件中的缺陷进行精确的定性、定量仍须作深入研究;(2)对具有复杂形状或不规则外形的试件进行超声检测有困难;(3)缺陷的位置、取向和形状对检测结果有一定影响;(4)材质、晶粒度等对检测有较大影响;(5)以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。
超声波检测的适用范围:从检测对象的材料来说,可用于金属、非金属和复合材料;从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;从检测对象的形状来说,可用于板材、棒材、管材等;从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。
1.1超声波检测的基础知识1.1.1 超声波声波:频率在20~20KHz之间;次声波:频率低于20Hz;不容易衰减,不易被水和空气吸收.而次声波的波长往往很长,因此能绕开某些大型障碍物发生衍射.某些次声波能绕地球2至3周.某些频率的次声波由于和人体器官的振动频率相近,容易和人体器官产生共振,对人体有很强的伤害性,危险时可致人死亡超声波:频率大于20KHz。
方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。
超声波检测基础知识超声场特征值与规则反射体的回波声压一、超声场的特征值充满超声波的空间或超声振动所涉及的部分介质, 叫超声场。
超声场具有一定的空间大小和形状, 只有当缺陷位于超声场内时, 才有可能被发现。
描述超声场的特征值(即物理量)主要有声压、声强和声阻抗。
1.1.声压P超声场中某一点在某一时刻所具有的压强P1与没有超声波存在时的静态压强P0之差, 称为该点的声压, 用P 表示。
01P P P -=声压单位: 帕斯卡(Pa )、微帕斯卡(μPa )超声检测仪器显示的信号幅度值的本质就是声压P, 示波屏上的波高与声压成正比。
在超声检测中, 就缺陷而论, 声压值反映缺陷的大小。
1.2.声阻抗Z超声场中任一点的声压与该处质点振动速度之比成为声阻抗, 常用Z 表示。
c u cu u P Z ρρ===//声阻抗的单位为克/厘米2·秒(g/cm 2·s )或千克/米2·秒(kg/m 2·s )1.3声强I单位时间内垂直通过单位面积的声能称为声强, 常用I 表示。
单位是瓦/厘米2(W/cm2)或焦耳/厘米2·秒(J/cm2·s )。
ZP Zu I 222121== 1.4分贝在生产和科学实验中, 所遇到的声强数量级往往相差悬殊, 如引起听觉的声强范围为10-16~10-4 W/cm2, 最大值与最小值相差12个数量级。
显然采用绝对值来度量是不方便的, 但如果对其比值(相对量)取对数来比较计算则可大大简化运算。
分贝就是两个同量纲的量之比取对数后的单位。
通常规定引起听觉的最弱声强为I1=10-16 W/cm2作为声强的标准, 另一声强I2与标准声强I1之比的常用对数成为声强级, 单位为贝(尔)(B )。
Δ=lg(I2/I1) (B)实际应用贝尔太大, 故长取其1/10即分贝(dB )来作单位:Δ=10lg(I2/I1)=20lg(P2/P1) (dB )二、通常说某处的噪声为多少多少分贝, 就是以10-16 W/cm2为标准利用上式计算得到的。
超声波检测基础知识
超声场特征值与规则反射体的回波声压
一、超声场的特征值
充满超声波的空间或超声振动所涉及的部分介质,叫超声场。
超声场具有一定的空间大小和形状,只有当缺陷位于超声场内时,才有可能被发现。
描述超声场的特征值(即物理量)主要有声压、声强和声阻抗。
1.1、声压P
超声场中某一点在某一时刻所具有的压强P1与没有超声波存在时的静态压强P0之差,称为该点的声压,用P 表示。
01P P P -=
声压单位:帕斯卡(Pa )、微帕斯卡(μPa )
超声检测仪器显示的信号幅度值的本质就是声压P ,示波屏上的波高与声压成正比。
在超声检测中,就缺陷而论,声压值反映缺陷的大小。
1.2、声阻抗Z
超声场中任一点的声压与该处质点振动速度之比成为声阻抗,常用Z 表示。
c u cu u P Z ρρ===//
声阻抗的单位为克/厘米2·秒(g/cm 2·s )或千克/米2·秒(kg/m 2·s )
1.3声强I
单位时间内垂直通过单位面积的声能称为声强,常用I 表示。
单位是瓦/厘米2(W/cm2)或焦耳/厘米2·秒(J/cm2·s )。
Z
P Zu I 2
22121== 1.4分贝
在生产和科学实验中,所遇到的声强数量级往往相差悬殊,如引起听觉的声强范围为10-16~10-4 W/cm2,最大值与最小值相差12个数量级。
显然采用绝对值来度量是不方便的,但如果对其比值(相对量)取对数来比较计算则可大大简化运算。
分贝就是两个同量纲的量之比取对数后的单位。
通常规定引起听觉的最弱声强为I1=10-16 W/cm2作为声强的标准,另一声强I2与标准声强I1之比的常用对数成为声强级,单位为贝(尔)(B )。
Δ=lg(I2/I1) (B)
实际应用贝尔太大,故长取其1/10即分贝(dB )来作单位:
Δ=10lg(I2/I1)=20lg(P2/P1) (dB )
通常说某处的噪声为多少多少分贝,就是以10-16 W/cm2为标准利用上式计算得到的。
二、规则反射体的回波声压
实际检测中常用反射法,反射法是根据缺陷反射回波声压的高低来评价缺陷的大小。
然而工件中的缺陷形状、性质各不相同,且目前的检测技术还难以确定缺陷的真实大小和形状。
回波声压相同的实际大小可能相差很大,为此特引用当量法。
当量法是指在同样的检测条件下,当自然缺陷回波与某人工规则反射体回波等高时,则该人工反射体的尺寸就是此自然缺陷的当量尺寸。
自然缺陷的实际尺寸往往大于当量尺寸。
超声波检测中常用的规则反射体有平底孔、长横孔、短横孔、球孔和大平面等,下面分别讨论以上反射体中常见的规则反射体的回波声压。
2.1圆盘波源辐射的纵波声场
波源轴线上的声压分布:
在连续简谐纵波且不考虑介质衰减的条件下,如下图所示的液体介质中圆盘源上一点波源ds 辐射的球面波在波源轴线上Q 点引起的声压为:
)sin(0kr t r
d P d s p -=ωλ 式中 0P ——波源的起始声压,s d ——点波源的面积, λ——波长, r ——点波源至Q 点的距离;
k ——波数,λπω/2/==c k , ω——圆频率,f πω2=,t ——时间。
根据波的叠加原理,作活塞振动的圆盘波源上各点波源在轴线上Q 点引起的声压可以线性叠加,所以对整个波源面积进行积分就可以得到波源轴线上的任意一点的声压为: )sin()(sin 2220kx t x x R P dP P s x --+==⎰⎰ωλ
π 其声压幅值为:
)(sin 2220x x R P P s -+=λ
π 式中 s R ——波源半径;
x ——轴线上Q 点至波源的距离。
上述声压公式比较复杂,使用不便,特作如下简化:
当λ/32s R x ≥(即6/2/2πλπ≤x R s )时,根据θθ≈sin (θ很小时)上式可简化为:
x
F P x R P P s S λλπ020=≈ 式中 s F ——波源面积,4/22s s D R Fs ππ==(s D 为波源直径)
上式表明,当λ/32s R x ≥时,圆盘轴线上的声压与距离成反比,与波源面积成正比。
2.2平底孔回波声压
如图所示在N x 3≥的圆盘波源轴线上存在一平底孔(圆片形)缺陷,设波束轴线垂直于平底孔,超声波在平底孔上全反射,平底孔直径较小,表面各点声压近似相等。
根据惠更斯原理可以把平底孔当做一个新的圆盘源,其起始声压就是入射波在平底孔处的声压x F P P S x λ0=
,探头接收到的平底孔回波声压f P 为: 220x F F P x F P P f
S f
x f λλ==
式中 0P ——探头波源的起始声压;
S F ——探头波源的面积,4/2S S D F π=;
f F ——平底孔缺陷的面积,4/2f D Ff π=;
λ——波长;
x ——平底孔至波源的距离。
由上式可知,当检测条件),(λS F 一定时,平底孔缺陷的回波声压或波高与平底孔面积成正比,与距离平方成反比。
任意两个距离直径不同的平底孔回波声压之比为:
22
2121222121f f D x D x Pf Pf Hf Hf == 二者回波分贝差为:
122121
12lg 40lg 20x D x D P P f f f f ==∆
(1)当21f f D D =,12x x =时:
12∆等于12dB ,这说明平底孔直径一定,距离增加一倍,其回波下降12dB 。
(2)212f f D D =,12x x =时:
12∆等于12dB ,这说明平底孔距离一定,直径增加一倍,其回波升高12dB 。
2.3大平底面回波声压
如上图所示,当N x 3≥时,超声波在与波束轴线垂直、表面光洁的大平底面上的反射就是球面波在平面上的反射,其回波声压B P 为:
x
F P PB S λ20= 由上式可知当检测条件),(λF 一定时,大平底面的回波声压与距离成反比。
两个不同距离的大平底回波分贝差为:
2
12112lg 20lg 20x x P P B B ==∆ 当122x x =时:12∆等于6dB
这说明大平底面距离增加一倍,其回波下降6dB 。