从锂离子二次电池正极废料_铝钴膜中回收钴的工艺研究
- 格式:pdf
- 大小:1.23 MB
- 文档页数:5
常考题空6 工艺流程中Ksp 的相关计算溶度积常数反映了难溶电解质在水中的溶解能力,高考试题中溶度积常数的考查常结合化工流程题,在化工流程题中考查溶度积常数是近年高考的热点,化工流程中常常需要控制条件进行离子的分离或除杂,通过溶度积常数计算溶液中金属离子的浓度、离子完全沉淀时的pH 、判断废水排放是否符合标准、沉淀完全转化时所需离子浓度。
常见题型有:一、计算难溶电解质的Ksp 以“Am B n (s)m A n +(aq)+n B m -(aq)”为例:K sp (A m B n )=c m (A n +)·c n (B m -),式中的浓度都是平衡浓度【对点训练1】1.溴酸镉[Cd(BrO 3)2]常用作分析试剂、生产荧光粉等。
以镉铁矿(成分为 CdO 2、Fe 2O 3、FeO 及少量的Al 2O 3 和SiO 2)为原料制备[Cd(BrO 3)2]的工艺流程如下:已知:Cd(SO 4)2 溶于水实际工业生产中,有时还采用阳离子交换树脂法来测定沉镉后溶液中 Cd 2+的含量,其原理:Cd 2++ 2NaR===2Na ++ CdR 2 ,其中NaR 为阳离子交换树脂。
常温下,将沉镉后的溶液(此时溶液 pH =6)经过阳离子交换树脂后,测得溶液中的 Na +比交换前增加了 0.055 2 g·L -1,则该条件下Cd(OH)2 的K sp 值为_________2.从化工厂铬渣中提取硫酸钠的工艺如下:已知:①铬渣含有Na 2SO 4及少量Cr 2O 2-7、Fe 3+②Fe 3+、Cr 3+完全沉淀(c ≤1.0×10-5mol·L -1)时pH 分别为3.6和5Cr(OH)3的溶度积常数K sp [Cr(OH)3]=____________二、计算沉淀转化反应的平衡常数及其完全转化时所需浓度依据沉淀的转化反应和K sp ,计算该反应的平衡常数,K 值越大,转化反应越易进行,转化程度越大如:对于反应Cu 2+(aq)+ZnS(s)CuS(s)+Zn 2+(aq)该反应的平衡常数K =)()(22++Cu c Zn c =)()()()(2222-+-+∙∙S c Cu c S c Zn c =K sp (ZnS )K sp (CuS )【对点训练2】1.某科研课题小组研究利用含H +、Na +、Zn 2+、Mn 2+、Fe 2+、Fe 3+、SO 2-4的工业废电解质溶液,制备高纯的ZnO 、MnO 2、Fe 2O 3,设计实验流程如下:已知常温下,K sp (MnS)=3.0×10-14,K sp (ZnS)=1.5×10-24,在除锌时发生沉淀转化反应为:MnS(s)+Zn 2+(aq)ZnS(s)+Mn 2+(aq),其平衡常数K =____________2.软锰矿的主要成分为MnO2,还含有Fe2O3、MgO、Al2O3、CaO、SiO2等杂质,工业上用软锰矿制取MnSO4·H2O 的流程如下:已知:①部分金属阳离子完全沉淀时的pH如下表金属阳离子Fe3+Al3+Mn2+Mg2+完全沉淀时的pH 3.2 5.210.412.4②温度高于27 ℃时,MnSO4晶体的溶解度随温度的升高而逐渐降低。
考点14化工流程选择题一:例题1.(2018课标Ⅰ)硫酸亚铁锂(LiFePO4)电池是新能源汽车的动力电池之一。
采用湿法冶金工艺回收废旧硫酸亚铁锂电池正极片中的金属,其流程如下:下列叙述错误的是A.合理处理废旧电池有利于保护环境和资源再利用B.从“正极片”中可回收的金属元素有Al、Fe、LiC.“沉淀”反应的金属离子为Fe3+D.上述流程中可用硫酸钠代替碳酸钠【答案】D【解析】废旧电池中含有重金属,随意排放容易污染环境,因此合理处理废旧电池有利于保护环境和资源再利用,A正确;根据流程的转化可知从正极片中可回收的金属元素有Al、Fe、Li,B正确;得到含Li、P、Fe的滤液,加入碱液生成氢氧化铁沉淀,因此“沉淀”反应的金属离子是Fe3+,C正确;硫酸锂能溶于水,因此上述流程中不能用硫酸钠代替碳酸钠,D错误。
二:对策一定要分析清楚原料的主要成分是什么,含有的杂质有哪些,反应中每一步加入了什么试剂,与哪些物质发生了反应,生成了什么物质,生成的物质在下一步到哪里去了。
三:难点突破1、考查原料的处理:典例1(湖北省黄冈中学2018届高三5月第二次模拟考试)利用废旧镀锌铁皮可制备磁性Fe3O4胶体粒子及副产物ZnO。
制备流程图如下:己知:Zn及其化合物的性质与Al及其化合物的性质相似。
下列相关说法错误的是()A.用NaOH溶液处理废旧镀锌铁皮的作用是去除油污、溶解镀锌层B.调节溶液A的pH产生Zn(OH)2沉淀,经抽滤、洗涤、灼烧即可制得ZnOC.由溶液B制得Fe3O4胶体粒子的过程中,须持续通N2,其原因是防止Fe2+被氧化D.Fe3O4胶体粒子能用减压过滤法实现固液分离【答案】D【解析】A.NaOH溶液可以洗涤油污、与锌发生反应,故A正确;B.调节溶液A的pH产生Zn(OH)2沉淀,经抽滤、洗涤、灼烧,氢氧化锌分解得到ZnO,故B正确;C.Fe2+易被氧气氧化,故C正确;D.Fe3O4胶体粒子能透过滤纸,无法用减压过滤法实现固液分离,故D错误。
常见无机物的制备注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单选题(共14题)1.连二亚硫酸钠(Na2S2O4)俗称保险粉,常用于纺织工业、食品漂白等领域。
某种Na2S2O4的生产工艺流程如图所示:若在实验室模拟该工艺流程,下列说法错误的是A.将锌粉投入水中形成悬浮液主要是为了加快反应速率B.向Na2S2O4溶液中加NaCl溶液或固体对Na2S2O4的产率无明显影响C.洗涤Na2S2O4·2H2O时用冰水效果好于常温蒸馏水D.该流程中涉及化合反应、分解反应、复分解反应,也涉及氧化还原反应2.海水提镁的主要流程如图所示。
下列说法不正确的是A.工业上常用CaO作沉淀剂B.试剂M能导电,故其是电解质C.根据流程图可知,试剂M可以循环利用D.实验室在进行操作a时,用到的玻璃仪器有3种3.一种以海绵铜(Cu)为原料制备CuCl的工艺流程如图。
已知:CuCl为白色粉末,微溶于水,不溶于乙醇,在潮湿的空气中易被氧化。
下列说法不正确的是A.“溶解”过程中硫酸只表现了酸性B.“还原”过程中有白色沉淀生成C.“过滤”用到的玻璃仪器有分液漏斗、烧杯、玻璃棒D.为提高CuCl的产率和纯度,可采用乙醇洗涤、真空干燥4.实验室从含有少量氧化铁杂质的废铜粉制取无水硫酸铜的实验步骤如下图:下列有关说法正确..的是A.溶解废铜粉“过量酸”是指稀硝酸B.气体A是Cl2,将亚铁离子氧化为铁离子C.生成沉淀D的离子方程式可以为3CuO+2Fe3++3H2O=2Fe(OH)3↓+3Cu2+D.从溶液中得到的无水硫酸铜的方法是冷却结晶LiCoO、A1等)的一种工艺流程,如下图所示:5.处理锂离子二次电池正极废料铝钴膜(含有2下列说法不正确的是A.碱浸操作中要有防火防爆意识B.还原过程中,氧化剂与还原剂物质的量之比为2∶1C.沉淀1主要成分是LiOHD .若在实验室中进行上述操作,则该流程中有两处操作需要使用玻璃棒6.氯化亚铜(CuCl )是一种难溶于水的白色物质,主要用于有机合成催化剂以及颜料、防腐等行业。
专题52 以“化工流程”为载体的实验题填空题(本大题共14小题)1.绿矾在医药及生活生产科学研究方面具有重要的应用价值。
设计实验方案对绿矾的性质组成进行如下探究。
回答下列问题:Ⅰ为测定某补血剂有效成分为中铁元素含量,设计如下实验流程,回答下列问题:实验室检测该药片已部分变质的方法_____________________________________________。
步骤需要用质量分数为的浓硫酸,配制的稀硫酸,所用到的玻璃仪器除量筒、烧杯外,还需要________________________________________。
写出滤液加入的离子方程式:_______________________________________________。
步骤一系列实验操作依次是__________、__________、__________、冷却、称重直至固体质量不变。
假设实验过程中铁元素无损耗,则每片补血剂含铁元素为__________用含a的代数式表示。
Ⅱ为探究硫酸亚铁的分解产物,将样品装入A中,连接好下图所示的装置,打开和,缓缓通入,加热。
实验后反应管A中残留固体为红棕色粉末。
回答下列问题:通入的目的:_____________________________________;该实验有个明显的不足之处:__________。
与D中的溶液依次为__________填字母。
可观察到的现象依次为__________________。
品红浓依据实验现象,推测产物,写出硫酸亚铁高温分解反应的化学方程式:__________________。
2.某兴趣小组模拟企业对含铬废水和处理流程如图1已知:请回答:用离子方程式表示调节池里发生的反应: ______ .操作Ⅰ得到的残渣的化学式为 ______ .操作Ⅲ调节pH时最适合作为调节剂的是 ______ .A.盐酸硫酸石灰乳碳酸钠为检测处理后废水中铬的含量,取100mL处理后的样品于锥形瓶中,用浓醋酸调节,并加入适量固体抗坏血酸,使完全转化为,再用的用表示标准溶液进行滴定,其反应原理为:,滴定时采用如图2所示的侧边自动定零位滴定管,具有的优点是 ______ .实验消耗EDTA标准溶液b mL,则处理后废液中含铬浓度为 ______ 用含a、b的式子表示.3.毒重石的主要成分含、、等杂质,实验室利用毒重石制备的流程如图:开始沉淀的pH完全沉淀的pH已知:,实验室用的盐酸配制盐酸,下列仪器中,不需要使用的是______容量瓶量筒烧杯滴定管为了加快毒重石的酸浸速率,可以采取的措施有______至少两条.加入氨水调节溶液的目的是______滤渣Ⅱ中含______填化学式加入时应避免过量,原因是______.操作Ⅳ的步骤是:______、过滤.利用间接酸碱滴定法可测定的含量,实验分两步进行.已知:;步骤Ⅰ:移取x mL一定浓度的溶液于锥形瓶中,加入酸碱指示剂,用b 盐酸标准液滴定至终点,测得滴加盐酸体积为.步骤Ⅱ:移取y mL 溶液于锥形瓶中,加入x mL与步骤Ⅰ相同浓度的溶液,待完全沉淀后,再加入酸碱指示剂,用b 盐酸标准液滴定至终点,测得滴加盐酸的体积为通过计算,氯化钡溶液浓度为______ 用含字母的式子表示.4.污染物的有效去除和资源的充分利用是化学造福人类的重要研究课题.某研究小组利用软锰矿主要成分为,另含少量铁,铝,铜,镍等金属化合物作脱硫剂,通过如下简化流程,既脱除燃煤尾气中的,又制得电池材料反应条件已省略.请回答下列问题:上述流程脱硫实现了______选填下列字母编号.A.废弃物的综合利用白色污染的减少酸雨的减少用能除去溶液中和,其原因是______.已知:、101kPa时,与反应生成无水的热化学方程式是______可作超级电容材料.用惰性电极电解溶液可制得,其阳极的电极反应式是______假设脱除的只与软锰矿浆中反应.按照图示流程,将标准状况含的体积分数为的尾气通入矿浆,若的脱除率为,最终每得到的质量1kg,则除去铁、铝、铜、镍等杂质时,所引入的锰元素相当于.5.某碳素钢锅炉内水垢的主要成分是碳酸钙、硫酸钙、氢氧化镁、铁锈、二氧化硅等.水垢会形成安全隐患,需及时清洗除去.清洗流程如下:Ⅰ加入NaOH和混合液,加热,浸泡数小时;Ⅱ放出洗涤废液,清水冲洗锅炉,加入稀盐酸和少量NaF溶液,浸泡;Ⅲ向洗液中加入溶液;Ⅳ清洗达标,用溶液钝化锅炉.用NaOH溶解二氧化硅的化学方程式是______.已知:时溶解度根据数据,结合化学平衡原理解释清洗的过程______.在步骤Ⅱ中:被除掉的水垢除铁锈外,还有______.清洗过程中,溶解的铁锈会加速锅炉腐蚀,用离子方程式解释其原因______.步骤Ⅲ中,加入的目的是______.步骤Ⅳ中,钝化后的锅炉表面会覆盖一层致密的保护膜.完成并配平其反应的离子方程式:____________;下面检测钝化效果的方法合理的是______.在炉面上滴加浓,观察溶液出现棕黄色的时间在炉面上滴加酸性溶液,观察蓝色消失的时间在炉面上滴加酸性溶液,观察出现蓝色沉淀的时间在炉面上滴加浓,观察出现红棕色气体的时间.6.锰锌铁氧体可制备隐形飞机上吸收雷达波的涂料.以废旧锌锰电池为原料制备锰锌铁氧体的主要流程如下,请回答下列问题:酸浸时,二氧化锰被双氧水还原的化学方程式为 ______活性铁粉除汞时,铁粉的作用是 ______ 填“氧化剂”或“还原剂”或“吸附剂”.除汞是以氮气为载气吹人滤液中,带出汞蒸汽经溶液进行吸收而实现的.下图是溶液处于不同pH时对应Hg的单位时间去除率变化图,图中物质为Hg与在该pH范围内反应的主要产物.时反应的离子方程式为 ______请根据该图给出pH对汞去除率影响的变化规律: ______ .强酸性环境下汞的单位时间去除率高的原因之一是:在酸性条件下氧化性增强;另一个原因可能是 ______ 不考虑反应过程温度的变化当时,所得到的锰锌铁氧体对雷达波的吸收能力特别强,试用氧化物的形式表示该锰锌铁氧体的组成 ______ .经测定滤液成分后,需加人一定量的和铁粉,其目的是 ______ .7.实验室从含碘废液除外,含有、、等中回收碘,其实验过程如图1:向含碘废液中加入稍过量的溶液,将废液中的还原为,其离子方程式为 ______ ;该操作将还原为的目的是 ______ .操作X的名称为 ______ .氧化时,在三颈瓶中将含的水溶液用盐酸调至pH约为2,缓慢通入,在左右反应实验装置如图2所示实验控制在较低温度下进行的原因是 ______ ;锥形瓶里盛放的溶液为______ .利用如图3所示装置电极均为惰性电极也可吸收,并用阴极排出的溶液吸收.为电源的 ______ 填“正极”或“负极”,阳极的电极反应式为 ______ .在碱性条件下,用阴极排出的溶液吸收,使其转化为无害气体,同时有生成.该反应中氧化剂与还原剂的物质的量之比为 ______ .8.二氧化氯是一种黄绿色有刺激性气味的气体,其熔点为,沸点为,易溶于水.工业上用潮湿的和草酸在时反应制得.某学生拟有图1所示的装置模拟制取并收集.必须放在冰水浴中控制温度,其原因是______反应后在装置C中可得溶液.已知饱和溶液中在温度低于时析出晶体是,在温度高于时析出晶体是根据图2所示的溶解度曲线,请补充从溶液中制操作步骤:a______;b______;洗涤;干燥.亚氯酸钠是一种强氧化性漂白剂,广泛用于纺织、印染和食品工业.它在碱性环境中稳定存在.某同学查阅资料后设计生产的主要流程如图3.Ⅱ中反应的离子方程式是______.是一种高效水处理剂,可用亚氯酸钠和稀盐酸为原料制备.写出该反应化学方程式______ 变质可分解为和取等质量变质前后的试样均配成溶液,分别与足量溶液反应时,消耗物质的量______填“相同”,“不同”或“无法判断”9.镍是有机合成的重要催化剂.某化工厂有含镍催化剂废品主要成分是镍,杂质是铁、铝单质及其化合物,少量难溶性杂质某学习小组设计如下流程利用含镍催化剂废品制备硫酸镍晶体:几种难溶碱开始沉淀和完全沉淀的pH:沉淀物开始沉淀pH完全沉淀pH回答下列问题:溶液中含金属元素的离子是 ______ .用离子方程式表示加入双氧水的目的 ______ .双氧水可以用下列物质替代的是 ______ .A.氧气漂液氯气硝酸操作b调节溶液范围为,其目的是 ______ 固体的化学式为 ______ .操作a和c需要共同的玻璃仪器是 ______ 上述流程中,防止浓缩结晶过程中水解的措施是 ______ .如果加入双氧水量不足或“保温时间较短”,对实验结果的影响是 ______ .设计实验证明产品中是否含“杂质”: ______ 不考虑硫酸镍影响取硫酸镍晶体样品溶于蒸馏水,用的标准溶液滴定至终点,消耗EDTA标准溶液为滴定反应为计算样品纯度为 ______ 已知,相对分子质量为281,不考虑杂质反应.10.某兴趣小组模拟企业对含铬废水和处理流程如图1.已知:请回答:用离子方程式表示调节池里发生的反应 ______ .操作Ⅰ得到的残渣的化学式为 ______ .、操作Ⅲ调节pH时最适合作为调节剂的是 ______A.盐酸硫酸石灰乳碳酸钠、不选择其它的原因是 ______ .为检测处理后废水中铬的含量,取100mL处理后的样品于锥形瓶中,用浓醋酸调节,并加入适量固体抗坏血酸,使完全转化为,再用的用表示标准溶液进行滴定,其反应原理为:,滴定时采用图2所示的侧边自动定零位滴定管,具有的优点 ______ .实验消耗EDTA标准溶液b mL,则处理后废液中含铬浓度为 ______ 用含a、b的式子表示.11.废旧电池的回收利用,既能减少废旧电池对环境的污染,又能实现废旧电池的资源化利用.图1是某科技小组,以废旧锌锰干电池为原料,回收及制备多种用途的碳酸锰和相关物质的主要流程:灼烧黑色粉末变成黑褐色是因为有少量发生了反应生成了少量的MnO,其可能的反应方程式为: ______ .还原过程是先加入稀硫酸再加入草酸,写出反应化学方程式: ______ ;在该过程中小组成员甲发现加入硫酸部分固体溶解剩余黑色固体,接着他没有加入草酸而是加入一定量的双氧水,发现固体也完全溶解了,成员乙在加硫酸后也没有加草酸,他又加入了一定量氨水,无明显变化,测得这时溶液的PH值为9,他接着又加入双氧水,发现黑色固体不减反增,写出导致固体增加的离子方程式: ______ ;比较甲、乙两位组员实验你得出的结论是: ______ .操作1和操作2使用到相同的装置,操作3的名称是 ______ .硫酸锰转化为碳酸锰的操作是,在60摄氏度下调节PH值后加入碳酸氢铵溶液,直到不再有气泡产生后再加热反应1小时,写出反应的化学方程式: ______ .已知锌锰干电池的总反应为,写出电池正极的电极 ______ ;电解溶液回收锰的阳极的电极反应式: ______ .12.草酸是一种二元弱酸,可用作还原剂、沉淀剂等。
从铜钴合金及含钴废料中提取钴的研究现状与展望【我来说两句】2010-12-4 10:20:48 中国选矿技术网浏览106 次收藏【摘要】:分析了钴资源与钴市场现状,提出了综合处理铜钴合金及含钴废料的必要性,介绍了从铜钴合金和含钴废料中浸出铜、钴及回收钴的方法,指出传统的火法工艺不能处理铜含量高的物料,而采用一般的酸法工艺,钴浸出率不高(只能达到95%左右);利用液膜法和微生物浸出法,钴的浸出率最高只能达到96%,而如果采用氧化剂加低酸(酸浓度小于2mol/L)浸出,则可大大提高浸出速度和浸出率。
世界钴资源比较丰富,2005年世界钴储量为700万t,储量基础为1300万t。
世界钴储量集中分布于刚果(金)、澳大利亚、古巴、赞比亚、新喀里多尼亚、俄罗斯和加拿大等,储量总和约占世界总储量的95%以上。
我国钴资源贫乏,钴品位平均仅0.02%,个别高的为0.05%~0.而刚果(金)和赞比亚的铜钴矿,钴品位为0.1%~0.5%,高的达到2%~3%。
由于钴矿品位偏低,矿石组成复杂,所以回收工艺比较复杂,生产成本高,钴回收率低口]。
近年来,我国镍、铜、钴的消费大幅增长,但受矿产资源条件制约,我国铜、钴矿石的生产增长缓慢,铜、钴矿产品进口量逐步上升,供求矛盾日益突出。
铜钴合金是目前刚果(金)钴铜矿石深加工产品的主要形式之一,也是我国今后从非洲进口的主要钴原料之一,因此,研究从铜钴合金或含钴废料中回收钴、铜有着重要意义。
一、从含钴废料及铜钴合金中提取钴的方法钴废料种类很多,主要有废高温合金、废硬质合金、废磁性合金、废可伐合金、废催化剂和废二次电池材料等。
钴废料成分比较复杂,一般含有铜、锌、锰、镍、镉等有价金属。
铜钴合金有2种,一种是在铜冶炼过程中经转炉吹炼得到的转炉渣再经电炉还原熔炼水淬而得到的合金,其中含Cu、Co、Fe、Mn、Si等元(目前,作为钴原料的铜钴合金大量从刚果(金)、赞比亚、扎伊尔输入),另一种是熔炼氧化钴矿和8%,钴精矿的富铜产品。
废旧锂电池中钴的分离与回收研究报告
导言:
近年来,随着锂电池的广泛应用,废旧锂电池也越来越多地出现在
我们生活中。
其中包含的珍贵金属资源引起了人们的关注,如何高效
地分离和回收其中的钴等物质具有重要的经济和环境意义。
本文将介
绍一种基于化学方法进行废旧锂电池中钴的分离与回收的实验方案和
结果。
实验内容:
本次实验使用的废旧锂电池为二次锂电池,其主要成分包括钴、镍、锰、铜等金属和锂、多种有机溶剂等。
实验分为以下三个步骤:
1. 打开锂电池外壳,取出电池芯片板
2. 使用稀盐酸将含钴电池芯片板中的所有物质进行化学反应
3. 常压下在氢氧化钠的条件下,分离电解液中的钴离子。
结果展示:
根据实验结果,我们能够根据所制备的锂电池芯片板及其电解液,
使用化学反应的方式将其中的金属物质化合物分离出来。
在处理过程中,钴的分离率达到了97.5%以上,而镍、锰、铜等其它金属的分离率也分别在80%左右。
其中得到的主要产物为氢氧化钴,其产率达到了90%以上。
结论:
通过本次实验,我们得出了一种简单、安全且高效的废旧锂电池中钴的分离与回收方法。
该方法可以很好地满足工业生产中的需要,在经济和环境效益上都有着显著的优势。
在实际应用中,我们也可以对该方法进行进一步优化和改进,以提高分离和回收的效益和质量。
总而言之,我们相信,通过不断地探索和创新,我们一定能够更好地利用旧资源,在推动社会发展的同时,更好地保护我们的环境。
废旧锂离子电池正极材料回收工艺研究徐源来;徐盛明;池汝安;王成彦;邱定蕃【摘要】废旧锂离子电池含有大量的钴、铜等紧缺有色金属元素和六氟磷酸锂等有毒有害物质,必须对其进行资源化回收及无害化处理.本文采用"拆解→NMP浸泡正极材料→钴酸锂粉末的浸出→P204萃取除杂→P507萃取分离钴、锂离子"流程处理废旧锂离子电池,获得了合格的氯化钴溶液.该工艺的特点在于:正极片中的铝箔以单质形态回收,而正极材料中97.33%的钴以氯化钴的形式回收,成功地实现了锂离子电池正极材料中有色金属的分离与回收利用.【期刊名称】《武汉工程大学学报》【年(卷),期】2008(030)004【总页数】5页(P46-50)【关键词】废旧锂离子电池;正极材料;回收;钴【作者】徐源来;徐盛明;池汝安;王成彦;邱定蕃【作者单位】武汉工程大学湖北省新型反应器与绿色化学工艺重点实验室,湖北,武汉,430074;清华大学核能与新能源技术研究院,北京,100084;清华大学核能与新能源技术研究院,北京,100084;武汉工程大学湖北省新型反应器与绿色化学工艺重点实验室,湖北,武汉,430074;北京矿冶研究总院,北京,100044;北京矿冶研究总院,北京,100044【正文语种】中文【中图分类】X7050 引言锂离子电池是具有一系列优良性能的绿色电池,问世10多年以来,已被广泛应用于移动电话、笔记本电脑、摄像机、数码相机等民用及军事应用领域.但其寿命大约只有3年左右,随着锂离子电池的广泛应用,已大量进入失效、回收阶段,如何回收废旧锂离子电池和资源化循环利用已成为社会普遍关注的问题.回收处理废旧锂离子电池不仅可以解决废旧电池所带来的一系列环境问题,而且对电池中有色金属进行了回收利用,能有效缓解资源的紧缺.我国是钴资源极为缺乏的国家,一直长期依赖从民主刚果、南非和摩洛哥等非洲国家进口钴精矿等弥补国内缺口.而锂离子电池中钴的质量分数约为15%,远高于钴矿山的可开发品位,且原料相对集中.随着矿产资源这种不可再生资源的耗竭,有色金属今后的重点将转向废弃物中有色金属的回收利用,废旧电池就是其中一个重要来源[1~2].1 实验方法1.1 实验原料及试剂锂离子电池由外壳和内部电芯组成.电池的外壳为不锈钢或镀镍钢壳,有方形和圆柱形等不同的型号.内部电芯为卷式结构,由正极、电解液和负极等主要部分组成,正极片主要由铝箔、有机粘结剂和钴酸锂构成;而负极片主要为铜箔和石墨,负极材料的成分单一、容易分离.由于钴金属价格高,且成分较为复杂,废旧锂离子电池正极材料的回收利用成为人们研究的重点.本文试验采用的废旧锂离子电池正极片是由广东省佛山市南海某公司提供.本试验过程中采用的化学试剂:N-甲基吡咯烷酮(NMP)、硫酸、盐酸、过氧化氢等均为分析纯试剂;萃取剂(P204和 P507)为工业品,而试验过程中使用的水均为去离子水.1.2 实验原理及检测方法在参考国内外文献的基础上[3~9],本研究提出的工艺流程为:拆解废旧锂离子电池→NMP浸泡正极材料→钴酸锂粉末的浸出→P204萃取除杂→P507萃取分离钴、锂离子→(得到)氯化钴溶液.锂离子电池正极材料中有作为集流体的铝箔,而铝离子对萃取剂具有毒性,故预处理中除铝的效果直接影响到后续分离步骤.依据有机溶剂能溶解掉正极材料中的粘结剂,本实验采用有机溶剂(N-甲基吡咯烷酮)浸泡处理正极钴锂膜,使钴酸锂粉末与铝箔分离,在不改变铝箔的金属形态的前提下直接回收得到含铝的废料.得到钴酸锂与石墨黑色的混合粉末经过滤、洗涤、烘干后在硫酸与过氧化氢的体系中浸出,得到用于萃取分离操作的浸出液.浸出过程的化学方程式为:2LiCoO2 + 3H2SO4 + H2O2=2CoSO4+O2↑+Li2SO4+4H2O含钴、锂离子的浸出液先经过萃取剂P204萃取操作除去其中的杂质离子,然后使用萃取剂P507萃取操作分离水相中的钴、锂离子,得到的富钴有机相使用2mol/L的盐酸溶液反萃,可以得到最终产品氯化钴溶液.溶液中金属离子的分析:常量分析采用滴定法,微量分析则采用原子吸收分光光度法(SP-3520AAPC原子吸收分光光度计,上海光谱仪器有限公司);而浸出液成分全分析,则采用ICP-OES电感耦合等离子体-原子发射光谱仪(Optima 5300DV).2 实验结果与讨论2.1 正极材料预处理拆解电池后得到的正极片主要由铝箔、有机粘结剂和钴酸锂构成,预处理的目的是使钴酸锂粉末从铝箔上脱掉.实验中,将剥离开的正极片钴锂膜剪成约2 cm2大小,放入有机溶剂NMP(N-甲基吡咯烷酮)中,在100 ℃下加热并磁力搅拌,约1 h后,钴酸锂和石墨的黑色混合粉末与铝箔能完全脱离,取出铝箔,使用真空抽滤将黑色粉末和有机溶剂分开.在这个过程中,待有机溶剂NMP完全饱和(每100 mL NMP 中约能处理70 g钴锂膜)后可以蒸馏再生重复使用.预处理前的正极材料钴锂膜和分离后得到的铝箔如图1、图2所示.图1 正极材料钴锂膜(预处理前)Fig.1 The positive electrode materials LiCoO2 foils(before pretreatment)图2 NMP预处理后分离出的铝箔(预处理后)Fig.2 The Al foils from NMP treating process (after pretreatment)由图1、2可以看出,钴酸锂粉末能从铝箔上完全脱落,钴酸锂进入有机溶剂NMP,铝箔能以含铝废料形式回收,分离过程中不改变原料的形态也不产生新的污染物,即钴锂能达到分离目的,使用此方法,不仅能使有色金属资源得到了最大的回收利用,同时也大大的减轻了后续萃取步骤中除铝的工作.2.2 酸浸出和P204萃取净化过程2.2.1 钴酸锂的浸出洗涤预处理操作中得到的黑色粉末(包括钴酸锂、石墨和少量的粘结剂),干燥后,将黑色混合粉末投入三口烧瓶,加入硫酸和双氧水,在80 ℃的水浴中搅拌使其发生还原浸出反应,得到待萃取分离的浸出液.LiCoO2电极中使用的是+3价的钴离子,但Co3+不易溶于水,且具有强氧化性.而钴离子在水溶液中一般是以Co2+的形式存在,因此LiCoO2电极中Co的浸出是个还原浸出过程,只有在具备还原条件的体系中才有较好的浸出效果.实验使用的试剂是2.0 mol/L的硫酸、30%的双氧水,将三者在80 ℃的水浴中混合加热.钴和锂的浸出率在10 min内即可达到90%以上,15 min后可达95%以上,90 min后锂和钴可以完全进入酸浸出液.酸浸出后溶液呈紫红色,有少量的不溶渣,渣呈黑色胶状,为正极材料中的粘结剂和碳粉等.得到浸出液成分如表1所示.表1 P204萃取除杂结果Table 1 The results of P204 extract impurity ions质量浓度/mg·L-1CoLiAlFeCuMgCaMnZn浸出液402452130147.511558.48.67.630.15萃余液39196208052.10.58.655.50.800由表1中浸出液的成分分析可以看出,选择双氧水作为还原剂,不会带入任何杂质,且还原效果好,但由于双氧水易分解,故需对滴加速度进行控制.除钴、锂两种金属离子,其他杂质离子的浓度都是微量的,特别是对萃取剂有毒性的铁、铝、离子含量少,这样极大的减轻了后续萃取分离操作的难度.2.2.2 P204萃取净化过程萃取剂P204、萃取剂P507属于酸性萃取剂,其对各种金属阳离子的萃取平衡pH值都不同.根据此特性,实验通过控制水相中不同的pH 值来实现金属离子的萃取分离[10~11].使用萃取剂P204萃取操作除去浸出液中的杂质离子,操作条件为:相比1∶1,萃取平衡pH值为2.6,P204的浓度(体积分数,下同)为25%、皂化率为75%,稀释剂使用磺化煤油,萃取级数两级.由表1可以看出,在此操作条件下,大部分的杂质离子Al3+、Fe3+、Cu2+、Ca2+、Mn2+等都能进入有机相,而Co2+、Li+仍留在水相,净化效果明显.但也可以看到,Mg2+的除去量不足一半,这是因为在湿法冶金中,从溶液中除镁至今仍是一个难题,因此,寻找除镁新方法是值得深入研究的重要课题.2.3 P507萃取分离钴、锂为了水相中钴离子与锂离子分离,采用萃取剂P507进行此分离操作.由课题组的前期试验得知:在pH<5时,钴的萃取率随pH值增大急剧增加;锂在pH<5.5时几乎不发生萃取,pH>5.5时有少部分萃入有机相;pH=5.5时,钴和锂的分离因子βCo/Li可高达1×104.所以,本论文中将钴锂分离的水相pH值固定为5.5[12~13].2.3.1 考查萃取混合时间在室温下,考查萃取混合时间对钴萃取率的影响,如图3所示.萃取剂P507的浓度为25%、稀释剂为磺化煤油、萃取剂的皂化度为75%、水相pH为5.50、相比为1∶1.图3 混合时间对钴萃取率的影响Fig.3 Effect of mixing time on the extracted rate of cobalt由图3可以看出,在振荡器上混匀时间达到25 s后,萃取率趋于平衡.故后续实验的混合时间均选择为30 s,以保证萃取操作的完全平衡.2.3.2 考查相比在室温下,相比与钴离子萃取率的关系如图4所示.萃取剂P507的浓度为25%、稀释剂为磺化煤油、萃取剂的皂化度为75%、水相pH=5.50、相比分别取为0.5∶1、1∶1、1∶2和1∶3.图4 相比对钴萃取率的影响Fig.4 Effect of the ratio of water phase to organic phase on the extracted rate of copper由图4可以看出,随着相比的增大,钴离子的萃取率随之增加.当相比大于1后,两相分层速度明显变慢,但两相的分界仍是清晰的.2.3.3 考查萃取级数使用萃取剂P204净化后的浸出液,用P507进行萃取分离钴锂离子,在pH值为5.5时,锂是不被萃取的,重点考察钴离子的萃取率.在相比为1∶1时,萃取条件为:P507的浓度为25%、稀释剂使用磺化煤油、萃取剂的皂化度为75%,混合时间控制为30 s.表2 P507的萃取结果(相比1∶1)Table 2 The result of P507 extraction (O/A∶ 1/1)萃取级数一级二级三级Co萃取率/%42.6280.4799.94由表2可知,三级萃取操作后,钴离子的萃取率能达到99.94%,基本能将浸出液中的钴离子完全回收,达到工艺预定的目的.在相比为1∶2时,萃取条件为:P507的浓度为25%、稀释剂使用磺化煤油、萃取剂的皂化度为75%,混合时间控制为30 s.得到的结果如表3所示.表3 P507的萃取结果(相比1∶2)Table 3 The result of P507 extraction (O/A∶ 1/2)萃取级数一级二级Co萃取率/%85.8899.63同样,在相比为1∶2的条件下,二级也能达到同样的效果,但由表3中的数据能够看出,在第二级的萃取操作中,有机相未能达到其饱和容量,且分层速度变慢,故选择相比为1∶1更经济合理.2.3.4 考查反萃混合时间在电化学性能方面的应用中,氯化钴是优于硫酸钴的,考虑到产品的应用,采用2 mol/L的盐酸溶液来反萃富钴有机相,得到的产品为氯化钴溶液.图5 混合时间对钴反萃率的影响Fig.5 Effect of mixing time on the stripped rate of copper对于反萃操作,首先考察的是混匀时间,取富钴有机相和盐酸溶液的体积比为1∶1,在室温下考察混合平衡时间.由图5可以看出,在振荡器上混匀时间超过20 s时,反萃就可达平衡.平衡时间短、且速度快,利于操作.2.3.5 考查反萃级数在室温下,取相比为1∶1,混合时间为20 s,得到的实验结果如表4所示.可以看出,一级反萃就可基本反萃出有机相中的钴离子,二级能达到100%.所得到的水相反萃液中钴离子的浓度为13.54 g/L.表4 盐酸反萃的结果Table 4 The result of HCl stripping反萃级数一级二级Co 反萃率/%99.801003 讨论a. 正极材料钴锂膜投入NMP(N-甲基吡咯烷酮)中,在100 ℃下磁力搅拌约1 h后,黑色粉末能从铝箔上脱离,铝箔以金属形态回收,得到钴酸锂和石墨混合粉末;b. 使用硫酸-双氧水体系,钴酸锂混合粉末在80 ℃的水浴中反应约90 min后,钴和锂的金属离子能完全进入浸出液.浸出液主要成分为Co2+和Li+.在水相pH为2.6时,使用萃取剂P204萃取除杂.室温下,萃取剂浓度为25%,皂化度为75%,相比为1∶1时,两级萃取能除去浸出液中大部分的Al3+、Fe3+、Mn2+、Ca2+、Mg2+等杂质离子;c. 使用萃取剂P507可以实现钴锂的较好分离,其最佳操作条件为:室温下,水相pH值为5.5,相比为1∶1,混合时间控制为30 s,三级的萃取率能达到99.94%. 富钴相用2 mol/L的盐酸溶液反萃,两级便能反萃完全,水相中钴离子的浓度为13.54 g/L;d. 通过该工艺,正极材料中钴的回收率为97.33%,铝箔以单质形态回收,达到锂离子电池正极材料中有色金属分离回收的目的.参考文献:[1]徐盛明,刘晓步,徐刚,等.二次电池及其材料循环利用的研究进展[J].中国有色金属学报,2005,15(专刊2):20-24.[2]牛冬杰,马俊伟,赵由才.电子废弃物的处理处置与资源化[M].北京:冶金工业出版社,2007:5-28.[3]申勇峰.从废锂离子电池中回收钴[J].有色金属,2002,54(4):70-71,77.[4]Lee Churl Kyoung,Rhee Kang-In.Reductive leaching of cathodic active materials from lithium ion battery wastes[J].Hydrometallurgy,2003,68(1-3):5-10.[5]钟海云,李荐,柴立元.从废锂离子电池中铝-钴膜碎片中回收钴[J].稀有金属与硬质合金,2001,(1):1-4.[6]王晓峰,孔祥华,赵增营.从从废锂离子电池中回收贵重金属[J].电池,2001,31(1):14-15.[7]童东革,赖琼钰,吉晓洋.废旧锂离子电池正极材料钴酸锂的回收[J].化工学报,2005,(10):1967-1970.[8]温俊杰,李荐.废旧锂离子二次电池回收有价金属工艺研究[J].环境保护,2001,12(6):39-40.[9]Contestabile M,Panero S,Scrosati B.A laboratory-scale lithium-ion battery recycling process[J].Journal of Power Sources,2001,92:65-69.[10]徐光宪,王文清,吴瑾光,等.萃取化学原理[M].上海:上海科学技术出版社,1984:24-27.[11]杨佼庸,刘大星.萃取[M].北京:冶金工业出版社,1988:1-14.[12]Wu Fang,Xu Shengming,Liu Xiaobu,et al.Hydrometallurgical process of waste cathodic materials from lithium ion batteryplants[A].Proceedings of Earth 2005 symposium[C]. Beijing:International Academic Publisher,2005:386-389.[13]吴芳.从废旧锂离子二次电池中回收钴和锂[J].中国有色金属学报,2004,14(4):697-701.。
废旧锂离子电池钴酸锂正极材料回收研究进展摘要:随着我国不断出台相关环境保护治理政策,环保压力与日俱增。
相关研究人员愈发重视开发合适的锂离子电池处理技术和电池部件的回收利用技术,特别是针对地壳中储量较低的元素(如Co、Li等元素)。
在近些年对废旧锂离子电池回收的研究方向进行了高度概括,提出3R策略和4H原则,即再设计、再使用、再循环策略和高效、高经济收益、高环境效益、高安全性能原则。
锂离子电池的总造价很大程度取决于正极材料,因此合理、高效地回收废旧电池中的正极材料具有巨大的潜在经济价值。
关键词:锂离子电池;钴酸锂正极材料;回收引言锂离子电池具有体积小、质量轻、使用寿命长、安全性能好等特点,因此广泛用于移动电子设备、医疗设备和新能源设备。
但是,随着锂离子电池使用量的增加,锂离子电池也面临着巨大的再循环压力。
目前,废旧锂离子电池回收行业发展迅速,可以减少资源过度消耗和环境污染等问题,市场发展前景广阔,经济和社会效益也很好。
在这方面,必须加强废旧锂离子电池回收技术的研究和应用。
1废旧钴酸锂回收的主要工艺LiCoO2在锂离子电池市场中占据了非常大的比例。
因此,随着新能源产业的不断发展,LiCoO2的退役量也会随之增加。
同时,考虑到Co是一种稀有元素,具有潜在的经济价值,但处理不当会对环境有不利影响,所以提出一些有效的方法来回收和再生废弃的LiCoO2极为重要。
关于从废旧LiCoO2中再生LiCoO2正极材料的相关研究已经开展了许多。
按照回收结果分为两大类,回收“元素”和回收“材料”。
回收“元素”,即将废旧钴酸锂正极材料通过一系列回收工艺处理后得到的回收产品是含有价金属的离子化合物(如Co3O4、Co O、CoCO3等)。
回收“材料”,即废旧钴酸锂正极材料经回收工艺处理后得到的回收产品是可用于直接装配电池的再生正极材料(如LiCoO2、LiNi x Co y Mn z O2等)。
废旧钴酸锂正极材料回收的主要工艺路线有3种:①湿法冶金工艺,将废旧钴酸锂电池的正极材料进行粉碎并煅烧,然后经过碱浸、酸浸以及萃取等工艺得到有价金属化合物;②火法冶金提取金属元素工艺,主要是在高温熔融状态下通过添加碳还原剂获得有价金属合金,然后结合湿法工艺对其进行分离;③直接再生正极材料工艺,主要是通过添加一定的元素以及包覆材料对混合浆料进行焙烧,在修复废旧正极材料的晶体结构的同时对其进行改性,使得到的再生正极材料满足电池的再次装配要求。
废旧锂离子电池正极有价金属的回收研究电池、三元锂离子电池和钴酸锂电池这三种使用摘要:主要介绍了LiFePO4比较广泛的锂电池正极有价金属的回收研究进展,同时比较了干法回收和湿法回收之间的优点和不足,阐明了两种回收方法的现状,进一步提出了锂电池的回收将来一定是标准化、系统化、无污染化的观点。
关键词:废旧锂离子电池;回收;正极材料;有价金属引言石油作为不可再生战略资源,其用途可不仅仅用作汽车燃料,许多的高科技领域都有它的身影,而燃油汽车不仅需要耗费大量石油还会产生对环境有害的气体,所以由可再生能源驱动的新能源汽车必将成为将来的主流。
我国在2010年已经将新能源汽车纳入了战略产业的规划当中,2015—2018年产业增长速率皆在50%以上,2019年我国新能源汽车销量达到120.6万辆,2020年受新冠疫情的影响,新能源汽车的销量仍达136.7万辆再创历史新高[1]。
动力电池作为新能源汽车的核心,2018年装机量为56.89GW·h,2019年为62.27GW·h,2020年为62.85GW·h。
一般商用车电池寿命为5年左右,乘用车为8年左右,且人们日常生活中的手机、电脑等都是使用电池作为核心能源来驱动的,电作为可再生能源固然是好,但废旧电池的回收又成了人们必须面对的问题。
锂离子电池的结构大致是由正极、负极、隔膜层以及电解液组成,含有铜、铝、钴、镍、锂等金属元素。
随着钴、镍等金属资源的日益减少及废旧锂电池会对环境造成巨大危害,废旧锂电池的回收再利用已迫在眉睫。
废旧锂电池的回收作为我国新能源产业链的最后一环,也是新能源产业循环链的控制步骤,对新能源产业的长远发展有着重要意义。
目前废旧电池的回收方法主要分为干法回收和湿法回收。
干法适用于大多数的锂电池回收,同时也是已投产规模化的回收方法,将深度放电后的电池进行破碎处理,再进行磁选分离,最后使用高温进行煅烧。
干法回收的能耗大、设备投资高、回报低且无法回收锂电池正极材料中的锂、镍等有价金属。