大跨建筑结构大跨平面结构
- 格式:ppt
- 大小:1.55 MB
- 文档页数:15
大跨度与小跨度的划分及适用的结构体系一、概述大跨度与小跨度的划分和对应的结构体系一直是建筑工程领域中一个备受关注的问题。
随着建筑设计和施工技术的不断进步,对大跨度和小跨度结构的需求也在不断增加。
正确的划分和选择适用的结构体系对于工程设计和实施具有重要的指导意义。
本文将就大跨度与小跨度的划分及适用的结构体系进行深入探讨。
二、大跨度与小跨度的定义1. 大跨度结构大跨度结构通常指的是在建筑或桥梁中跨度较大的结构。
一般来说,跨度大于50米的建筑或桥梁可以被称为大跨度结构。
大跨度结构由于其较大的跨度,需要考虑较多的内力、变形、振动等问题,因此在设计和施工中需要采取相应的措施来保证结构的安全和稳定。
2. 小跨度结构小跨度结构则是相对于大跨度结构而言的。
一般来说,跨度小于50米的建筑或桥梁可以被称为小跨度结构。
小跨度结构由于跨度较小,内力和变形等问题相对较少,因此在设计和施工中的考虑因素也相对较少。
三、大跨度与小跨度结构的区别1. 内力分布大跨度结构由于跨度较大,内力分布相对复杂。
在设计中需要考虑不同部位的受力情况,以保证结构的安全性。
而小跨度结构内力分布相对简单,设计上的考虑因素也相对较少。
2. 稳定性由于大跨度结构的跨度较大,其稳定性相对较差,需要采取相应的措施来保证结构的稳定性。
而小跨度结构由于跨度较小,其稳定性相对较好。
3. 振动问题大跨度结构在设计和施工中需要考虑振动等问题,以保证结构的使用安全性。
而小跨度结构由于跨度较小,振动问题相对较少。
四、大跨度与小跨度适用的结构体系1. 大跨度结构适用的结构体系钢结构体系是大跨度结构常用的结构体系之一。
钢结构具有自重轻、刚度大、施工速度快等优点,适用于大跨度建筑和桥梁的结构体系中。
索弦结构体系也是大跨度结构的常用结构体系,其富有弹性和变形能力,适用于跨度较大的结构。
2. 小跨度结构适用的结构体系混凝土结构体系是小跨度结构常用的结构体系之一。
混凝土结构具有承载能力强、耐久性好等优点,适用于小跨度建筑和桥梁的结构体系中。
大跨建筑结构设计要点1. 引言大跨建筑是指跨度较大的建筑结构,通常用于场馆、机场、桥梁等重要工程。
大跨建筑结构设计要点涉及材料选择、结构布局、抗震设计等方面,本文将从这些方面介绍大跨建筑结构设计的要点。
2. 材料选择2.1 结构材料对于大跨建筑来说,结构材料的选择至关重要。
常见的结构材料包括钢材、混凝土和木材。
具体的选择需要考虑建筑的功能、负荷要求、耐久性和成本等因素。
钢材通常用于跨度较大、承载能力要求高的部位,混凝土用于提供更好的耐久性和抗震性能,木材则常用于轻型结构和装饰。
2.2 外墙材料外墙材料的选择需要考虑建筑的整体风格和环境要求。
常见的外墙材料包括玻璃、金属板、石材等。
玻璃材料可用于增加建筑的透明度和光亮感,金属板常用于现代风格的建筑,石材则常用于提供建筑的稳定感和质感。
3. 结构布局大跨建筑的结构布局需要考虑建筑的跨度、高度、稳定性和空间利用率等因素。
3.1 平面布局在平面布局上,大跨建筑可以采用单室或多室结构。
单室结构适用于跨度较大、建筑内部空间需求较大的场所,多室结构则适用于灵活分区、功能需求复杂的场所。
3.2 立面布局在立面布局上,大跨建筑可以采用平直或曲线形状。
平直形状适用于现代简约风格的建筑,曲线形状则适用于提供建筑的流畅感和美感。
4. 抗震设计大跨建筑需要进行有效的抗震设计,以确保建筑在地震等自然灾害中的安全性。
4.1 建筑地基合理的地基设计是抗震设计的基础。
在大跨建筑中,通常需要采用深基坑和深基桩等方式来提供足够的支撑和稳定性。
4.2 结构体系合理的结构体系可以提高建筑的整体稳定性。
对于大跨建筑,常见的结构体系包括框架结构、剪力墙结构和桁架结构等。
其中,桁架结构通常用于跨度较大的建筑,剪力墙结构则适用于提高建筑的抗震能力。
4.3 防震装置大跨建筑还可以采用防震装置来提高抗震能力。
常见的防震装置包括减震器和承载控制装置等。
5. 结论大跨建筑的结构设计要点包括材料选择、结构布局和抗震设计等方面。
大跨度建筑的结构设计大跨度建筑是指建筑物中跨度大于等于40米的建筑。
与传统建筑相比,大跨度建筑在空间布局和结构设计上都有较大的挑战。
本文探讨大跨度建筑的结构设计及其应用。
一、大跨度建筑的结构设计1.梁式结构梁式结构是大跨度建筑的常用结构类型之一,它利用梁的强度和刚度来支撑跨度较长的建筑。
在大跨度梁的设计中,需要考虑到梁的截面形状、材料、刚度、强度等因素。
例如,著名的伦敦眼观景轮采用了梁式结构,利用了高强度钢材料制成的滑轮和悬挂钢缆来支撑整个建筑。
这种梁式结构设计的优点是能够在不占用内部空间的情况下提供支撑力,从而实现大跨度建筑的空间设计。
2.网壳结构网壳结构是一种常用的大跨度建筑结构设计形式。
它由大量的杆和节点组成,呈现出类似于异形网格的形态,可抵御外部弯曲和剪切力。
例如,位于中国上海的东方明珠塔就是一种典型的网壳结构。
它由大量的三角形钢管起拱形成多穹顶状网架结构,利用了结构杆件三角形组合的适用性和钢管双向剪力优良的特性,为整个建筑提供了强大的支撑力和刚度。
同时,网壳结构还具有优美的空间美学效果,为城市天际线带来了新的视觉风格。
3.悬链结构悬链结构利用悬挂钢缆和大跨度建筑物体的自重,形成了一种类似于悬链的结构设计形式。
它的一大特点是结构杆件能够分担大量吊杆的拉力,从而达到支撑建筑物的目的。
例如,著名的法国埃菲尔铁塔就是一种典型的悬链结构。
它由大量的悬挂钢缆和大型铁框架组成,同时利用了钻孔和铆焊技术,既满足了结构的承载要求,又保留了珍贵历史建筑成果。
这种悬链结构不仅增强了建筑物的稳定性,而且还成为法国文化遗产的标志性代表。
二、大跨度建筑的应用大跨度建筑由于具有空间利用效率高、运行费用低、视觉效果好等优点,在如今的城市化建设中得到了广泛的应用。
以下是几个典型的大跨度建筑案例:1.北京国家大剧院北京国家大剧院采用了地下水泵吸引地下水上泵供水的自然冷却系统,设有近3000个座位。
其建筑外观类似于人类强壮且柔韧的结构,运用了大量的悬挂钢缆和网壳结构,同时建筑内部空间充分利用,成为北京城市文化建筑的瑰宝。
建筑结构大跨度结构大跨度结构是指横跨较长的距离,一般大于50米的建筑结构。
大跨度结构在现代建筑中得到了广泛应用,不仅可以提供更大的空间,还能够提高建筑的整体美观性、功能性和可持续性。
本文将介绍大跨度结构的定义、分类、应用以及在设计中的考虑因素等内容。
一、大跨度结构的定义大跨度结构是指横跨较长的距离的建筑结构。
它们通常用于一些需要较大空间的场所,如会展中心、机场终端楼、体育馆等。
大跨度结构的建造需要考虑跨度、荷载、材料和施工等因素。
跨度越大,结构的自重越大,所需的材料和施工难度也越大。
因此,在设计大跨度结构时需要进行充分的工程计算和结构分析,以确保结构的稳定性和安全性。
二、大跨度结构的分类根据结构的形式和功能,大跨度结构可以分为以下几种类型:1.單元系統結構:单元系统结构是一种由标准化部件组成的结构体系,其主要特点是模块化。
这种结构适用于大型工业厂房、仓库等场所。
常见的单元系统结构包括钢桁架结构和桁架梁结构。
2.点支撑结构:点支撑结构是一种通过柱子或支撑点将荷载传递到地面的结构。
它适用于要求大空间的建筑,如机场终端楼、体育场馆等。
点支撑结构常见的形式有网壳结构和空间桁架结构。
3.地铁结构:地铁结构主要用于地铁车站和地下通道等场所,其特点是地下结构、强度高和防水性能好。
地铁结构主要由混凝土和钢材构成,以提供足够的强度和稳定性。
4.悬索桥结构:悬索桥结构主要由悬索和桥塔组成,适用于跨越较长距离的桥梁。
悬索桥结构具有较好的承载能力和抗震能力,广泛用于桥梁工程中。
三、大跨度结构的应用大跨度结构在现代建筑中得到了广泛应用,主要体现在以下几个方面:1.会展中心:会展中心是大跨度结构的代表之一,其特点是空间大、无柱和灵活布局。
通过合理的结构设计和使用大跨度结构,可以提供更大的展示面积和灵活的空间分配。
2.机场终端楼:机场终端楼一般需要提供较大的空间,以应对大量旅客的需求。
大跨度结构可以提供无柱的空间,不仅能够提供较大的空间容量,还能使旅客获得更好的使用体验。
常见大跨度建筑的结构形式结构类型:有拱、刚架以及桁架、折板结构、壳体结构、网架结构、悬索结构、充气结构、篷帐张力结构等。
拱是古代大跨度建筑的主要结构形式。
由于拱成曲面形状,在外力作用下,拱内的弯矩可以降到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样跨度的梁结构断面小,故拱能跨越较大的空间但是拱结构在承受荷载后将产生横向推力,为了保持结构的稳定性,必须设置宽厚坚固的拱脚支座抵抗横推力。
常见方式是在拱的两侧作两道厚墙来支承拱,墙厚随拱跨增大而加厚。
很明显,这会使建筑的平面空间组合受到约束。
拱的内力主要是轴向压力,结构材料应选用抗压性能好的材料。
古代建筑的拱主要采用砖石材料,近代建筑中,多采用钢筋混凝土拱,有的采用钢衍架拱,跨度可达百米以上。
拱结构所形成的巨大空间常常用来建造商场、展览馆、体育馆、散装货仓等建筑。
刚架是由梁和柱组成的结构,各杆件主要受弯,刚架的结点主要是刚结点,也可以有部分铰结点或组合结点。
全部是钢材焊接的结构,一般用于超高层的办公大楼,或大型的会场和展厅。
桁架是一种由杆件彼此在两端用铰链连接而成的结构。
桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。
桁架的优点是杆件主要承受拉力或压力,可以充分发挥材料的作用,节约材料,减轻结构重量。
常用的有钢桁架、钢筋混凝土桁架、预应力混凝土桁架、木桁架、钢与木组合桁架、钢与混凝土组合桁架。
折叠折板屋顶结构一种由许多块钢筋混凝土板连接成波折形的整体薄壁折板屋顶结构。
这种折板也可作为垂直构件的墙体或其他承重构件使用。
折板屋顶结构组合形式有单坡和多坡,单跨和多跨,平行折板和复式折板等,能适应不同建筑平面的需要。
常用的截面形状有V形和梯形,板厚一般为5~10厘米,最薄的预制预应力板的厚度为3厘米。
跨度为6~40米,波折宽度一般不大于12米,现浇折板波折的倾角不大于30°;坡度大时须采用双面模板或喷射法施工。
大跨度空间结构是目前发展最快的结构类型。
大跨度建筑及作为其核心的空间结构技术的发展战况是代表一个国家建筑科技水平的重要标志之一。
而大跨度结构的表现形式是多种多样的。
大跨度空间结构;拱券结构及穹隆结构;椼架结构与网架结构;壳体结构;悬索结构;膜结构一、拱券结构及穹隆结构从迄今还保存着的古希腊宏大的露天剧场遗迹来看,人类大约在两千多年前,就有扩大室内空间的要求。
古代建筑室内空间的扩大是和拱结构的演变发展紧密联系着的,从建筑历史发展的观点来看,一切拱结构-包括各种形式的券、筒形拱、交叉拱、穹隆-的变化和发展,都可以说是人类为了谋求更大室内空间的产物。
券拱技术是罗马建筑最大的特色及成就,它对欧洲建筑做出了巨大的贡献,影响之大无与伦比。
罗马建筑典型的布局方法、空间组合、艺术形式和风格以及某些建筑的功能和规模等等都是同券拱结构有密切联系。
拱形结构在承受荷重后除产生重力外还要产生横向的推力,为保持稳定,这种结构必须要有坚实、宽厚的支座。
例如以筒形拱来形成空间,反映在平面上必须有两条互相平行的厚实的侧墙,拱的跨度越大,支承它的墙则越厚。
很明显,这必然会影响空间组合的灵活性。
为了克服这种局限,在长期的实践中人们又在单向筒形拱的基础上,创造出一种双向交叉的筒形拱。
而之后为了建筑的发展热门又创造出了穹隆结构穹隆结构也是一种古老的大跨度结构形式,早在公元前14世纪建造的阿托雷斯宝库所运用的就是一个直径为14.5米的叠涩穹隆。
到了罗马时代,半球形的穹隆结构已被广泛地运用于各种类型的建筑,其中最著名的要算潘泰翁神庙。
神殿的直径为43.3米,其上部覆盖的是一个由混凝土做成的穹隆结构。
在大跨度结构中,结构的支点越分散,对于平面布局和空间组合的约束性就越强;反之,结构的支承点越集中,其灵活性就越大。
从罗马时代的筒形拱衍变成高直式的尖拱拱肋结构;从半球形的穹隆结构发展成带有帆拱的穹隆结构,都表明由于支承点的相对集中而给空间组合带来极大的灵活性。
大跨度建筑结构体系简述-各种大跨度结构类型- 结构理论摘要:大跨度空间结构是目前发展最快的结构类型。
大跨度建筑及作为其核心的空间结构技术的发展战况是代表一个国家建筑科技水平的重要标志之一。
而大跨度结构的表现形式是多种多样的,具体如下文所示:关键词:大跨度空间结构;拱券结构及穹隆结构;椼架结构与网架结构;壳体结构;悬索结构;膜结构一、拱券结构及穹隆结构从迄今还保存着的古希腊宏大的露天剧场遗迹来看,人类大约在两千多年前,就有扩大室内空间的要求。
古代建筑室内空间的扩大是和拱结构的演变发展紧密联系着的,从建筑历史发展的观点来看,一切拱结构-包括各种形式的券、筒形拱、交叉拱、穹隆-的变化和发展,都可以说是人类为了谋求更大室内空间的产物。
券拱技术是罗马建筑最大的特色及成就,它对欧洲建筑做出了巨大的贡献,影响之大无与伦比。
罗马建筑典型的布局方法、空间组合、艺术形式和风格以及某些建筑的功能和规模等等都是同券拱结构有密切联系。
拱形结构在承受荷重后除产生重力外还要产生横向的推力,为保持稳定,这种结构必须要有坚实、宽厚的支座。
例如以筒形拱来形成空间,反映在平面上必须有两条互相平行的厚实的侧墙,拱的跨度越大,支承它的墙则越厚。
很明显,这必然会影响空间组合的灵活性。
为了克服这种局限,在长期的实践中人们又在单向筒形拱的基础上,创造出一种双向交叉的筒形拱。
而之后为了建筑的发展热门又创造出了穹隆结构穹隆结构也是一种古老的大跨度结构形式,早在公元前14世纪建造的阿托雷斯宝库所运用的就是一个直径为14.5米的叠涩穹隆。
到了罗马时代,半球形的穹隆结构已被广泛地运用于各种类型的建筑,其中最著名的要算潘泰翁神庙。
神殿的直径为43.3米,其上部覆盖的是一个由混凝土做成的穹隆结构。
在大跨度结构中,结构的支点越分散,对于平面布局和空间组合的约束性就越强;反之,结构的支承点越集中,其灵活性就越大。
从罗马时代的筒形拱衍变成高直式的尖拱拱肋结构;从半球形的穹隆结构发展成带有帆拱的穹隆结构,都表明由于支承点的相对集中而给空间组合带来极大的灵活性。