中南大学随机过程第九章
- 格式:ppt
- 大小:591.07 KB
- 文档页数:15
随机过程讲义
随机过程是一种抽象概念,它表示一个连续的或离散的时间点上发生的一系列事件或值的集合。
它主要用于表示不确定性和不确定性,在工程领域中有着广泛的应用。
本文将从定义和性质出发,论述随机过程的基本概念。
随机过程可以分为离散和连续两类。
离散随机过程是指在一定时间间隔内,其值只能在有限的取值集合中取值的变量。
例如,随机游戏的获胜概率可以用离散随机过程来表示。
连续随机过程是指在一定时间间隔内,其值可以取任何实数值的变量。
例如,温度变化可以用连续随机过程来表示。
随机过程有几个基本性质,如期望值、方差、协方差、自相关系数、相关系数和谱密度等。
期望值是指在一定时间间隔内,一个随机变量的预期值;方差表示变量的变化范围;协方差表示两个变量的关联性;自相关系数表示一个变量的变化,对另一个变量的影响;相关系数表示两个变量之间的相关性;谱密度表示变量的频率分布。
随机过程的应用非常广泛,它可以用于统计学、信号处理、系统建模和控制等领域。
它可以用于模拟不确定性或不确定性的系统,并分析系统的性质,以及系统响应的变化。
它还可以用于分析信号传输系统中的信号噪声,以及与环境变量相关的随机变量。
总之,随机过程是一种抽象概念,它表示一个连续的或离散的时间点上发生的一系列事件或值的集合。
它有几个基本性质,可以用于模拟不确定性或不确定性的系统,它在工程领域有着广泛的应用,可以用于控制、分析、模拟等众多方面。
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=kpx F )(连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itXeE t g = 离散 ∑=k itx p et g k)( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,kk k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 kn k k n q p C k X P -==)( np EX = n p qDX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 22)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X)}()(21exp{||)2(1),,,(121221a x B a x B x x x f T nn ---=-π),,,(21n a a a a =,),,,(21n x x x x =,n n ij b B ⨯=)(正定协方差阵二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
随机过程课件随机过程课件随机过程是概率论与数理统计中的重要概念,它描述了随机变量随时间的演化规律。
在现代科学和工程领域,随机过程被广泛应用于信号处理、通信系统、金融市场等众多领域。
本文将介绍随机过程的基本概念、分类以及一些常见的应用。
一、随机过程的基本概念随机过程是一族随机变量的集合,它描述了随机变量随时间的变化。
在数学上,随机过程可以用函数的形式表示,即X(t),其中t表示时间,X(t)表示在时间t时刻的随机变量。
随机过程可以分为离散时间和连续时间两种类型。
离散时间随机过程是指随机变量在离散时间点上的演化,例如抛硬币的结果、骰子的点数等。
连续时间随机过程是指随机变量在连续时间上的演化,例如股票价格的变动、电信号的传输等。
二、随机过程的分类根据随机过程的性质和演化规律,可以将其分为多种类型。
常见的分类包括马尔可夫过程、泊松过程、布朗运动等。
1. 马尔可夫过程马尔可夫过程是指在给定当前状态下,未来的演化只与当前状态有关,与过去的状态无关。
马尔可夫过程具有“无记忆”的特性,常用于描述具有时序性质的问题,如排队系统、信道传输等。
2. 泊松过程泊松过程是一种用于描述随机事件的发生次数的随机过程。
它具有独立增量和无记忆性的特点,常用于描述到达率恒定的随机事件,如电话呼叫、交通流量等。
3. 布朗运动布朗运动是一种连续时间的随机过程,其演化规律由随机变量驱动。
布朗运动具有连续性、无界性和马尔可夫性等特点,广泛应用于金融市场、物理学等领域。
三、随机过程的应用随机过程在现代科学和工程领域有着广泛的应用。
以下列举几个常见的应用领域。
1. 信号处理随机过程在信号处理中起到了重要的作用。
通过对信号进行建模,可以利用随机过程的理论和方法对信号进行分析和处理,如图像压缩、语音识别等。
2. 通信系统随机过程在通信系统中也有着重要的应用。
通过对信道的建模,可以利用随机过程的理论来分析和优化通信系统的性能,如误码率分析、信道编码等。
运筹学_中南大学中国大学mooc课后章节答案期末考试题库2023年1.当原问题可行,对偶问题不可行时,常用的求解线性规划问题的方法是()。
参考答案:单纯形法2.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
()参考答案:正确3.在单纯形表中基变量对应的系数矩阵往往为单位矩阵。
()参考答案:正确4.任一树中的边数和它的顶点数之间的关系式()。
参考答案:顶点数是边数的两倍5.最小生成树的求解方法有()。
参考答案:破圈法6.以同一节点为结束事项的各项作业最早结束时间相同。
参考答案:错误7.用对偶单纯形法求解线性规划时的最优性条件是参考答案:b列的数字非08.下列哪个决策原则被称为乐观主义原则()。
参考答案:最大最大原则9.进行成本最小化决策时,悲观主义者的决策原则是()。
参考答案:最大最小原则10.若原问题是一标准型,则对偶问题的最优解值就等于原问题最优表中松弛变量的()参考答案:机会费用11.线性规划的图解法中,目标函数值的递增方向与()有关参考答案:价值系数的正负12.对偶问题的目标函数总是与原问题目标函数相等。
参考答案:错误13.原问题约束条件右端值对应对偶问题目标函数中变量的系数。
参考答案:正确14.属于解决风险型决策问题的基本准则有最大可能准则、机会均等准则和期望收益最大准则。
参考答案:错误15.一个好的存贮策略,即可以使总费用最小,又可避免因缺货影响生产或者对顾客失去信用。
参考答案:正确16.某企业有10台运货车,已知每台车每运行100小时平均需维修两次,一个维修工,每次维修平均20分钟,到达时间和服务时间均服从负指数分布,该问题的排队模型为()。
参考答案:(M/M/1):(∞/∞/FCFS)17.运输问题中,当总供应量大于总需求量时,求解时需虚设一个()地,此地的生产量或需求量为总供应量与总需求量之差。
参考答案:销地18.在动态规划建模中,设置状态和状态变量时,不仅要描述过程的具体特征,而且一个根本的要求是必须满足()。
随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学理论,在通信、金融、物理等众多领域都有广泛的应用。
接下来,我们通过一些例题来深入理解随机过程的相关知识点。
一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量对应于一个特定的时间点。
例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,股票价格就是一个随机变量。
知识点 1:随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。
离散时间随机过程的时间参数是离散的,比如每天的股票收盘价;连续时间随机过程的时间参数是连续的,比如股票价格在任意时刻的取值。
知识点 2:随机过程的概率分布描述随机过程在不同时刻的概率分布是研究随机过程的重要内容。
对于离散随机过程,常用概率质量函数;对于连续随机过程,常用概率密度函数。
例题 1假设一个离散时间随机过程{Xn},n = 0, 1, 2, ,其中 Xn 取值为 0 或 1,且 P(Xn = 0) = 06,P(Xn = 1) = 04,求 X0 和 X1 的联合概率分布。
解:X0 和 X1 的可能取值组合有(0, 0)、(0, 1)、(1, 0)、(1, 1)。
P(X0 = 0, X1 = 0) = P(X0 = 0) × P(X1 = 0) = 06 × 06 = 036P(X0 = 0, X1 = 1) = P(X0 = 0) × P(X1 = 1) = 06 × 04 = 024P(X0 = 1, X1 = 0) = P(X0 = 1) × P(X1 = 0) = 04 × 06 = 024P(X0 = 1, X1 = 1) = P(X0 = 1) × P(X1 = 1) = 04 × 04 = 016二、随机过程的数字特征数字特征可以帮助我们更简洁地描述随机过程的某些重要性质。
随机过程实验讲义刘继成华中科技大学数学与统计学院2011-2012年上半年为华中科技大学数学系本科生讲授随机过程课程参考资料前言 (1)第一章Matlab 简介 (2)第二章简单分布的模拟 (6)第三章基本随机过程 (9)第四章Markov过程 (12)第五章模拟的应用和例子 (16)附录各章的原程序 (51)参考文献 (75)若想检验数学模型是否反映客观现实,最自然的方法是比较由模型计算的理论概率和由客观试验得到的经验频率。
不幸的是,这两件事都往往是费时的、昂贵的、困难的,甚至是不可能的。
此时,计算机模拟在这两方面都可以派上用场:提供理论概率的数值估计与接近现实试验的模拟。
模拟的第一步自然是在计算机程序的算法中如何产生随机性。
程序语言,甚至计算器,都提供了“随机”生成[0,1]区间内连续数的方法。
因为每次运行程序常常生成相同的“随机数”,因此这些数被称为伪随机数。
尽管如此,对于多数的具体问题这样的随机数已经够用。
我们将假定计算机已经能够生成[0,1]上的均匀随机数。
也假定这些数是独立同分布的,尽管它们常常是周期的、相关的、……。
……本讲义的安排如下,第一章是Matlab简介,从实践动手角度了解并熟悉Matlab环境、命令、帮助等,这将方便于Matlab的初学者。
第二章是简单随机变量的模拟,只给出了常用的Matlab 模拟语句,没有堆砌同一种变量的多种模拟方法。
对于没有列举的随机变量的模拟,以及有特殊需求的读者应该由这些方法得到启发,或者参考更详细的其他文献资料。
第三章是基本随机过程的模拟。
主要是简单独立增量过程的模拟,多维的推广是直接的。
第四章是Markov过程的模拟。
包括服务系统,生灭过程、简单分支过程等。
第五章是这些模拟的应用。
例如,计算概率、估计积分、模拟现实、误差估计,以及减小方差技术,特别给读者提供了一些经典问题的模拟,通过这些问题的模拟将会更加牢固地掌握实际模拟的步骤。
平稳过程的模拟、以及利用平稳过程来预测的内容并没有包含在本讲义之内,但这丝毫不影响该内容的重要性,这也是将会增补进来的主要内容之一。