lingo使用教程解析
- 格式:ppt
- 大小:252.00 KB
- 文档页数:22
LINGO使用说明比较简单
第九步,分析和优化结果。
优化模型求解完成后,你可以通过结果显
示区中的结果表格和图表来分析和优化结果。
LINGO还提供了一些分析工具,如灵敏度分析和场景分析,帮助你深入理解模型的行为和性能。
第十步,保存和导出结果。
在 LINGO 中,你可以保存整个优化模型
及其求解结果,以供将来使用。
通过点击菜单栏中的“文件”选项,选择“保存”或“导出”,就可以将模型和结果保存为不同的文件格式,如LINGO模型文件(.lng)、Excel 文件(.xls)或文本文件(.txt)。
通过上述十个步骤,你可以使用LINGO软件完成一个优化模型的建立、求解和分析。
当然,LINGO还具备其他高级功能和应用,如混合整数规划、随机规划和非线性规划等,可以根据你的具体需求进行进一步学习和应用。
LINGO使用手册和官方网站上有更多详细的说明和案例,可以帮助你更好
地使用和理解LINGO软件。
第十章 LINGOLingo 软件是求解线性规划、非线性规划的数学软件,也可用于一些线性和非线性方程组的求解等。
Lingo 实际上也是最优化问题的一种建模语言,包括许多常用的数学函数供使用者建立优化模型时调用,并可以接受与其他数据文件交换数据。
第一节 LINGO 软件的基本使用方法1.1 LINGO 使用入门在windows 操作系统下启动LINGO 后,将进入LINGO 集成环境,包括主框架窗口和模型窗口两部分。
主框架窗口集成了菜单和命令按钮,模型窗口用于输入模型。
例1 求解数学模型12121212max 23..4310351200x x s t x x x x x x ++≤+≤≥≥解:在模型窗口输入LINGO 求解模型如下:输入模型后选择菜单LINGO|Solve 或者按工具栏的,LINGO开始编译模型,如有语法错误将返回一个错误的消息并指明错误出现的位置;如果通过编译,LINGO将激活Solver运算器寻求模型的最优解,首先出现Solver Status状态窗口显示模型求解的运算状态信息:状态窗口显示的信息含义如下:“Global optimal solution found”表示得到全局最优解。
“Objective value: 7.454545”表示最优目标值为7.454545。
“Total solver iterations:2” 表示迭代2次得到结果。
“V alue”给出最优解中各变量的值:x1=1.272727,x2=1.636364。
Reduced Cost 值列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时,目标函数的变化率。
其中基变量的reduced cost值应为0,对于非基变量xj,相应的reduced cost值表示当某个变量xj 增加一个单位时目标函数减少的量( max型问题)。
本例中此值均为0。
SLACK OR SURPLUS值给出约束条件的松驰变量或剩余变量的值。
LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:0,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。
lingo基本用法以下是 9 条关于“lingo 基本用法”的内容:1. 嘿,你知道吗,lingo 里的变量定义可简单啦!就像给东西起个名字一样自然。
比如说,咱要算一堆苹果的数量,那就可以设个变量叫apple_num 呀,这不就清楚明白啦!2. 哇塞,lingo 的约束条件就像是给问题加上规矩。
就好比说,规定一个房间最多能进 10 个人,这就是个约束呀。
比如限制某种资源不能超过多少,lingo 就能很好地处理呢!3. 哎呀呀,lingo 的目标函数那可重要了!这就好比是你要去追求的目标。
比如你想让利润最大化,那目标函数就是让利润相关的表达式达到最大呀!像算怎么卖东西能赚最多钱,lingo 就能帮你找到答案哟!4. 嘿,lingo 的表达式书写也不难呢!就像写个数学式子一样。
比如 2x +3y 这么简单明了。
要计算一些关系,用它来写表达式再合适不过了!5. 哇哦,lingo 里的集合定义多有意思啊!像是把一群相关的东西归到一起。
比如把不同类型的商品归成一个集合,然后对它们进行统一的处理呀,是不是很方便呀?6. 哎呀,lingo 的求解命令一敲,就等着答案出来啦!就像你按下按钮,机器就开始工作一样。
你看,多神奇啊,一下子就知道结果了呢!7. 嘿,lingo 还能处理复杂的数据呢!就像一个聪明的小助手,不管多乱的数据它都能理清楚。
比如算一大堆乱七八糟数字的关系,lingo 绝对能应付得来呀!8. 哇,lingo 的模型建立虽然要动点脑筋,但一旦建好了,那可太好用啦!就跟盖房子一样,辛苦一点,盖好了住着就舒服啦。
你想想,自己建的模型能用起来,多有成就感呀!9. 哎呀呀,掌握了 lingo 的基本用法,那真的是能解决好多问题呢!不管是算数量还是优化方案,都不在话下。
所以呀,还不赶紧去学学,让它为你服。
L I N G O使用教程本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.MarchLINGO 使用教程LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例 如何在LINGO 中求解如下的LP 问题:⎪⎪⎩⎪⎪⎨⎧≥≤+≥≥++0,6002100350..32min212112121x x x x x x x t s x x 在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100; 2*x1+x2<=600;然后点击工具条上的按钮即可。
例使用LINGO软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如下表。
使用LINGO软件,编制程序如下:model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。
LINGO 使用教程LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例 如何在LINGO 中求解如下的LP 问题: ⎪⎪⎩⎪⎪⎨⎧≥≤+≥≥++0,6002100350..32min212112121x x x x x x x t s x x 在模型窗口中输入如下代码:min =2*x1+3*x2; x1+x2>=350; x1>=100; 2*x1+x2<=600;然后点击工具条上的按钮即可。
例使用LINGO软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如下表。
使用LINGO软件,编制程序如下:model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。
LINGO基本教程(完整版)pdf一、教学内容本节课我们使用的教材是《LINGO基本教程》,我们将学习第14章的内容。
第1章介绍LINGO软件的基本操作,包括界面的熟悉、模型的建立等;第2章学习线性规划模型的建立与求解;第3章讲解非线性规划模型的建立与求解;第4章介绍整数规划模型的建立与求解。
二、教学目标1. 学生能够熟练操作LINGO软件,建立和求解线性、非线性以及整数规划模型。
2. 学生能够理解线性、非线性以及整数规划的基本概念,并能够运用到实际问题中。
3. 学生通过学习LINGO基本教程,提高自己的逻辑思维能力和解决实际问题的能力。
三、教学难点与重点重点:熟练操作LINGO软件,建立和求解线性、非线性以及整数规划模型。
难点:理解线性、非线性以及整数规划的基本概念,以及如何将这些概念运用到实际问题中。
四、教具与学具准备教具:多媒体教学设备、投影仪、计算机。
学具:学生计算机、LINGO软件、教材《LINGO基本教程》。
五、教学过程1. 实践情景引入:以一个简单的线性规划问题为切入点,引导学生思考如何利用LINGO软件求解。
2. 讲解教材内容:分别讲解第14章的内容,包括LINGO软件的基本操作、线性规划模型的建立与求解、非线性规划模型的建立与求解以及整数规划模型的建立与求解。
3. 例题讲解:针对每个章节的内容,选择合适的例题进行讲解,让学生通过例题理解并掌握相关知识点。
4. 随堂练习:在每个章节讲解结束后,安排随堂练习,让学生通过练习巩固所学知识。
5. 课堂互动:鼓励学生提问,解答学生在学习过程中遇到的问题。
6. 板书设计:每个章节的重要知识点和操作步骤进行板书设计,方便学生复习。
7. 作业布置:布置与本节课内容相关的作业,巩固所学知识。
六、作业设计1. 作业题目:最大化问题:目标函数:Z = 2x1 + 3x2约束条件:x1 + x2 ≤ 62x1 + x2 ≤ 8x1, x2 ≥ 0最大化问题:目标函数:Z = x1^2 + x2^2约束条件:x1 + x2 ≤ 5x1^2 + x2^2 ≤ 10x1, x2 ≥ 0最大化问题:目标函数:Z = 3x1 + 2x2约束条件:x1 + x2 ≤ 42x1 + x2 ≤ 6x1, x2 均为整数2. 答案:(1)线性规划问题的解为:x1 = 2, x2 = 4(2)非线性规划问题的解为:x1 = 3, x2 = 2(3)整数规划问题的解为:x1 = 2, x2 = 2七、板书设计1. 第1章:LINGO软件的基本操作(1)界面的熟悉(2)模型的建立2. 第2章:线性规划模型的建立与求解(1)目标函数的定义(2)约束条件的设置(3)求解线性规划问题3. 第3章:非线性规划模型的建立与求解(1)目标函数的定义(2)约束条件的设置(3)求解非线性规划问题4. 第4章:整数规划模型的建立与求解(1)目标函数的定义(2)约束条件的设置(3)求解整数规划问题八、课后反思及拓展延伸本节课通过实践情景引入,使学生能够快速融入学习状态。
LINGO使用说明一、LINGO的基本特性1.建模语言:LINGO使用一种直观的建模语言,被称为LINGO语言,它使用简洁的语法和自然语言类似的表达方式,使用户能够轻松地描述问题。
2.线性优化:LINGO支持线性规划(LP)和整数线性规划(ILP),它的线性优化功能包括线性约束、线性目标函数和变量定义,可以解决诸如生产优化、资源分配等问题。
3.非线性优化:LINGO还支持非线性规划(NLP)和全局优化(GLO),可以解决包括非线性约束和非线性目标函数的问题。
它提供了多种求解方法和算法,如牛顿法、逐次线性规划等。
4.约束和限制:LINGO能够处理各种类型的约束和限制,包括等式约束、不等式约束、逻辑约束等。
用户可以根据具体问题定义约束,LINGO会自动处理约束的完整性和一致性。
5.求解器:LINGO内置了一系列高效的求解器,如线性规划求解器、非线性规划求解器、整数规划求解器等。
用户可以根据问题的复杂程度选择最适合的求解器。
6.结果分析:LINGO可以生成详细的结果报告,包括优化解、约束条件、目标函数值等。
用户可以通过结果报告来分析问题的解决方案,做出决策。
二、LINGO的使用方法2.创建模型:在LINGO中,用户需要先创建一个模型文件,来描述问题。
可以通过鼠标点击“新建模型”按钮或选择文件菜单中的“新建”选项来创建一个新的模型文件。
3.定义变量:在模型文件中,用户可以定义变量。
变量可以是整数、二进制或连续的,并为每个变量分配一个名称、类型和取值范围。
4.定义目标函数:在模型文件中,用户可以定义一个目标函数。
目标函数可以是线性的或非线性的,并定义在变量上。
5.定义约束:在模型文件中,用户可以定义约束。
约束可以是线性的或非线性的,并定义在变量上。
用户需要通过约束来限制变量的取值范围。
6.设置求解器:在模型文件中,用户可以选择合适的求解器来解决问题。
LINGO提供了多种求解器,用户可以根据问题的复杂程度选择最适合的求解器。
LINGO 使用教程LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:0,6002100350..32min212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码:min =2*x1+3*x2;x1+x2>=350;x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如model :!6发点8收点运输问题;sets :warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min =@sum (links: cost*volume);!需求约束;@for (vendors(J):@sum (warehouses(I): volume(I,J))=demand(J));!产量约束;@for (warehouses(I):@sum (vendors(J): volume(I,J))<=capacity(I));!这里是数据;data :capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮 即可。
lingo解方程组Lingo是一种用于解决数学问题的优化软件,它可以用于解方程组。
在解方程组时,Lingo可以帮助我们找到满足所有方程的变量值。
本文将介绍如何使用Lingo解方程组,并通过一个具体的例子进行说明。
我们需要了解方程组的基本概念。
方程组是由多个方程组成的集合,每个方程包含多个未知数和一个等式。
解方程组就是找到满足所有方程的未知数的值。
在解方程组时,我们可以使用代数方法,也可以借助计算工具如Lingo进行求解。
接下来,我们以一个简单的线性方程组为例进行说明。
假设有以下方程组:2x + y = 5x + 3y = 8我们的目标是找到使得这两个方程同时成立的x和y的值。
我们可以使用Lingo来解决这个问题。
首先,我们需要将方程组转化为Lingo中的标准形式。
标准形式要求所有未知数的系数都为正数,并且等式右侧为常数。
为了将方程组转化为标准形式,我们可以对方程进行变换。
首先,我们可以将第一个方程变为2x + y - 5 = 0,第二个方程变为x + 3y - 8 = 0。
接下来,我们可以使用Lingo建立一个数学模型来求解这个方程组。
在Lingo中,我们可以使用变量来表示未知数,使用约束条件来表示方程。
我们可以定义两个变量x和y,并设置它们的取值范围。
然后,我们可以设置两个约束条件来表示方程组中的两个方程,将它们加入到模型中。
经过这些步骤,我们可以使用Lingo进行求解。
Lingo会自动寻找满足所有约束条件的变量值,并给出最优解。
在我们的例子中,Lingo可以得出x = 2,y = 1的解。
通过这个例子,我们可以看到Lingo解方程组的过程。
首先,我们需要将方程组转化为标准形式。
然后,我们可以使用Lingo建立数学模型,并设置变量和约束条件。
最后,Lingo会自动寻找满足约束条件的最优解。
除了线性方程组,Lingo还可以解决非线性方程组和混合整数方程组等更复杂的问题。
它提供了丰富的数学函数和优化算法,可以帮助我们更高效地解决各种数学问题。