新能源材料固体氧化物燃料电池.ppt
- 格式:ppt
- 大小:794.52 KB
- 文档页数:81
固体氧化物燃料电池燃料电池又叫连续电池,它在等温条件下直接将储存在燃料和氧化剂中的化学能转变为电能燃料电池的发电原理:阳极进行燃料的氧化过程,阴极进行氧化剂的还原过程,导电离子在电解质内迁移,电子通过外电路做功并构成电的回路。
燃料电池的工作方式:燃料电池的燃料和氧化剂不是储存在电池内,而是储存在电池外的储罐中。
当电池发电时需要连续不断地向电池内输送燃料和氧化剂,排除产物和废热。
燃料电池的组成:(1) 电极。
为多孔结构,可由具有电化学催化活性的材料制成,也可以只作为电化学反应的载体和反应电流的传导体。
(2) 电解质。
通常为固态或液态,但也有关于NH3 气氛中NH4Cl 电解质的研究。
电解质的状态取决于电池的使用条件。
(3) 燃料。
可以是气态(氢气等)或液态(甲醇等),在极少数情况下也可以是固态(碳)。
(4) 氧化剂。
选择比较方便,纯氧、空气或卤素都可以胜任,而空气是最便宜的。
燃料电池的特点:可长时间不间断地工作——这使燃料电池兼具普通化学电源能量转换效率高和常规发电机组连续工作时间长的两种优势。
高效——它不通过热机过程,不受卡诺循环的限制,其能量转化效率在40-60%;如果实现热电联供,燃料的总利用率可高达80%以上。
环境友好——以纯氢为燃料时,燃料电池的化学反应物仅为水;以富氢气体为燃料时,其二氧化碳的排放量比热机过程减少40%以上,这对缓解地球的温室效应是十分重要的。
安静——燃料电池运动部件很少,工作时安静,噪声很低。
可靠性高——碱性燃料电池和磷酸燃料电池的运行均证明燃料电池的运行高度可靠,可作为各种应急电源和不间断电源使用。
燃料电池的类型:按电解质的性质分:1、碱性燃料电池,简称AFC。
2、质子交换膜燃料电池,简称PEMFC。
3、磷酸燃料电池,PAFC。
4、熔融碳酸盐燃料电池,固体氧化物燃料电池 SOFC是以固体氧化物为电解质,如ZrO2、BiO3等,阳极材料是Ni-YSZ陶瓷,阴极材料主要采用锰酸镧材料,SOFC的固体氧化物电解质在高温下800~1000℃具有传递O2-的能力,在电池中起传递O2和分隔氧化剂与燃料的作用。
新能源材料固体氧化物燃料电池固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)是一种以固态电解质材料为基础,利用固体电解质与氧化物燃料反应产生电能的高效率电化学能量转换器。
SOFC以其高能量转换效率、低污染排放和多燃料适应性等优势,成为了燃料电池技术中备受关注的一种类型。
首先,SOFC采用固态电解质材料作为电解质,与传统的液态电解质相比,其具有更高的化学和热稳定性。
固体电解质材料能够在高温下提供高离子电导率,因此SOFC可以在较高温度下运行,提高电极反应速率,促进电化学反应。
这也使得SOFC能够利用多种燃料,包括氢气、煤气、天然气等。
其次,SOFC具有高能量转换效率。
固体电解质的高稳定性和高离子电导率使得SOFC能够实现较高的电化学反应速率,从而提高能量转换效率。
传统热电偶发电技术只能利用燃料的一小部分能量,而SOFC可以将更多的燃料能量转化为电能,实现更高的能量利用效率。
此外,SOFC具有低的污染排放。
与传统燃烧发电技术相比,SOFC是一种无污染的能源转换技术,不会产生二氧化碳、氮氧化物等有害气体。
SOFC反应产物主要为水蒸气和二氧化碳,后者可通过碳捕获技术进行回收和利用,从而减少对环境的负面影响。
最后,SOFC具有多燃料适应性。
由于固体电解质材料的高稳定性,SOFC可以使用多种燃料,包括氢气、煤气、天然气等。
这使得SOFC具有很强的应用潜力,可以广泛应用于能源供应、电力系统备用电源、工业能源、交通运输等领域。
然而,SOFC也存在一些挑战和限制。
首先是高温操作,需要较长的启动时间和热循环时间。
此外,固态电解质材料的价格较高,限制了SOFC的商业化应用。
此外,SOFC对纯净燃料的要求较高,对燃料的净化和处理也提出了技术难题。
为了进一步促进SOFC的发展和应用,需要持续进行材料研究和技术创新。
目前的研究主要集中在降低材料成本、提高燃料适应性、改善电化学性能等方面。
同时,应加强与其他能源技术的融合,如太阳能和风能等,以进一步提高能源效率和可持续发展能力。