第三章 酶
- 格式:ppt
- 大小:8.83 MB
- 文档页数:32
生物化学第3章酶生物化学第3章酶第3章酶自学建议1.掌握酶及所有相关的概念、酶的结构与功能的关系、酶的工作原理、酶促反应动力学特点、意义及应用。
2.熟识酶的分子共同组成与酶的调节。
3.了解酶的分类与命名及酶与医学的关系。
基本知识点酶是对其特异底物起高效催化作用的蛋白质。
单纯酶是仅由氨基酸残基组成的蛋白质,融合酶除所含蛋白质部分外,还所含非蛋白质辅助因子。
辅助因子就是金属离子或小分子有机化合物,后者称作辅酶,其中与酶蛋白共价紧密结合的辅酶又称辅基。
酶分子中一些在一级结构上可能相距很远的必需基团,在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物,这一区域称为酶的活性中心。
同工酶就是指催化剂相同化学反应,酶蛋白的分子结构、化学性质乃至免疫学性质相同的一组酶,就是由相同基因编码的多肽链,或同一基因mRNA分解成的相同mrna所译者的相同多肽链共同组成的蛋白质。
酶促反应具有高效率、高度特异性和可调节性。
酶与底物诱导契合形成酶-底物复合物,通过邻近效应、定向排列、表面效应使底物容易转变成过渡态。
酶通过多元催化发挥高效催化作用。
酶促反应动力学研究影响酶促反应速率及其影响因素,后者包括底物浓度、酶浓度、温度、ph、抑制剂和激活剂等。
底物浓度对反应速率的影响可用米氏方程表示。
v?vmax[s]km?[s]其中,km为米氏常数,其值等同于反应速率为最小反应速率一半时的底物浓度,具备关键意义。
vmax和km需用米氏方程的双倒数作图去求得。
酶在拉沙泰格赖厄县ph和拉沙泰格赖厄县温度时催化活性最低,但拉沙泰格赖厄县ph和拉沙泰格赖厄县温度不是酶的特征性常数,受到许多因素的影响。
酶的抑制作用包含不可逆遏制与对称遏制两种。
对称遏制中,竞争抑制作用的表观km值减小,vmax维持不变;非竞争抑制作用的km值维持不变,vmax增大,反竞争抑制作用的km值与vmax均增大。
在机体内酶活性与含量的调节是代谢调节的重要途径。
第三章酶本章要点生物催化剂——酶:由活细胞产生的、对其底物具有高度特异性和高度催化效能的蛋白质。
一、酶的分子结构与功能1.单体酶:由单一亚基构成的酶。
(如溶菌酶)2.寡聚酶:由多个相同或不同的亚基以非共价键连接组成的酶。
(如磷酸果糖激酶-1)3.多酶复合物(多酶体系):几种具有不同催化功能的酶可彼此聚合。
(如丙酮酸脱氢酶复合物)4.多功能酶(串联酶):一些酶在一条肽链上同时具有多种不同的催化功能。
(如氨基甲酰磷酸合成酶Ⅱ)(一)、酶的分子组成中常含有辅助因子1.酶蛋白主要决定酶促反应的特异性及其催化机制;辅助因子主要决定酶促反应的性质和类型。
2.酶蛋白和辅助因子单独存在时均无催化活性,只有全酶才具有催化作用。
3.辅酶与酶蛋白的结合疏松,可以用透析和超滤的方法除去。
在酶促反应中,辅酶作为底物接受质子或基团后离开酶蛋白,参加另一酶促反应并将所携带的质子或基团转移出去,或者相反。
4.辅基则与酶蛋白结合紧密,不能通过透析或超滤将其除去。
在酶促反应中,辅基不能离开酶蛋白。
5.作为辅助因子的有机化合物多为B族维生素的衍生物或卟啉化合物,它们在酶促反应中主要参与传递电子、质子(或基团)或起运载体作用。
金属离子时最常见的辅助因子,约2/3的酶含有金属离子。
6.金属离子作为酶的辅助因子的主要作用①作为酶活性中心的组成部分参加催化反应,使底物与酶活性中心的必需基团形成正确的空间排列,有利于酶促反应的发生;②作为连接酶与底物的桥梁,形成三元复合物;③金属离子还可以中和电荷,减小静电斥力,有利于底物与酶的结合;④金属离子与酶的结合还可以稳定酶的空间构象。
7.金属酶:有的金属离子与酶结合紧密,提取过程中不易丢失。
8.金属激活酶:有的金属离子虽为酶的活性所必需,但与酶的结合是可逆结合。
(二)、酶的活性中心是酶分子执行其催化功能的部位1.酶的活性中心(活性部位):酶分子中能与底物特异地结合并催化底物转变为产物的具有特定三维结构的区域。
第三章酶生物体内不断进行着各种化学变化。
绿色植物和某些细菌能以十分简单的物质(如水、CO2和无机盐)为原料合成各种复杂物质,并把太阳能转化为化学能贮存于有机物质中;而其他生物又能分解这些复杂物质,从中获取能量。
例如,动物以植物体中的淀粉等复杂物质为食物,•将淀粉降解成单糖,并在细胞内进一步分解为CO2和水,同时释放能量供动物生长、发育、运动等各种生命活动需要。
在实验室中,复杂有机物的合成与分解必需在高温、高压、强酸或强碱等剧烈条件下进行,而在生物体内虽然条件十分温和,许多复杂的化学变化却进行得极顺利和迅速,这种使化学反应变得容易和迅速的根本原因就是生物体内普遍存在着生物催化剂——酶。
酶与其他催化剂不同,它具有很大的专一性和极高的催化效率,能在机体中十分温和的条件下起高效率的催化作用,这不是无机催化剂所能比拟的。
人们对酶的认识起源于生产实践。
我国几千年前就开始制作发酵饮料及食品。
夏禹时代,酿酒已经出现,周代已能制作饴糖和酱。
春秋战国时期已能用曲治疗消化不良。
1833年Payon和Persoz从麦芽提取液中分离得到一种能水解淀粉的物质,称之为淀粉酶。
1857 年微生物学家Pasteur等人提出酒精发酵是酵母细胞活动的结果,1878年提出了“酶”•这个概,Liebig等人提出发酵现象是由溶解于细胞液中的酶引起的。
1913年Michaelis和Menten提出了酶动力学原理——米氏学说,•这对酶学反应机理的研究是一个突破。
1926年Sumner第一次从刀豆中提取出了脲酶结晶,并第一次证明酶有蛋白质性质。
20世纪30年代Northrop又分离出了结晶的胃蛋白酶、胰蛋白酶及胰凝乳蛋白酶,并进行了动力学探讨,确立了酶的蛋白质本质。
现已鉴定出4 000多种酶,其中不少得到结晶,很多种的一级结构或三级结构也已经阐明。
随着酶学理论研究的不断深入必将对生命本质的探索作出更大的贡献。
第一节酶的命名与分类一、习惯命名法1961年以前使用的酶的名称都是习惯沿用的,称为习惯名。
第三章酶一名词解释米氏常数(K m值)/ 单体酶(monomeric enzyme)/ 寡聚酶(oligomeric enzyme)/ 多酶体系(multienzyme system)/ 激活剂(activator)/ 抑制剂(inhibitor inhibiton)/ 变构酶(allosteric enzyme)/ 同工酶(isozyme)/ 酶的比活力(enzymatic compare energy)/ 活性中心(active center)①米氏常数(Km值):酶促反应速度达到最大反应速度一半时的底物浓度。
②单体酶:仅有一个活性中心,由一条或多条共价相连的肽链组成的酶分子。
③寡聚酶:由两个或多个相同或不同亚基组成的酶。
单独的亚基一般无活性。
④多酶体系:多种酶靠非共价键相互嵌合催化连续反应的体系。
⑤激活剂:凡是能提高酶活性、加速酶促反应进行的物质。
⑥抑制剂:能使酶的活性下降而不引起酶蛋白变性的物质。
⑦变构酶:生物体内的一些代谢物可以与酶分子的调节部位进行非共价可逆性结合,改变酶分子构像,进而改变酶的活性。
酶的这种调节作用称为变构调节(allosteric regulation)。
受变构调节的酶称为变构酶。
⑧同工酶:能催化相同的化学反应,但在蛋白质分子的结构、理化性质和生物学性质方面都存在明显差异的一组酶。
⑨酶的比活力:比活力是指每毫克蛋白所具有的酶活力。
单位:U/mg蛋白质⑩活性中心:酶分子中能直接与底物分子结合,并催化底物化学反应的部位。
二英文缩写符号及功能NAD+ / FAD / FH4 / NADP+ / FMN / CoA / ACP / TPP / PLP①NAD+:烟酰胺腺嘌呤二核苷酸,在氧化还原反应中传递氢原子。
②FAD:黄素腺嘌呤二核苷酸,作为多种氧化还原酶的辅基,起传递氢原子作用。
③FH4:四氢叶酸,是体内一碳单位转移酶系的辅酶。
④NADP+:烟酰胺腺嘌呤二核苷酸磷酸,在氧化还原反应中传递氢原子。