(完整版)物理化学上热力学第一定律知识框架图总结
- 格式:doc
- 大小:75.01 KB
- 文档页数:1
热力学第一定律ppt引言热力学第一定律是热力学中的基本定律之一。
它表明了能量的守恒原理,也被称为能量守恒定律。
热力学第一定律对于理解能量转化和能量守恒的过程至关重要,应用广泛。
热力学第一定律的表述热力学第一定律可以用如下方式表述:在孤立系统中,能量的增量等于对外界做功和系统热量的和。
这个表述可以用以下数学公式表示:ΔE = Q - W其中,ΔE表示能量的增量,Q表示系统吸收的热量,W表示系统对外做功。
能量转化示意图为了更好地理解热力学第一定律,我们可以通过一个能量转化示意图来说明。
能量转化示意图能量转化示意图在这个示意图中,输入的能量被系统吸收,一部分能量被转化为系统内能的增加(热量),一部分能量被系统用于对外做功。
根据热力学第一定律,系统吸收的热量和对外做的功加起来等于能量的增量。
热力学第一定律的应用热力学第一定律在工程和科学研究中有着广泛的应用。
以下是一些具体的应用:热力学循环分析热力学第一定律用于分析各种热力学循环,如卡诺循环和热力学循环。
通过应用热力学第一定律,我们可以确定循环中的能量转化效率、功率输出等参数。
能量守恒分析热力学第一定律可以应用于能量守恒的分析,例如分析能源系统中的能量损失和能量转化过程。
通过分析系统的能量转化过程,我们可以找出能量损失的原因,并采取措施来提高能源利用效率。
温度变化分析热力学第一定律可以用来分析物质的温度变化。
根据热力学第一定律,物质的内能增加会导致温度升高,而内能减少则会导致温度降低。
因此,可以通过热力学第一定律来研究物质的显热效应和隐热效应。
结论热力学第一定律是热力学中的基本定律之一,它表明了能量的守恒原理。
通过应用热力学第一定律,我们可以分析能量的转化过程,研究能源系统的能量损失和能量转化效率,并进一步提高能源利用效率。
热力学第一定律在工程和科学研究中有着广泛的应用,对于理解能量转化和能量守恒的过程起到了重要的作用。
第一章, 热力学第一定律 各知识点架构纲目图如下:溶解及混合 化学变化 相变化热(Q ):系统与环境间由于温差而交换的能量。
是物质分子无序运动的结果。
是过程量。
功(W ):除热以外的,在系统与环境间交换的所有其它形式的能量。
是物质分子有序运动的结果,是过程量。
热力学能 (U ):又称为内能,是系统内部能量的总和。
是状态函数,且为广度量,但绝对值不知道。
热力学第 一定律及系统与环境间交换能量 的计算(封闭 简单的理想气体(IG)系统:2211,,;T TV m p m T T U n C dT H n C dT ∆=∆=⎰⎰理想气体 焦尔实验:(1)结论:(∂U /∂V)T =0; (2)推论:U IG =f (T ); H IG =g (T )△U =△H =0; W =-Q =2121ln /V V pdV nRT V V -=-⎰ (可逆)恒容过程:W =0;Q V =△U= 21,;TV mT n C dT ⎰ 绝热过程:Q =0;△U = W不可逆(恒外压):nC V,m (T 2-T 1)=-p 2(V 2-V 1)可逆: 11,21112111()()1V m p V nC T T V V γγγγ---=-- Q p =△H =21,;T p m T n C dT ⎰W =-p 外(V 2-V 1); △U =△H -p △V (常压下,凝聚相:W ≈0;△U ≈△H ) 恒压过程:节流膨胀:Q =0;△H =0;J-T =(d T /d p )H =0 T 不变(例如理想气体) <0致热>0 致冷 相变化 △U =△H -p △VQ p =△H ; W =-p △V ≈0,△U ≈△H (常压下凝聚态间相变化)=-nRT (气相视为IG) 相变焓与温度关系:2121,()()T m m p mT H T H T C dT ββαα∆=∆+∆⎰化学变化 摩尔反应焓的定义:△r H m =△r H /△ 恒压反应热与恒容反应热的关系:△r H m =△r U m +∑νB (g)RT 标准摩尔反应焓的计算:1B ()(B,)r m f m H T H T ν∆=∑∆反应进度定义、标准摩尔生成焓和标准摩尔燃烧焓的定义。
物理化学热力学第一定律总结热力学第一定律是热力学中最基本的定律之一,并且与能量守恒原理密切相关。
它陈述了一个闭合系统内部的能量转换过程。
根据热力学第一定律,能量是不能从真空中产生的,也不能消失,它只能在系统内部进行转化。
该定律可以用以下公式表达:ΔU=Q-W其中,ΔU表示系统内部能量的变化,Q表示系统吸收的热量,W表示系统对外界做的功。
这个公式说明了能量的守恒,即系统吸收的热量和对外界做的功之和等于系统内部能量的变化。
当系统从外界吸收热量时,其内部能量会增加,而当系统对外界做功时,其内部能量会减少。
这种能量的转化是一个相互依存的过程,可以通过热力学第一定律进行描述。
热力学第一定律的应用十分广泛,并且在实际问题中具有重要的意义。
以下是热力学第一定律在不同领域的应用:1.在化学反应中,热力学第一定律可以用来计算反应的焓变。
通过测量反应前后系统吸收或释放的热量,可以计算出反应的焓变,从而了解反应的能量转化和方向。
2.在工程领域,热力学第一定律常用于能量转换设备的设计和优化中。
例如,蒸汽轮机、内燃机和制冷机等能量转换系统的效率可以通过热力学第一定律进行评估和计算。
3.在生物学领域,热力学第一定律可以用于研究生物体内的能量转化过程。
例如,通过测量生物体吸收的热量和对外界做的功,可以计算出生物代谢的能量转换效率。
热力学第一定律的重要性在于揭示了能量守恒的基本原理,为能量转化和能量利用提供了基础理论支持。
它对于研究和解决实际问题具有重要指导意义。
热力学第一定律的应用可以帮助我们评估能量转换过程的效率,优化能量利用方式,并促进可持续发展。
总之,物理化学热力学第一定律表述了能量守恒的原则,描述了能量转化和能量守恒的过程。
它在化学、工程、生物等领域具有广泛的应用,并对能量转换和利用提供了理论支持。
热力学第一定律的理解和应用可以帮助我们更好地理解能量转换过程,优化能量利用方式,并实现可持续发展的目标。
物理化学热力学第一定律知识点总结篇一:哇塞!同学们,你们知道吗?物理化学中的热力学第一定律可太神奇啦!先来说说什么是热力学第一定律吧。
就好像我们存钱,赚的钱加上原来有的钱,减去花掉的钱,剩下的就是我们现在拥有的钱。
在热力学里呀,能量也是这样!系统从外界吸收的热量,加上系统内能的增加量,就等于系统对外界所做的功。
这是不是有点像一个能量的“账本”?比如说,我们骑自行车。
我们用力蹬车,就相当于给车子输入了能量,这就好比系统从外界吸收热量。
车子跑得越来越快,动能增加,这就好像系统内能增加啦。
而车子克服阻力前进,这就是系统对外做功。
再想想冬天我们取暖的暖手宝。
插上电,暖手宝吸收电能转化为热能,我们握着它感觉越来越暖和,这不就是能量的转化和传递嘛!还有哦,老师给我们讲过一个实验。
一个封闭的容器里有气体,我们对气体加热,气体的温度升高,内能增加,同时气体膨胀推动活塞做功。
这难道不神奇吗?这不就完美地体现了热力学第一定律嘛!我和同桌讨论这个的时候,他还一脸迷糊呢!我就跟他说:“你想想啊,要是没有能量的输入和转化,这世界得多无聊啊!”他听了,恍然大悟地点点头。
在我们日常生活中,到处都有热力学第一定律的影子。
像汽车发动机燃烧汽油产生动力,发电厂利用燃料发电,甚至我们吃饭获得能量来活动,都是遵循这个定律的呀!所以说,热力学第一定律真的超级重要!它让我们明白了能量是不会凭空产生和消失的,只会从一种形式转化为另一种形式。
我们一定要好好学习它,这样才能更好地理解这个神奇的世界!篇二:哇塞!同学们,你们知道吗?物理化学里的热力学第一定律可太神奇啦!咱们先来说说什么是热力学第一定律。
就好像我们兜里的零花钱,花出去多少,剩下多少,总得有个说法吧?热力学第一定律就是这么个道理!它说的是能量不会凭空产生,也不会凭空消失,只会从一种形式转化成另一种形式。
这就好比我们玩的积木,从搭成小房子变成搭成小汽车,积木的数量可一点儿没变,只是样子变啦!那怎么理解这个定律呢?想象一下,我们骑自行车,我们用力蹬车,消耗了身体里的能量,车就跑起来啦!这时候,身体里的化学能就变成了车的动能,这不就是能量的转化吗?再比如,冬天我们搓搓手,手会变热,这是因为摩擦产生了热能,这不也是能量在变来变去吗?老师给我们讲这个定律的时候,还举了好多例子。
物理热力学第一定律知识点归纳总结第二讲热力学第一定律§2.1 改变内能的两种方式热力学第一定律2.1.1、作功和传热作功可以改变物体的内能。
如果外界对系统作功W。
作功前后系统的内能分别为、,则有没有作功而使系统内能改变的过程称为热传递或称传热。
它是物体之间存在温度差而发生的转移内能的过程。
在热传递中被转移的内能数量称为热量,用Q表示。
传递的热量与内能变化的关系是做功和传热都能改变系统的内能,但两者存在实质的差别。
作功总是和一定宏观位移或定向运动相联系。
是分子有规则运动能量向分子无规则运动能量的转化和传递;传热则是基于温度差而引起的分子无规则运动能量从高温物体向低温物体的传递过程。
2.1.2、气体体积功的计算1、准静态过程一个热力学系统的状态发生变化时,要经历一个过程,当系统由某一平衡态开始变化,状态的变化必然要破坏平衡,在过程进行中的任一间状态,系统一定不处于平衡态。
如当推动活塞压缩气缸中的气体时,气体的体积、温度、压强均要发生变化。
在压缩气体过程中的任一时刻,气缸中的气体各部分的压强和温度并不相同,在靠近活塞的气体压强要大一些,温度要高一些。
在热力学中,为了能利用系统处于平衡态的性质来研究过程的规律,我们引进准静态过程的概念。
如果在过程进行中的任一时刻系统的状态发生的实际过程非常缓慢地进行时,各时刻的状态也就非常接近平衡态,过程就成了准静态过程。
因此,准静态过程就是实际过程非常缓慢进行时的极限情况对于一定质量的气体,其准静态过程可用图、图、图上的一条曲线来表示。
注意,只有准静态过程才能这样表示。
2、功在热力学中,一般不考虑整体的机械运动。
热力学系统状态的变化,总是通过做功或热传递或两者兼施并用而完成的。
在力学中,功定义为力与位移这两个矢量的标积。
在热力学中,功的概念要广泛得多,除机械功外,主要的有:流体体积变化所作的功;表面张力的功;电流的功。
(1)机械功有些热力学问题中,应考虑流体的重力做功。
物理化学上热力学第一定律知识框架图总结公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]
第一章, 热力学第一定律 各知识点架构纲目图如下:
溶解及混合
化学变
相变
热(Q ):系统与环境间由于温差而交换的能量。
是物质分子无序运动的结果。
是过程量。
功(W ):除热以外的,在系统与环境间交换的所有其它形式的
能量。
是物质分子有序运动的结果,是过程量。
热力学第
系统与环
境
简单的
理想气体(IG)系统:理想气焦尔实验:(1)结论:(U /V)T =0; (2)推△U =△H =0; W =-Q =21
21ln /V
V pdV nRT V V -=-⎰ 恒容过程:W =0;Q V =△U= 绝热过程:Q =0;△U = 不可逆(恒外压):nC V,m (T 2-T 1)=-p 2(V 2-V 1)
Q p =△H =21
,;T p m T n C dT ⎰W =-p 外(V 2-V 1); △U =△H -p △V (常压下,凝聚相:W ≈恒压过
节流膨胀:Q =0;△H =0;J-T =(d T /d p )H =0 T <0致>0 致相变化 △U =△H -p △Q p =△H ; W =-p △V
≈0,△U ≈△H (常压下凝聚
=-nRT (气相视
相变焓与温度关系:
化学变摩尔反应焓的定义:△恒压反应热与恒容反应热的关系:△r H m =标准摩尔反应焓的计算:
反应进度定义、标准摩尔生成焓和标准摩基希霍夫公式:
系统状态变化时,计算系统与环境。
1
第一章, 热力学第一定律 各知识点架构纲目图如下:
及过程 溶解及混合 化学变化 相变化 热(Q ):系统与环境间由于温差而交换的能量。
是物质分子无序运动的结果。
是过程量。
功(W ):除热以外的,在系统与环境间交换的所有其它形式的能量。
是物质分子有序运动的
结果,是过程量。
热力学能 (U ):又称为内能,是系统内部能量的总和。
是状态函数,且为广度量,但绝对值
不知道。
热力学第一定律数学表达式:△U =Q +W ,在封闭系统,W 非=0,恒容条件下,△U =Q V 。
焓函数(H ):定义,H ≡U +pV , 是状态函数,且为广度量,但绝对值不知道。
在封闭系统,
W 非=0,恒压条件下,△H =Q p 。
热力学第
一定律及 焓函数
系统与环境
间交换能量 的计算(封闭 系统,W 非=0)
简单的pTV 变化 理想气体(IG)系统:2211
,,;T T
V m p m
T T U n C dT H n C dT ∆=∆=⎰⎰ 理想气体 恒温过程 焦尔实验:(1)结论:(∂U /∂V)T =0; (2)推论:U IG =f (T ); H IG =g (T ) △U =△H =0; W =-Q =2121ln /V
V
pdV nRT V V -=-⎰ (可逆)
恒容过程:W =0;Q V =△U= 21
,;T
V m
T n C dT ⎰
绝热过程:Q =0;△U = W 不可逆(恒外压):nC V ,m (T 2-T 1)=-p 2(V 2-V 1) 可逆: 11,21
11
2111()()1V m p V nC T T V V γ
γγγ---=-- Q p =△H =2
1
,;T p m T n C dT ⎰W =-p 外(V 2-V 1); △U =△H -p △V (常压下,凝聚相:W ≈0;△U ≈△H )
恒压过程: 节流膨胀:Q =0;△H =0;μJ-T =(d T /d p )H =0 T 不变(例如理想气体) <0致热 >0 致冷 相变化 △U =△H -p △V
Q p =△H ; W =-p △V
≈0,△U ≈△H (常压下凝聚态间相变化)
=-nRT (气相视为IG) 相变焓与温度关系:21
21,()()T
m m p m
T H T H T C dT ββαα∆=∆+∆⎰
化学变化 摩尔反应焓的定义:△r H m =△r H /△ξ 恒压反应热与恒容反应热的关系:△r H m =△r U m +∑νB (g)RT
标准摩尔反应焓的计算:1B ()(B,)r m f m
H T H T ν∆=∑∆!!
反应进度定义、标准摩尔生成焓和标准摩尔燃烧焓的定义。
基希霍夫公式:21
,21,();()()T r m p r p m r m r m r p m T H C H T H T C dT T ∂∆=∆∆=∆+∆∂⎰!
!! 系
统状态变化时,计算系统与环境间交换的能量。