高等数学上册公式大全
- 格式:doc
- 大小:558.50 KB
- 文档页数:10
高等数学一(微积分)常用公式表-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n m aa =a nm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n n ba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式: (1)b a b a =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aN N a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln -= (7)Mn M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v / (2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f abba⎰⎰-= (4)⎰⎰⎰+=bac ab cdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。
高等数学上册公式大全第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=±和差角公式:sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos22cos 112sin cos sin2tan tan 21tan cot1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==+==±-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限➢常用极限:1,lim 0n n q q →∞<=;1n a >=;1n =➢ ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则➢ 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+ ➢:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
高等数学公式大全1、导数公式:2、基本积分表:3、三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-c tgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程。
高等数学上册必考公式(3篇)高等数学上册必考公式(3篇)高等数学公式是在数学专业中占重要的位置,同时公式也是很重要的,下面就让小编给大家带来高等数学上册必考公式,希望大家喜欢,欢迎大家阅读! 高等数学函数公式篇1·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα乘cosαcosα=cotα乘sinαtanα=sinα乘secαcotα=cosα乘cscαsecα=tanα乘cscαcscα=secα乘cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·s inγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:·三倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) sin(3α)=3sinα-4sin^3(α) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)cos(3α)=4cos^3(α)-3cosαtan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π乘2/n)+sin(α+2π乘3/n)+……+sin[α+2π乘(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π乘2/n)+cos(α+2π乘3/n)+……+cos[α+2π乘(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的`关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx ++=+-==+=-=----1ln(:2:2:2)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:·半角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学公式汇总高等数学公式汇总第一章一元函数的极限与连续1.一些初等函数公式:,2.极限Ø 常用极限:;; Ø Ø 两个重要极限Ø3.连续:定义:第二章导数与微分1.基本导数公式:2.高阶导数:² 牛顿-莱布尼兹公式:3.微分:第三章微分中值定理与微分的应用1.基本定理2. ² 常用初等函数的展式:3.第四章不定积分1.常用不定积分公式:2.常用凑微分公式:3.有特殊技巧的积分第五章定积分1.基本概念,2.常用定积分公式:;;;; Wallis公式:无穷限积分:瑕积分:; ,第六章定积分应用1.平面图形的面积:直角坐标情形:;;参数方程情形:极坐标情形:2.空间立体的体积:由截面面积:旋转体:绕x轴旋转:绕y轴旋转:3.平面曲线的弧长:变力做功:抽水做功:液体压力做功:第七章向量代数与空间解析几何两点间距离公式:,方向余弦:单位向量:数量积:,夹角余弦:向量积:,,空间位置关系:平面的方程:点法式:;一般式:截距式:两平面的夹角:点到平面的距离:两平行平面的距离:直线与平面的夹角:空间曲线,曲线的投影,空间立体,曲面,曲面的投影球面:椭圆柱面:;双曲柱面:;抛物柱面:旋转曲面:圆柱面:;圆锥面:;双叶双曲面:单叶双曲面:;旋转椭球面: ;旋转抛物面:二次曲面:椭球面:抛物面:椭圆抛物面:;双曲抛物面:单叶双曲面:;双叶双曲面:椭圆锥面:总结求极限方法:1.极限定义;2.函数的连续性;3.极限存在的充要条件;4.两个准则;5.两个重要极限;6.等价无穷小;7.导数定义;8利用微分中值定理;9.洛必达法则;10.麦克劳林公式展开;求导法:1.导数的定义(求极限);2.导数存在的充要条件;3.基本求导公式;4.导数四则运算及反函数求导;5.复合函数求导;6.参数方程确定的函数求导;7.隐函数求导法;8.高阶导数求导法(莱布尼茨公式/常用的高阶导数);等式与不等式的证明:1.利用微粉中值定理;2.利用泰勒公式展开;3.函数的单调性;4.最大最小值;5.曲线的凸凹性第八章多元函数微分法及其应用一. 定义:二. 微分:,,全微分:三.四.曲线的切线和法平面1.曲线方程,切线:,法平面:2.曲线方程,切线:,法平面:3.曲线方程,切向量,切线:四.曲面的切平面和法线,法向量:,切平面:,法线:2.,切平面,法线:五.方向导数:梯度:第九章:重积分一. 二重积分:二.三重积分:1.直角坐标系:2.柱面坐标系:3.球面坐标系:二.重积分的应用:1.体积:2.曲面面积:3.质量:或4.质心:或5. 转动惯量:或第章:曲线积分和曲面积分一.第一类曲线积分:(对弧长的曲线积分):二.第二类曲线积分(对坐标的曲线积分):1.计算公式:2.格林公式:3.Stokes公式:4.封闭曲线围城的面积:三.第一类曲面积分:四.第二类曲面积分:1.计算公式:2.投影转化法:3.高斯公式:4第一章无穷级数一.常数项级数二.幂级数:1.收敛半径:2.常用等式:,,,,3.泰勒展开:三.第二章微分方程第20 页共20 页。
高等数学宝典(上篇)——公式大全(含微分方程、复变函数)一. 初等数学1. 三角函数 (1) 相互联系,1cos sin 22=+x x ,sec 1tan 22x x =+ .csc 1cot 22x x =+ ,1csc sin =⋅x x ,1sec cos =⋅x x .1cot tan =⋅x x ,tan cos sin x x x = .cot sin cos x xx= 奇变偶不变, 符号看象限:⎩⎨⎧±±=±±±=±=+,3 ,1 ,0 )(,4 ,2 ,0 )()2(n cof n f nf αααπ其中“±”号由角)2(απ+n 所处的象限确定. (2) 和角公式,sin cos cos sin )sin(βαβαβα±=±,sin sin cos cos )cos(βαβαβα∓=±tan tan 1tan tan )tan(βαβαβα∓±=±(3) 积化和差)],sin()[sin(21cos sin βαβαβα−++= )],cos()[cos(21cos cos βαβαβα−++=)].cos()[cos(21sin sin βαβαβα−−+−=(4) 和差化积2cos2sin2sin sin βαβαβα−+=+ 2sin2cos2sin sin βαβαβα−+=−,2cos 2cos 2cos cos βαβαβα−+=+ .2sin 2sin 2cos cos βαβαβα−+−=−(5) 降幂公式22cos 1sin 2αα−=.22cos 1cos 2αα+= (6) 半角公式, ,1cos sin tansin 1cos αααα−==+, 1cos sin cot sin 1cos αααα+==−.2. 复数(1) 代数表示 z = a +b i(2) 三角表示 z = r (cos θ +i sin θ), 其中r = |a + b i| = , a = r cos θ, b = r sin θ. (3) 指数表示 a + b i = re i θ (欧拉公式: e i θ = cos θ +i sin θ ).3. 一些常见的曲线(1) 圆222a y x =+的参数方程为⎩⎨⎧==,sin ,cos θθa y a x极坐标方程为ρ = a (θ∈[0, 2π) );(2) 圆222)(a a y x =−+的参数方程为⎩⎨⎧+==,sin ,cos t a a y t a x (t ∈[0, 2π) ) 极坐标方程为ρ = 2a sin θ (θ∈[0, π) ) ;(3)圆222)(a y a x =+−的参数方程为⎩⎨⎧=+=,sin ,cos t a y t a a x (t ∈[0, 2π) )极坐标方程为ρ = 2a cos θ )]2,2((ππθ−∈ ;(4) 圆222)(a y a x =++的参数方程为⎩⎨⎧=+−=,sin ,cos t a y t a a x (t ∈[0, 2π) ) 极坐标方程为ρ = -2a cos θ ))23,2[(ππθ∈;(5) 圆222)(a a y x =++的参数方程为⎩⎨⎧+−==,sin ,cos t a a y t a x (t ∈[0, 2π) ) 极坐标方程为ρ = -2a sin θ (θ∈[π, 2π) );(6) 椭圆12222=+b y a x 的参数方程为⎩⎨⎧==,sin ,cos t b y t a x (t ∈[0, 2π) );(7) 空间螺线⎪⎩⎪⎨⎧===,,sin ,cos bt z t a y t a x (t;(8) 笛卡儿叶线x 3+y 3=3axy的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=3231313t at y t at x ;(9) 星形线x 2/3+y 2/3=a 2/3的参数方程为⎪⎩⎪⎨⎧==θθ33sin cos a y a x ; (10) 摆线(圆滚线) 22)1arcsin(y ay aya x −−−=的参数方程为⎩⎨⎧−=−=)cos 1()sin (t a y tt ax;(11) 心形线)(2222x y x a y x −+=+的极坐标方程为ρ = a (1-cos θ);(12) 心形线)(2222x y x a y x ++=+的极坐标方程为ρ = a (1+cos θ);(13) 双纽线(x 2+y 2)2=a 2(x 2-y 2)的极坐标方程为ρ2 = a 2cos2θ ;(14) 双纽线(x 2+y 2)2=2a 2xy的极坐标方程为ρ2 = a 2sin2θ ;(15) 阿基米德螺线xya y x arctan 22=+的极坐标方程为ρ = a θ(16) 不经过原点的直线ax + by + c = 0 (a 2 + b 2 ≠ 0)⇒ a ρcos θ + b ρsin θ + c = 0⇒.sin cos θθρb a c+=例如: x = a (a > 0) ⇒2,2(cos ππθθρ−∈=ax = a (a <0) ⇒23,2(cos ππθθρ∈=a y = a (a >0) ⇒);,0(sin πθθρ∈=ay = a (a <0) ⇒);2,(sin ππθθρ∈=ay = x − a (a > 0) ⇒43,4(sin cos ππθθθρ−∈+=a 二. 极限1. |q |<1, nn q ∞→lim = 0. 2. n n n ∞→lim =1.3. 设数列{a n }与{b n }都收敛, a a n n =∞→lim , b b n n =∞→lim , 则n n n n n n n b a b a ∞→∞→∞→±=±lim lim )(lim = a ±b ; )lim )(lim ()(lim n n n n n n n b a b a ∞→∞→∞→== ab ;n n n n n n n b a b a ∞→∞→∞→=lim lim lim =b a (b ≠0). 4. 设x n =m m ll n b n b b n a n a a ++++++ 1010, 其中a l ≠0, b m ≠0, l ≤m , 则∞→n lim x n =⎩⎨⎧<=m l m l a m l 0. 5. ∞→n lim (p 1+22p+…+n p n ) =2)1(−p p , 其中p >1. 6. ()nn n 11lim +∞→= e. 7. 设)(lim 0x f x x →=A , )(lim 0x g x x →=B . 则)(lim )(lim )()([lim 0x g x f x g x f x x x x x x →→→±=±= A ±B;)](lim )][(lim [)]()([lim 0x g x f x g x f n n x x ∞→∞→→== AB ; )(lim )(lim )()(lim 000x g x f x g x f x x x x x x →→→==B A(B ≠0).8. 设y = f (u )与u = g (x )的复合函数f [g (x )]在x 0的某去心邻域)(0x N内有定义.若)(lim 0x g x x →=u 0, )(lim 0u f u u →=A , 且∀x ∈)(0x N, 有g (x )≠u 0, 其中x 0, u 0为有限值.则复合函数f [g (x )]当x →x 0时也有极限, 且)]([lim 0x g f x x →=)(lim 0u f u u →=A .9. x x x sin lim 0→=1. xx x ⎟⎠⎞⎜⎝⎛+∞→11lim = e.10. 常用的等价无穷小:sin x ~tan x ~arcsin x ~arctan x ~ x (x →0); (1- cos x )~221x (x →0) ln(1+x )~x (x →0) (e x -1)~x (x →0) (n x +1-1)~nx (x →0); [α)1(x +-1]~αx (x →0). 三. 导数与微分1. 导数定义: 0000000)()(lim )()(lim lim)(0x x x f x f x x f x x f x yx f x x x x −−=∆−∆+=∆∆=′→→∆→∆.2. 函数四则运算的求导法则).()(])()([x v x u x v x u ′±′=′± ).()()()(])()([x v x u x v x u x v x u ′+′=′⋅.)()()()()()()(2x v x v x u x v x u x v x u ′−′=⎥⎦⎤⎢⎣⎡/3. 反函数的求导法则设定义在区间I 上的严格单调连续函数x = f ( y )在点y 处可导, 且0)(≠′y f , 则其反函数y = f -1(x )在对应的点x 处可导, 且)(1)()(1y f x f′=′−即yx x y d d 1d d =. 4. 复合函数的求导法则设函数)(x u ϕ=在点x 处可导, 函数y = f (u )在对应的点)(x u ϕ=处可导, 则复合函数))((x f y ϕ=在点x 处可导, 且),()(d d x u f xyϕ′′=即x u u y x y d d d d d d ⋅=. 5. 设函数y = f (x )由参数方程⎩⎨⎧==)()(t y t x ψϕ确定. ),(t x ϕ= )(t y ψ=在区间],[βα上可导, 函数)(t x ϕ= 具有连续的严格单调的反函数),(1x t −=ϕ且,0)(≠′t ϕ则)).(()(1x t y −==ϕψψ函数y = f (x )的导函数由参数方程⎪⎩⎪⎨⎧′′=′=)()()(t x t y y t x ϕ确定.6. 基本求导公式(1) (x α)′ = αx α−1. (2)(a x )′ = a x ln a . (3) (e x )′ = e x . (4) (log a x )′ =1ln x a . (5) (ln x )′ =1x. (6) (sin x )′ = cos x . (7) (cos x )′ = −sin x . (8) (tan x )′ = sec 2x . (9)(cot x )′ = −csc 2x . (10) (sec x )′ = sec x ⋅tan x . (11) (csc x )′ = −csc x ⋅cot x . (12) (arcsin x )′=(arccos x )′ =(14) (arctan x )′ =211x +. (15) (arccot x )′ = −211x +. 7. 一些简单函数的高阶导数(n , k 为正整数) (1)⎪⎩⎪⎨⎧>=<+−−⋅=−,0,!,)1()1()()(n k n k n n k x k n n n x k n k n(2) ,)1()1()1()()(k n k k n x k n n n x −−−−++⋅−= (3) ,)1()1(])1[()(k k x k x −+−−⋅=+ααααα (4) ),(ln )()(a a a k x k x = 特别的, ,)()(x k x e e =(5) ,)!1()1()(ln 1)(kk k x k x −−=− (6) )1()!1()1()]1[ln(1)(k k k x k x +−−=+−(7)),2sin()(sin )(πk x x k += (8) 2cos()(cos )(πk x x k +=(9) ()()()0()nn k n k k n k uv C u v −==∑ ()(1)(2)()()()(1)(1)(1)2!!n n n n k k n n n n n n k u v nu v u v u v uv k −−−−−−+′′′=++++++8. 微分四则运算法则: ,d d )(d v u v u ±=± ,d d )(d v u u v uv += ).0(d d d 2≠−=⎟⎠⎞⎜⎝⎛v v vu u v v u 9. 微分复合运算法则(一阶微分形式不变性)设函数y = f [g(x )]由可微函数y = f (u )与u = g (x )复合而成, 则有,d )(d u u f y ′= ,d )(d x x g u ′= 另一方面, d y =().d )(d )()(d )]([u u f x x g u f x x g f ′=′′=′10. 拉格朗日中值定理:设函数f (x )满足下列条件: (1) f (x )∈C [a , b ], (2) f (x )在(a , b )内可导. 则至少存在一点ξ∈(a , b ), 使得f (b ) − f (a ) = f ′(ξ)(b −a ). 11. 柯西中值定理:设函数f (x ), g (x )满足下列条件:(1) f , g ∈C [a , b ], (2) f , g 在(a , b )内可导, (3) g ′(x )≠0 ∀x ∈(a , b ).则至少存在一点ξ∈(a , b ), 使得)()()()()()(ξξg f a g b g a f b f ′′=−−13. 洛必达法则设函数f (x )在区间(x 0, x 0+δ)(δ>0)内满足下列条件: (1) ,0)(lim )(lim 0==++→→x g x f x x x x (2) f , g 在(x 0, x 0+δ)内可导, 且,0)(≠′x g (3) A x g x f x x =′′+→)()(lim 0(A 为有限数或∞). 则.)()(lim )()(lim 00A x g x f x g x f x x x x =′′=++→→ 设函数f (x )在区间(x 0, x 0+δ)(δ>0)内满足下列条件: (1) ,)(lim )(lim 0∞==++→→x g x f x x x x (2) f , g 在(x 0, x 0+δ)内可导, 且,0)(≠′x g (3)A x g x f x x =′′+→)()(lim 0(A 为有限数或∞). 则.)()(lim )()(lim 00A x g x f x g x f x x x x =′′=++→→ 不可用洛必达法则的情形.(1) 21lim 1++→x x x , (2) xx x x sin lim +∞→, (3) x x xx x e e e e −−+∞→+−lim .事实上, 21lim 1++→x x x =32, xx x x sin lim +∞→=sin 1(lim x xx +∞→=1, x x x x x e e e e −−+∞→+−lim =x x x e e 2211lim −−+∞→+−=1. 14. 带皮亚诺余项的泰勒公式设函数f (x )在x 0处n 阶可导, 则f (x )=k nk k x x k x f )!)(000)(−∑=+ o((x -x 0)n ). 15. 几个初等函数的麦克劳林公式(1) e x =1+x +21x 2+61x 3+…+!1n x n+ o(x n ).(2) sin x = x -!31x 3+!51x 5-…+(-1)n )!12(1+n x 2n +1 + o(x 2n +1). (3) cos x = 1-!21x 2+!41x 4-…+(-1)n )!2(1n x 2n + o(x 2n ).(4) ln(1+x ) = x -21x 2+31x 3-…+(-1)n -1n 1x n + o(x n ).(5) α)1(x +=n x n n x x !)1()1(!2)1(12+−−++−++αααααα + o(x n ).(6) sin 2x =22cos 1x −=()⎥⎦⎤⎢⎣⎡+−+−+−−n nn x n x x x 2242)2(o )!2()2()1(!4)2(!2)2(12121=)(o !)!12(!2)1(3221142n n n n x x n n x x +−−++−−+ .(7) cos 2x =1- sin 2x = 1-)(o !)!12(!2)1(322142n n n nx x n n x x +−−+−+− .16. 带拉格朗日余项的泰勒公式设函数)(],[)(n b a C x f ∈, 且)1(),()(+∈n b a C x f , 则],[,0b a x x ∈∀, 有 f (x )=knk k x x k x f )!)(000)(−∑=+10)1()()!1()(++−+n n x x n f ξ, 其中ξ介于x 与x 0之间. 17. 几个初等函数的带拉格朗日余项的麦克劳林公式(1) e x=1+x +21x 2+61x 3+…+!1n x n+1)!1(++n x x n e θ (x ∈R , 0<θ<1).(2) sin x = x -!31x 3+!51x 5-…+(-1)n -1)!12(1−n x 2n -1 +12)!12(cos )1(++−n n x n x θ (x ∈R , 0<θ<1). (3) cos x = 1-!21x 2+!41x 4-…+(-1)n )!2(1n x 2n +221)!22(cos )1(+++−n n x n x θ (x ∈R , 0<θ<1). (4) ln(1+x ) = x -21x 2+31x 3-…+(-1)n -1n 1x n+)1(1)1)(1()1(++++−n n n x n x θ (x ∈R , 0<θ<1). (5) α)1(x +=n x n n x x !)1()1(!2)1(12+−−++−++αααααα +11)1)!1()()1(+−−++−−n n x x n n αθααα (x ∈R , 0<θ<1). 18. 曲率(1) 设曲线C 在直角坐标系中的方程为y = y (x )且y (x )具有二阶导数. 则K =232])(1[y y ′+′′.(2) 设曲线C 的参数方程为⎩⎨⎧==)()(t y y t x x , 则K =2322])()[(t t t t t t y x y x y x ′+′′′′−′′′. 四. 一元积分1. 定积分的性质(1) 若f , g 在[a , b ]上可积, k 1, k 2∈R , 则∫+bax x g k x f k )]d ()([21.)d (d )(21∫∫+=babax x g k x x f k(2) 若f 在某区间I 上可积, 则f 在I 的任一子区间上可积, 且∀a , b , c ∈I ,∫bax x f d )(.)d (d )(∫∫+=bcc ax x f x x f(3) 若f , g 在[a , b ]上可积, 且∀x ∈[a , b ], f (x )≤g (x ), 则∫bax x f d )(≤.d )(∫bax x g(4) 若f 在[a , b ]上可积, 且∀x ∈[a , b ], f (x )≥0, 则∫bax x f d )(≥0.(5) 若f 在[a , b ]上可积, 则∫bax x f d )(≤.d )(∫bax x f(6) 若f 在[a , b ]上可积, 且∀x ∈[a , b ], m ≤f (x )≤M , 则m (b -a )≤∫bax x f d )(≤M (b -a ).(7) 若f ∈C [a , b ], 则至少存在一点ξ∈[a , b ]使∫bax x f d )(= f (ξ)(b -a ).2. 变上限积分所定义的函数的性质设f (x )∈C[a , b ], 则函数∫=Φxat t f x d )()(在区间[a , x ]上可导, 且Φ′(x )= f (x ).3. 微积分学基本公式若f (x )∈C[a , b ], F (x )为f (x )在区间[a , b ]上的一个原函数, 则∫bax x f d )(= F (b )-F (a ).4. 不定积分的性质(1) ),(]d )([x f x x f =′∫,d )(]d )([d x x f x x f =∫,)(d )(C x f x x f +=′∫ .)()(d C x f x f +=∫(2) 设f (x ), g (x )有原函数, k 1, k 2∈R , 则.d )(d )(d )]()([2121∫∫∫+=+x x g k x x f k x x g k x f k5. 基本积分表(1) d k x kx C =+∫ (k 是常数). (2) 1d 1x x x C ααα+=++∫ (α ≠−1)(3) 1d ln ||x x C x =+∫. (4) 21d arctan 1x x C x =++∫.(5)arcsin x x C =+. (6) cos d sin x x x C =+∫. (7) sin d cos x x x C =−+∫. (8) 221d sec d tan cos x x x x C x==+∫∫. (9) 221d csc d cot sin x x x x C x==−+∫∫. (10) sec tan d sec x x x x C =+∫. (11) csc cot d csc x x x x C =−+∫. (12) d x xe x e C =+∫.(13) d ln xxa a x C a=+∫. (14) sh d ch x x x C =+∫. (15)ch d sh x x x C =+∫. (16) tan d ln |cos |x x x C =−+∫.(17) cot d ln |sin |x x x C =+∫ (18) sec d ln |sec tan |x x x x C =++∫.(19)csc d ln |csc cot |x x x x C =−+∫ (20)2211d arctan xx C a x a a=++∫. (21) 2211d ln 2x a x C x a a x a −=+−+∫. (22) 2211d ln 2a x x C a x a a x −=+−−∫.(23)C +∫. (24) ln(x x C =++∫.(25) 2ln ||2a x x C =±+∫.(26) 2arcsin 2a x x C a =+∫. (27) /20sin d n n I x x π=∫=/20cos d nx x π∫=21n n I n−−.6. 换元积分法(1) 第一类换元积分法: 设函数u =ϕ (x )可微, F (u )为f (u )的一个原函数. 则∫′x x x f d )()]([ϕϕ∫=u u f d )(C u F +=)(.)]([C x F +=ϕ(2) 常见的凑微分法①)(d 1d b ax ax +=(a , b 为常数且a ≠0) ②)(d )1(1d 1b ax an x x n n++=+(a , b 为常数且a ≠0, n ≠-1)③),(ln d 1x x x= ④),(d d xx e x e = ⑤),(cos d d sin x x x −= ⑥),(tan d d sec 2x x x = ⑦),(arctan d d 112x x x =+ ⑧∫+x x a 122∫+++++=x x a x a x x a x d )(222222∫++++=)(d 12222x a x x a x , ⑨∫−x a x d 122∫−−+−+=x a x a x x a x x d )(222222∫−+−+=)(d 12222a x x a x x ,⑩∫−+x x x d 112=∫−x x 112∫−+x x x d 12∫−−−=)1(d 1121arcsin 22x x x .(3) 第二类换元积分法: 设函数f (x ) 连续, 函数x = ϕ (u )有连续的导数, ϕ '(u )≠0, 且∫′u u u f d )()]([ϕϕ.)(C u F +=则∫x x f d )(∫′=u u u f d )()]([ϕϕC u F +=)(.)]([1C x F +=−ϕ (4) 常见的第二类换元法①令u b ax n =+(a , b 为常数且a ≠0) ②令nd cx bax ++= t (其中ac ≠0, b , d 不同时为零) ③令,1u x =④令u = tan 2x , 则sin x =221u u +, cos x =2211u u −+, d x =22d 1uu +.⑤令x = a sin t , = a cos x , d x = a cos t d t , 其中a > 0, t ∈ [0, π/2].⑥令x = a sec t , a tan x , d x = a sec t tan t d t , 其中a > 0, t ∈ (0, π/2).⑦令x = a tan t , a sec x , d x = a sec 2x d t , 其中a > 0, t ∈ (0, π/2).7. 分部积分法(1) 不定积分的分部积分法∫u (x )d v (x ) = u (x )v (x ) - ∫v (x )d u (x )(2) 分部积分法中u (x ), v (x )的常见选取方法① P (x )sin x d x = -P (x )d(cos x ), P (x )cos x d x = P (x )d(sin x ). ② P (x )e x d x = P (x )d(e x ).③ P (x ) ln x d x = ln x d(∫P (x )d x ).④ e ax cos(bx )d x =a 1cos(bx )d(e ax ) =b 1e ax d(sin(bx )), e ax sin(bx )d x =a 1sin(bx )d(e ax ) =b1−e ax d(cos(bx )).(3) 定积分的分部积分法∫′bax x v x u d )()(∫=bax v x u )(d )(.)(d )()()(∫−=babax u x v x v x u8. 平面曲线的弧长(1) 在直角坐标系中: y = f (x ), x ∈[a , b ], 其中,C )()1(],[b a x f ∈取d s =,)d ()d (22y x +则∆s -d s = o(∆x ) (∆x →0), 于是.d )(12∫′+=bax y s(2) 参数方程⎩⎨⎧==)()(t y t x ψϕ t ∈[α, β], 其中,C )(),()1(],[βαψϕ∈t td s =22)d ()d (y x+,t =于是.d )]([])([22∫′+′=βαψϕt t t s(3) 极坐标系中: ρ = ρ (θ), θ∈[α, β], 则⎩⎨⎧==θθρθθρsin )(cos )(y x , .d )]([)(22∫′+=βαθθρθρs 9. 空间曲线的弧长设空间曲线L 的参数方程为()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩ t ∈[α, β], 其中(1)[,](),(),()C ,x t y t z t αβ∈则d s,t = 于是L的长度为.s t βα=∫10. 平面图形的面积(1) 直角坐标系中① y = f (x ) 与 y = g (x )以及x = a , x = b 所围成的图形的面积(其中f (x )≥ g (x )).d )]()([∫−=bax x g x f A② x = ϕ(y ) 与 x = ψ(y )以及y = c , y = d 所围成的图形的面积(其中ψ(y )≥ ϕ(y )).d )]()([∫−=dcy y y A ϕψ(2) 极坐标系中ρ = a θ, θ∈[α, β], ,d )(21d 2θθρ=A .d )(212∫=βαθθρA 11. 空间立体的体积(1) 平行截面面积A (x )已知的立体(a ≤ x ≤ b ): d V = A (x )d x , .d )(∫=bax x A V(2) 旋转体的体积① y = f (x ) (x ∈[a , b ])绕x 轴旋转一周(其中f (x )≥0), A (x ) = π f 2(x ), 故.d )(2∫=b a x x f V π② x = g (y ) (y ∈[c , d ])绕y 轴旋转一周(其中g (y )≥0), A (y ) = πg 2(y ), 故.d )(2∫=dcy y g V π五. 微分方程1. 一阶可分离变量的微分方程:),()(d d y g x f xy=其中f (x ), g (y )连续. )()(d d y g x f x y =x x f y g y d )()(d =⇒∫∫=⇒x x f y g yd )()(d .)()(C x F y G +=⇒ (其中g (y )≠0, )(1)(y g y G =′ F ′ (x ) = f (x ), C 为任意常数) 2. 一阶线性微分方程: ),()(d d x q y x p xy=+其中p (x ), q (x )连续.(1) 对于,0)(d d =+y x p x y分离变量得:,d )(d x x p yy −= ∫=−x x p Ce y d )(( C 为任意常数). (2) 对于),()(d d x q y x p xy=+ ∫=−x x p e x C y d )()(得].d )([d )(d )(C x e x q e y x x p x x p +∫∫=∫− 3. 可经变量代换化为已知类型的几类一阶微分方程 (1) 齐次方程:),,(d d y x f xy= 其中f (tx , ty ) = f (x , y ), .0≠∀t①将原方程化为),(d d x yx y ϕ= ②令x y u =得,ux y = 从而d d d d x u x u x y +=代入原方程并整理得,)(d d u u xux −=ϕ③分离变量, 得,d )(d xxu u u =−ϕ ④两边积分,⑤以xy代替u . (2) 伯努里方程: ,)()(d d αy x q y x p x y=+其中.1,0≠α①两边同除以αy 得),()(d d 1x q y x p xy y =+−−αα②令,1α−=y z 则,d d )1(d d x y y xz αα−−= 原方程化为),()1()()1(d d x q z x p x z αα−=−+ ③解上述关于z 的一阶线性非齐次微分方程,④ 以α−1y 代替z .4. 可降阶的高阶微分方程 (1) )()(x f yn =型(2) 不显含未知函数y 的方程:).,(y x f y ′=′′令,z y =′ 则).,(d d z x f xz= 若解之得),,(1C x z ϕ= 则.d ),(21∫+=C x C x y ϕ (3) 不显含自变量x 的方程: ).,(y y f y ′=′′改取y 为自变量, 令),(y z y z =′= 则.d d d d d d d d yz z x y y z x z y ⋅=⋅==′′ 于是原方程化为).,(d d z y f y zz= 这是关于z (y )的一阶微分方程, 若解之得: ),,(1C y z ϕ= 即),,(d d 1C y x y ϕ= 则.),(d 21∫+=C C y yx ϕ5. 设a 1(x ), a 2(x ) f (x ) ∈ C I , 则∀x ∈I 及任给的初始条件y (x 0) = y 0, y ′(x 0) = y 1, 初值问题⎩⎨⎧=′==+′+′′,)(,)(),()()(100021y x y y x y x f y x a y x a y 存在定义于区间I 上的唯一解y = y (x ).6. 设y 1(x ), y 2(x )是线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0的两个解, 1212()()()()()y x y x W x y x y x =′′, 则(1) y 1(x ), y 2(x )在区间I 上线性相关 ⇔ ∃x 0∈I 使它们的Wronski 行列式W (x 0) = 0.(2) y 1(x ), y 2(x )在区间I 上线性无关⇔∀x ∈I , 它们的Wronski 行列式W (x ) ≠ 0. 7. 线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0必存在两个线性无关的解.8. 设y 1(x ), y 2(x )是线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0的两个线性无关的解, 则该线性齐次方程的解集S 是y 1(x ), y 2(x )生成的一个二维线性空间{}112212|,.y c y c y c c =+为任意常数9. 设y *(x )是二阶线性非齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = f (x ) ①的一个特解, y 1(x ), y 2(x )是对应的齐次方程 y ″ + a 1(x )y ′ + a 2(x ) y = 0 ②的两个线性无关的解, 则y = c 1y 1(x ) + c 2y 2(x ) + y *(x )为非齐次方程①的通解. 10. 设)(*x y i 是方程y ″ + a 1(x )y ′ + a 2(x ) y = f i (x ) (i = 1, 2, …, n )的特解,则)()(**1x y x y n ++ 是方程y ″ + a 1(x )y ′ + a 2(x ) y = f 1(x ) + … + f n (x )的特解. 11. 二阶线性常系数齐次方程的解法(1) 特征方程ar 2+br +c = 0有两个相异实根r 1, r 2, 则通解.2121xr xr e c e c y += (2) 特征方程有两个相等实根r 1 = r 2 = r , 则通解.)(21rx e x c c y +=(3) 特征方程有一对共轭复根r = α ± i β, 则通解).sin cos (21x c x c e y xββα+= 12. 二阶线性常系数非齐次方程的解法(1) 待定系数法求ay ″+by ′+cy = f (x ) (a ≠0, b , c 为常数)的特解.① f (x ) = P n (x )e α x .若α不是ar 2+br +c = 0的根, 则令y * = (b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 若α是ar 2+br +c =0的单根, 则令y * = x (b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 若α是ar 2+br +c =0的重根, 则令y * = x 2(b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 再代入原方程, 通过比较系数确定b 0, b 1, …, b n . ② f (x ) = P n (x )e α x cos βx 或f (x ) = P n (x )e α x sin βx .先求ay ″+by ′+cy = P n (x )e α x [cos βx + isin βx ] = P n (x )e (α+i β)x 的特解Y *.则原方程的特解互取为⎪⎩⎪⎨⎧===xe x P xf Y xe x P xf Y y xn xn ββααsin )()( *,Im cos )()( *,Re * (2) 常数变易法13. n 阶Euler 方程: a 0x n y (n ) + a 1x n -1y (n -1) +…+ a n -1xy ′ + a n y = f (x ) (其中a 0, a 1, …, a n 为常数). 14. 二阶Euler 方程的解法.令x = e t, 则ax 2y ′′ + bxy ′ + cy = f (x )化为).(d d )(d d 22te f cy ty a b t y a =+−+这是一个线性常系数微分方程, 求出其通解后将t 换为ln x 即得原方程的解.六. 多元函数微分学1. 偏导数定义00(,)x y zx ∂∂ = z x (x 0, y 0) = f x (x 0, y 0) = x y x f y x x f x ∆−∆+→∆),(),(lim 00000.00(,)x y zy ∂∂ = z y (x 0, y 0) = f y (x 0, y 0) = y y x f y y x f y ∆−∆+→∆),(),(lim 00000.),,()(2222y x f xfx z x z x xx =∂∂=∂∂=∂∂∂∂ ),,()(22y x f y x f y x z x z y xy =∂∂∂=∂∂∂=∂∂∂∂),,()(22y x f x y fx y z y z x yx =∂∂∂=∂∂∂=∂∂∂∂ ),,()(2222y x f y f y z y z y yy =∂∂=∂∂=∂∂∂∂2. 可微的必要条件:若函数f (x , y )在点M 0(x 0, y 0)处可微, 则 ① f (x , y )在点M 0(x 0, y 0)处连续;② f (x , y )在点M 0(x 0, y 0)处存在偏导数, 且.d ),(d ),(d 0000),(00y y x f x y x f z y x y x+=3. 全微分的运算法则d[f (x , y ) ± g (x , y )] = d f (x , y ) ± d g (x , y );d[f (x , y )g (x , y )] = g (x , y )d f (x , y ) + f (x , y )d g (x , y );),(),(d ),(),(d ),(),(),(d2y x g y x g y x f y x f y x g y x g y x f −= (g (x , y ) ≠ 0). 4. 方向导数(1) z = f (x , y )在点M 0(x 0, y 0)处沿着向量l 的方向导数00(,)x y z ∂∂lty x f t y t x f t ),()cos ,cos (lim00000−++→βα,其中向量l 的方向余弦为cos α, cos β.(2) 若函数f (x , y )在点M 0(x 0, y 0)处可微, 则f (x , y )在点M 0(x 0, y 0)处沿任一方向l 的方向导数都存在,且有.cos ),(cos ),(0000),(00βαy x f y x f zy x y x +=∂∂l5. 梯度grad f (x 0, y 0)j.),(i ),(0000y x f y x f y x +=6. 复合函数微分法(1) 设函数u = ϕ(x ), v = ψ(x )在点x 处可导, 而z = f (u , v )在对应的点(u , v )处可微,则复合函数z = f (ϕ(x ), ψ(x ))在点处可导, 且x vv z x u u z x z d d d d d d ∂∂+∂∂=d d grad {,}.d d u v z x x=⋅ (2) 设函数u = ϕ(x , y ), v = ψ(x , y )在点(x , y )处可偏导, 而z = f (u , v )在对应的点(u , v )处可微,则复合函数z = f (ϕ(x , y ), ψ(x , y ))在点(x , y )处存在偏导数, 且xvv z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂},,{grad x v x u z ∂∂∂∂⋅= y v v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂},,{grad yv y u z ∂∂∂∂⋅= 7. 隐函数微分法(1) 设二元函数F (x , y )满足下列条件:①F x (x , y ), F y (x , y )在点(x 0, y 0)的某邻域内连续. ②F (x 0, y 0) = 0, ③F y (x 0, y 0) ≠ 0.则存在点x 0的一个邻域N (x 0, δ )以及在N (x 0, δ )内定义的唯一的函数y = y (x )满足: (i) y 0 = y (x 0), F (x , y (x )) ≡ 0, ∀x ∈N (x 0, δ ).(ii) 在N (x 0, δ )中, 函数y = y (x )有连续的导数, 且yxF F y −=′ (2) 设n +1元函数F (x 1, x 2, …, x n , y )满足下列条件:①),,,,(21y x x x F n x i (i = 1, 2, …, n ), F y (x 1, x 2, …, x n , y )在点M 0的某邻域内连续. ②F (M 0, y 0) = 0, ③F y (M 0, y 0) ≠ 0.则存在点M 0的一个邻域N (M 0, δ )以及在N (M 0, δ )内定义的唯一的一个n 元函数 y = y (x 1, x 2, …, x n )满足: (i) y 0 = y (M 0),且F (x 1, x 2, …, x n , y (x 1, x 2, …, x n )) ≡ 0, ∀( x 1, x 2, …, x n )∈N (M 0, δ ). (ii) y = y (x 1, x 2, …, x n )在N (M 0, δ )中有一阶连续偏导数, 且y x iF F x yi −=∂∂(i = 1, 2, …, n ).(3) 设三元函数F (x , y , z ), G (x , y , z )满足下列条件:①F x , F y , F z , G x , G y , G z 在点M 0(x 0, y 0, z 0)的某邻域内连续.②F (x 0, y 0, z 0) = 0, G (x 0, y 0, z 0) = 0, ③.00≠M zy z y G G F F则存在点x 0的一个邻域N (x 0, δ )以及在N (x 0, δ )内定义的唯一的一组函数⎩⎨⎧==)()(x z z x y y 满足:(i) y 0 = y (x 0), z 0 = z (x 0), 且⎩⎨⎧≡≡0))(),(,(0))(),(,(x z x y x F x z x y x F ∀x ∈N (x 0, δ ).(ii) y = y (x ), z = z (x )在N (x 0, δ )中均有连续的导数,且,),(),(),(),(d d z y G F x z G F x y ∂∂∂∂=,),(),(),(),(d d z y G F y x G F x z ∂∂∂∂=其中,),(),(x z x z G G F F x z G F =∂∂,),(),(zy zy G G F F z y G F =∂∂.),(),(yx yx G G F F y x G F =∂∂8. 切线方程与法平面方程(1) 设曲线Γ的参数方程为(),(),(),x x t y y t z z t =⎧⎪=⎨⎪=⎩ M 0, M 的坐标分别为(x (t 0), y (t 0), z (t 0)), 则切线方程为)()()(000000t z z z t y y y t x x x ′−=′−=′− 故切向量为a = {x ′(t 0), y ′(t 0), z ′(t 0)}, 法平面的方程为x ′(t 0)(x -x 0) + y ′(t 0) (y -y 0) + z ′(t 0)(z -z 0) = 0. (2) 设曲线Γ的方程为⎩⎨⎧==),(),(x z z x y y 则点))(),(,(0000x z x y x M 处的切线方程为)()()()(100000x z x z z x y x y y x x ′−=′−=− 法平面方程为:(x -x 0) + y ′(x 0) (y -y (x 0)) + z ′(t 0)(z -z (x 0)) = 0.(3) 设曲线Γ的方程为⎩⎨⎧==,0),,(,0),,(z y x G z y x F 它确定⎩⎨⎧==),(),(x z z x y y 则点M 0处的切线方程为:00),(),(),(),(),(),(000M M M y x G F z z x z G F y y z y G F x x ∂∂−=∂∂−=∂∂−法平面方程为:.0)(),(),()(),(),()(),(),(000000=−∂∂+−∂∂+−∂∂z z y x G F y y x z G F x x z y G F M M M9. 切平面方程与法线方程(1) Σ: F (x , y , z ) = 0在点M 0(x 0, y 0, z 0)处的切平面方程为,0))(())(())((000000=−+−+−z z M F y y M F x x M F z y x法线方程为)()()(000000M F z z M F y y M F x x z y x −=−=−(2) Σ: z = f (x , y )在点M 0(x 0, y 0, z 0)处的切平面方程为,0)())(,())(,(0000000=−−−+−z z y y y x f x x y x f y x法线方程为1),(),(0000000−−=−=−z z y x f y y y x f x x y x10. 多元函数的Taylor 公式设二元函数f (x , y )在点M 0(x 0, y 0)的某邻域N (M 0)内有n +1阶连续偏导数. 则 ∀M (x 0+∆x , y 0+∆y )∈N (M 0), 有),(00y y x x f ∆+∆+),()(),(0000y x f y y x x y x f ∂∂⋅∆+∂∂⋅∆+= +∂∂⋅∆+∂∂⋅∆+),((!21002y x f yy x x),()(!100y x f y y xx n n ∂∂⋅∆+∂∂⋅∆+),()()!1(1001y y x x f y y x x n n ∆+∆+∂∂⋅∆+∂∂⋅∆+++θθ 其中0<θ <1.上式称为二元函数f (x , y )在点M 0处带有Lagrange 型余项的n 阶Taylor 公式. 特殊情形 (1) 中值公式),(00y y x x f ∆+∆+y y y x x f x y y x x f y x f y x ∆∆+∆++∆∆+∆++=),(),(),(000000θθθθ其中0<θ <1.(2) 一阶Taylor 公式),(00y y x x f ∆+∆+),((),(0000y x f y y xx y x f ∂∂⋅∆+∂∂⋅∆+=),()(21002y y x x f yy x x ∆+∆+∂∂⋅∆+∂∂⋅∆+θθ0],[),(00M y x f f y x y x f ⎥⎦⎤⎢⎣⎡∆∆+=⎥⎦⎤⎢⎣⎡∆∆∆∆+y x M H y x f )(],[21*其中M *(x 0+θ∆x , y 0+θ∆y ), 0<θ <1, H f (M )为f 在点M (x , y )处的Hessian 矩阵.⎥⎥⎦⎤⎢⎢⎣⎡yy xy xy xx f f f f(3) Maclaurin 公式f (x , y ) = f (0, 0)∑=∂∂+∂∂⋅+nk k f y y x x k 1)0,0()(!1),(()!1(11y x f y y x x n n ∆∆∂∂⋅+∂∂⋅+++θθ, 其中0<θ <1.七. 数量函数积分1. 数量函数积分的定义 ∫Ω f (M )d Ω = 01lim()nkk d k f M→=∆Ω∑.2. 数量函数积分的性质(1) ∫Ω [a f (M ) + b g (M )]d Ω = a ∫Ω f (M )d Ω + b ∫Ω g (M )d Ω, 其中a , b 为常数.(2) ∫Ω f (M )d Ω = ∫Ω1 f (M )d Ω + ∫Ω2 f (M )d Ω, 其中Ω = Ω1∪Ω2, 且Ω1与Ω2无公共内点. (3) f (M ) ≤ g (M ) (∀M ∈Ω) ⇒ ∫Ω f (M )d Ω ≤ ∫Ω g (M )d Ω. (4) |∫Ω f (M ) d Ω| ≤ ∫Ω | f (M )|d Ω.(5) a ≤ f (M ) ≤ b (∀M ∈Ω) ⇒ aV ≤ ∫Ω f (M )d Ω ≤ bV , 其中V 为Ω的度量. (6) f (M ) ∈ C Ω ⇒ ∃M ∗∈Ω s.t. ∫Ω f (M )d Ω = f (M ∗)V , 其中V 为Ω的度量. 3. 直角坐标系下的二重积分的计算(1) D = {(x , y ) | a ≤ x ≤ b , ϕ1(x ) ≤ y ≤ ϕ2(x )}, 则∫∫D f (x , y )d σ =21()()d (,)d bx ax x f x y y ϕϕ∫∫.(2) D = {(x , y ) | c ≤ y ≤ d , ψ1(y ) ≤ x ≤ ψ2(y )}, 则∫∫D f (x , y )d σ =21()()d (,)d dy cy y f x y x ψψ∫∫.4. 二重积分换元法设函数f (x , y )在有界闭区域D 上连续, x = ϕ(u , v ) 和 y = ψ(u , v )有一阶连续偏导数, 且Jacobi 行列式J (u , v ) =(,)(,)x y u v ∂∂=u vu vϕϕψψ≠ 0,则 ∫∫D f (x , y )d x d y = ∫∫D f (ϕ(u , v ), ψ(u , v ))|J (u , v )|d u d v .5. 极坐标系下二重积分的计算令x = ρcos ϕ, y = ρsin ϕ, 则∫∫D f (x , y )d x d y = ∫∫D f (ρcos ϕ, ρsin ϕ)ρd ρd ϕ. (1) 极点O 在D 的外部D = {(ϕ, ρ) | α ≤ ϕ ≤ β, ρ1(ϕ) ≤ ρ ≤ ρ2(ϕ)}, 则∫∫D f (x , y )d x d y =21()()d (cos ,sin )d f βρϕαρϕϕρϕρϕρρ∫∫.(2) 极点O 在D 的边界曲线上D = {(ϕ, ρ) | α ≤ ϕ ≤ β, 0 ≤ ρ ≤ ρ(ϕ)}, 则∫∫D f (x , y )d x d y =()d (cos ,sin )d f βρϕαρϕρϕρϕρ∫∫.(3) 极点O 在D 的内部D = {(ϕ, ρ) | 0 ≤ ϕ ≤ 2π, 0 ≤ ρ ≤ ρ(ϕ)}, 则∫∫D f (x , y )d x d y =2()d (cos ,sin )d f πρϕϕρϕρρρϕ∫∫.6. 广义极坐标变换令x = a ρcos ϕ, y = b ρsin ϕ, 则∫∫D f (x , y )d x d y = ∫∫D f (a ρcos ϕ, b ρsin ϕ)ab ρd ρd ϕ. 7. 直角坐标系下三重积分的计算(1) Ω = {(x , y , z ) | (x , y ) ∈ D xy , z 1(x , y ) ≤ z ≤ z 2(x , y )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d xyz x y z x y D f x y z z x y ∫∫∫. (2) Ω = {(x , y , z ) | (y , z ) ∈ D yz , x 1(y , z ) ≤ x ≤ x 2(y , z )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d yzx y z x y z D f x y z x y z ∫∫∫.(3) Ω = {(x , y , z ) | (z , x ) ∈ D zx , y 1(z , x ) ≤ y ≤ y 2(z , x )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d zxy z x y z x D f x y z y z x ∫∫∫.(4) Ω = {(x , y , z ) | (x , y ) ∈ D (z ), p ≤ z ≤ q }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d qpD z f x y z x y z ∫∫∫. (5) Ω = {(x , y , z ) | (y , z ) ∈ D (x ), a ≤ x ≤ b }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d ba D x f x y z y z x ∫∫∫. (6) Ω = {(x , y , z ) | (z , x ) ∈ D (y ), c ≤ y ≤ d }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d d cD y f x y z z x y ∫∫∫.8. 柱面坐标系下三重积分的计算令x = ρcos ϕ, y = ρsin ϕ, z = z , 则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (ρcos ϕ, ρsin ϕ, z )ρd ϕd ρd z . 9. 球面坐标系下三重积分的计算令x = r sin θcos ϕ, y = r sin θsin ϕ, z = r cos θ,则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (r sin θcos ϕ, r sin θsin ϕ, r cos θ)r 2sin θd r d θd ϕ. 10. 广义球坐标系下三重积分的计算令x = ar sin θcos ϕ, y = br sin θsin ϕ, z = cr cos θ,则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (ar sin θcos ϕ, br sin θsin ϕ, cr cos θ)abcr 2sin θd r d θd ϕ.11. 第一型曲线积分的计算(1) L : y = y (x ) ∈(1)[,]C,a b 则 ∫L f (x , y )d s=(,(baf x y x x ∫.(2) L : x = x (y ) ∈(1)[,]C ,c d 则 ∫L f (x , y )d s=((),dcf x y y y ∫.(3) L : x = x (t ), y = y (t ) ∈(1)[,]C ,αβ 则 ∫L f (x , y )d s=((),(f x t y t t βα∫.(4) L : ρ = ρ(ϕ) ∈(1)[,]C,αβ 则 ∫L f (x , y )d s=(()sin ,()cos f βαρϕϕρϕϕϕ∫.(5) L : x = x (t ), y = y (t ), z = z (t ) ∈(1)[,]C ,αβ 则∫L f (x , y , z )d s=((),(),(.f x t y t z t t βα∫12. 第一型曲面积分的计算(1) 设Σ: z = z (x , y )分片光滑, f 在Σ上连续, Σ在xOy 平面上的投影区域为D xy ,则∫∫Σ f (x , y , z )d A=(,,(,d xyD f x y z x y x y ∫∫.(2) 设Σ: y = y (z , x )分片光滑, f 在Σ上连续, Σ在zOx 平面上的投影区域为D zx ,则∫∫Σ f (x , y , z )d A=(,(,),d zxD f x y z x z z x ∫∫.(3) 设Σ: x = x (y , z )分片光滑, f 在Σ上连续, Σ在yOz 平面上的投影区域为D yz ,则∫∫Σ f (x , y , z )d A=((,),,d yzD f x y z y z y z ∫∫.13. 线密度为µ(x , y )的平面曲线段L 的质心坐标(x ,y )(,)d (,)d LLx x y s x x y s µµ=∫∫,(,)d (,)d LLy x y s y x y sµµ=∫∫.14. 面密度为µ(x , y )的平面薄片D 的质心坐标(x ,y )(,)d d (,)d d DDx y x y x x y x y x µµ=∫∫∫∫,(,)d d (,)d d DDx y x y y x y x yy µµ=∫∫∫∫. 15. 密度为µ(x , y , z )的空间立体Ω的质心坐标(x ,y ,z )(,,)d d d (,,)d d d x y z x y z x x y z x y x z µµΩΩ=∫∫∫∫∫∫,(,,)d d d (,,)d d d x y z x y z y x y z x y y z µµΩΩ=∫∫∫∫∫∫, (,,)d d d (,,)d d d x y z x y z z x y z x y z zµµΩΩ=∫∫∫∫∫∫.16. 线密度为µ(x , y )的平面曲线段L 对x 轴的转动惯量I x = ∫L y 2µd s , 对y 轴的转动惯量I y = ∫L x 2µd s . 17. 面密度为µ(x , y )的平面薄片D 对x 轴的转动惯量I x = ∫∫D y 2µd σ, 对y 轴的转动惯量I y = ∫∫D x 2µd σ. 18. 密度为µ(x , y , z )的空间立体Ω关于x 轴, y 轴, z 轴的转动惯量I x , I y , I z .I x = ∫∫∫Ω (y 2+ z 2)µd x d y d z , I y = ∫∫∫Ω (z 2+ x 2)µd x d y d z , I z = ∫∫∫Ω (x 2+ y 2)µd x d y d z .19. 线密度为µ(x , y )的平面曲线段 L 对位于L 外的点M 0(x 0, y 0)处的单位质点的引力F 的两个分量F x =03()(,)d L k x x x y s r µ−∫, F y =03()(,)d L k y y x y s rµ−∫, 其中k 为引力常数, r20. 面密度为µ(x , y , z )的曲面块Σ对Σ外的一点M 0(x 0, y 0, z 0)处单位质点的引力F 的三个分量F x =03()d k x x A r µΣ−∫∫, F y =03()d k y y A r µΣ−∫∫, F z =03()d k z z A rµΣ−∫∫,。
大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
高等数学公式大全一、方程1.一元一次方程一元一次方程是指由一个未知数及其平方项和一次项所组成的方程,它的标准形式为:ax + b = 0, 其解为: x = -b/a2.一元二次方程一元二次方程是指由一个未知数的二次项、一次项和常数项组成的方程,它的标准形式为:ax² + bx + c = 0,其解为:x1,2 = [-b ±√(b²-4ac)]/2a3.不定方程不定方程是指方程右端没有任何量,且没有可以代求解的未知数,它的标准形式为:ax + b = 0,其解为:任何实数x即为解4.幂指数方程幂指数方程是指指数函数方程经过变形后所得的方程,它的标准形式为:ax^m+bx^n=c,其解为:x=(c-b)/a5.二元一次方程二元一次方程是指有两个未知数,右端只有一次项的方程,它的标准形式为:ax + by = c,其解为:x = (c-b)/a, y = (c-a)/b6.二元二次方程二元二次方程是指有两个未知数,右端有两次项的方程,它的标准形式为:ax² + by² + cxy + dx + ey + f = 0,其解为: x=-ey/2c+【(ey/2c)² - (d+bx/c) 】^½ / (d+bx/c) 、 y=-dx/2c+【(dx/2c)² - (e+ax/c) 】^½ / (e+ax/c)二、椭圆方程1.一般形式一般形式是指将椭圆方程转化为一般形式来求解的方法,它的标准形式为:Ax²+By²+Cxy+Dx+Ey+F=0,其解为:X=-2CX0/(B-A)±b^½*[(CX0/(B-A))²-(2BX0²/B-A)];。
高等数学下册公式大全第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=±和差角公式:sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式: ::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限➢ 常用极限:1,lim 0n n q q →∞<=;1n a >=;1n =➢ ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则➢ 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+ ➢:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)[ln()]()(1)()n n n n n n nn n a x x a x x x -----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
2、()200000000(1)(1)0110000()(): ()()()()()()()2!!(()): (); ((,),(0,1))(())()()()(1)!(1)!n n n n n n n n n f x f x f x f x f x x x x x x x R x n o x x R x x x f x x x f x x x x n n ξθθξ++++'''=+-+-++-+⎧-⎪=∈∈⎨+--=-⎪++⎩泰勒公式余项()(1)21(0)(0)(): ()(0)(0)()()(); ((0,1))2!!(1)!n n n n f f f x f x f f x x x x n n θθ++'''=+++++∈+麦克劳林公式常用初等函数的展式:211();();((0,1))2!!(1)!n x xn n n x x e e x R x R x x n n θθ+=+++++=∈+ 352112122sin[(21)]2sin (1)();();((0,1))3!5!(21)!(21)!m m m m m x m x x x x x R x R x x m m πθθ--+++=-+-+-+=∈-+242222121cos[(1)]cos 1(1)();();((0,1))2!4!(2)!(22)!m mm m m x x x x m x R x R x x m m θπθ+++++=-+-+-+=∈+241111011ln(1)(1)()(1)(1); 2!3!1(1)();((0,1))(1)(1)n n n n n n n n n n n n n x x x x x x x R x n n n R x x n x θθ+∞∞--==+++=-+-+-+=-=-+-=∈++∑∑211(1)(1)(1)(1)1();2!!(1)()()(1);((0,1))(1)!nn n n n n x x x x R x n n R x x x n αααααααααααθθ--+---++=+++++--=+∈+201ln (1)1(1)(1)1nnn n x x x x x x∞='⇒=+=-+++-=-+∑3、30222.(:M M s ()()()()M lim .[()()]10; .s ds K MM st t t t d K s ds tt K R K R θααϕψϕψααϕψ∆→===∆''=∆∆∆''''''-∆===∆''+==弧微分公式:平均曲率:从点到点,切线斜率的倾角变化量;:弧长)点的曲率:直线的曲率:半径为的圆的曲率: 1=M K ρ=曲线在点处的曲率半径:第四章 不定积分1、常用不定积分公式:()(); (())(); ()()f x dx F x C f x dx f x F x dx F x C ''=+==+⎰⎰⎰11(1); ln ;1; ;ln x xx x x x dx C dx x C x a a dx C e dx e C aμμμμ+=+≠-=++=+=+⎰⎰⎰⎰2222sin cos ; cos sin ;tan ln cos ; cot ln sin ;sec ln sec tan ;csc ln csc cot ln tanln csc cot ;2sec tan ; csc cot ;cos sin sec t xdx x C xdx x C xdx x C xdx x C xdx x x C xxdx x x C C x x C dx dx xdx x C xdx x C x x x =-+=+=-+=+=++=-+=+=-++==+==-+⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰an sec ; csc cot csc ;; ;xdx x C x xdx x C shxdx chx C chxdx shx C =+⋅=-+=+=+⎰⎰⎰⎰2222222arcsin arccos;arcsin;1arctan arccot;arctan;111ln;ln;22ln(;xx C x C Cadx dx xx C x C Cx a x a adx x a dx a xC Cx a a x a a x a a xx C=+=-+=+=+=-+=+++-+=+=+-+--=++⎰⎰⎰⎰⎰22ln(;2arcsin2ax Ca xCa=+=+2、常用凑微分公式:2212();(ln);11(1)()(ln tan);cos sindx dxd d xx x xd dx d xx xdxd xx x==-==-=+=3、有特殊技巧的积分1(1)sin cos sin()dxdxa xb x xϕ=++⎰sin cos(2)ln sin cossin cosc xd xdx Ax B a x b x Ca xb x+=++++⎰241(3)1xdxx++⎰2211()1()d xxxx=--+⎰第五章定积分1、基本概念00111()lim()lim()()()() , (()()) n nb bi i aa ni iif x dx f x f F b F a F x F x f xn nλξ→→=='=∆==-==∑∑⎰⇒⇒⇒⇒连续可积;有界+有限个间断点可积;可积有界; 连续原函数存在()()()()xax f t dt x f x'Φ=⇒Φ=⎰()()()[()]()[()]()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎰ ()(())()abf x dx f t t dt αβϕϕ'=⎰⎰,()()()()()()a abbu x dv x u x v x v x du x =-⎰⎰2、常用定积分公式:()[()()]aaaf x dx f x f x dx -=+-⎰⎰;(),()2()aaaf x f x dx f x dx -=⎰⎰为偶函数;(),()0aaf x f x dx -=⎰为奇函数22(sin )(cos )f x dx f x dx ππ=⎰⎰;2220(sin )(sin )(sin )2xf x dx f x dx f x dx πππππ==⎰⎰⎰T TT2T 02()()()a af x dx f x dx f x dx +-==⎰⎰⎰;TT()()a n af x dx n f x dx +=⎰⎰瓦里斯公式:22201331,12242sin cos 2431,352nn n n n n n n n n I xdx xdx I n n nn n n πππ---⎧⋅⋅⋅⋅⎪-⎪-====⎨--⎪⋅⋅⋅⎪-⎩⎰⎰为正偶数为正奇数无穷限积分:+b+b-bb+-()lim()(+)();()lim ()(-)();()lim()lim ()(+)()a ab baa aab a f x dx f x dx F F a f x dx f x dx F F a f x dx f x dx f x dx F F ∞→∞-∞→∞+∞-∞→∞→∞==∞-==∞-=+=∞--∞⎰⎰⎰⎰⎰⎰⎰瑕积分:()lim ()()lim ();()lim ()lim ()();()()()b ba tt at abta at b t bbcbaacf x dx f x dx F b F t f x dx f x dx F t F a f x dx f x dx f x dx++--→→→→==-==-=+⎰⎰⎰⎰⎰⎰⎰ +1,1,1p adx p p x ∞>≤⎰收敛发散;11,01,1p a dx p p x<<≥⎰收敛发散 10()(1)!x n n e x dx n τ+∞--==-⎰,(1)()!;(1)1;n n n n τττ+=⋅==201 ()2x e dx τ+∞-=⇒⎰第六章 定积分应用1、平面图形的面积:直角坐标情形:()baA f x dx =⎰;()()baA f x g x dx =-⎰;()()dcA y y dy ϕψ=-⎰参数方程情形:()()()();(();())A t d t t t dt a b ββααψϕψϕϕαϕβ'====⎰⎰极坐标情形:21()2A d βαρθθ=⎰ 2、空间立体的体积:由截面面积:()baV A x dx =⎰旋转体:绕x 轴旋转:222();[()()()2();2()()()bbaad dccV f x dx V f x g x dx x V y y dy V y y y dy y πππϕπϕψ==-==-⎰⎰⎰⎰为积分变量为积分变量绕y 轴旋转:222()2()();()[()()]()b baadcV x f x dx x f x g x dx x V y y dy y πππϕψ==-=-⎰⎰⎰为积分变量为积分变量3、平面曲线的弧长:as ββααθ===⎰⎰⎰变力做功:()b aW F x dx =⎰抽水做功:=,g dW dM g h dV g h ρ⨯⨯=⋅⋅=⋅⋅⋅克服重力做功质量高度 液体压力做功:=dF pdA g h dA ρ⨯==⋅⋅⋅压力压强面积, 第七章 微分方程: 一、基本类型的一阶微分方程()()()1:()() ,() ()2: ()()()0 :()0 :(())P x dx P x dx P x dx dy dy f x g y f x dx dx g y dyP x y Q x dxQ x y e Q x y e Q x e dx C --==+=⎧⎰==⎪⎨⎰⎰⎪≠=+⎩⎰⎰⎰、可分离变量方程分离变量,两边积分、一阶线性微分方程齐次通解:,非齐次通解:03(,)d (,)d 0(), . (1)(2)(,)(,)d (,)d .(3)u P x y u(x,y)=P(x,y)dx +c(y)x u(x u Q x y c (y)=Q-P(x,y)dx (y)x y y x xyx y P x y x Q x y y P Q u x y C u x y P x y x Q x y y C ϕ+====+=∂⎫⇒⎪∂⎪⇒⎬∂∂⎪'⇒=∂∂⎪⎭⎰⎰⎰⎰、全微分方程:其中通解:()、分项组合法;、特殊路径法:、偏积分法;(,)=(,)=,y)=P(x,y)dx +(y)dy ϕ⎰⎰:二、可化为基本类型的一阶微分方程11221()(),a x b y dy y dy yf f u dx x dx a x b y x +===+()齐次方程:或令1112222()a x b y c dyf dx a x b y c ++=++()准齐次方程:111112222211221111111112211200,, ()()d 0().d a x b y c a b x X h h k a b y Y k a x b y c a X bY dY Y f u dX a X b Y X a b k a x b y c y f a x b y u a x b y a b x a x b y c ⎧++==+⎧⎧∆=≠⎪⎨⎨=+++⎩⎩⎪⎪+⎪⇒==⎨+⎪⎪++⎪∆====+=+++⎪⎩若令,(由解得),再令。