由递推公式求通项公式的三种方法
- 格式:doc
- 大小:38.50 KB
- 文档页数:2
由递推公式求通项公式的常用方法由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。
对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。
方法一:累加法形如a n+1-a n=f(n)(n=2,3,4,…),且f(1)+f(2)+…+f(n-1)可求,则用累加法求a n。
有时若不能直接用,可变形成这种形式,然后利用这种方法求解。
例1a1,a2,a3(1(2(2又a形如例2由(n得(a n+1n n+1n因为a n>0,则a n+1+a n≠0,所以=,将n=1,2,…,n-1,分别代入得==……=将上面n-1个式子相乘得,=××…×又a1=1,则a n=点评:本题先由已知求出递推公式,化成了=g(n)的类型,再利用累乘法求通项公式。
方法三:构造新数列法构造新数列法:将递推关系经过适当的恒等变形转化为特殊数列的递推关系(等差数列、等比数列、常数列或等差数列和等比数列的求和形式),以下类型均采用这种解法。
类型一:a n+1=A a n+B(A,B∈R,A≠0)线性递推关系当A≠0,B=0时,a n+1=A a n是以A为公比的等比数列;当Aa1+例3a n}的通项公式。
a n-a n+cq n 待入得p,而数列{a n+·例4解:由n=n+·可变形为n=(n+),则数列{n}是以为1=首项以为公比的等比数列,根据等比数列的通项公式得a n+=()n因此a n=-类型三:a n+2=p a n+1+q a n(其中p,q均为常数)方法:先把原递推公式转化为a n+2-s a n+1=t(a n+1-s a n),其中s,t满足,再利用等比数列来求解。
例5:已知数列{a n}中,a1=1,a2=2,a n+2=a n+1+a n,求{a n}的通项公式。
思路探寻由递推关系式求数列的通项公式是数列中常见的题型之一.解答此类问题的关键是仔细分析已知的递推关系式,找出其中的规律,将问题转化为常规的等差、等比、常数数列的求通项公式或求和问题来求解.本文主要探讨了几种常见的题型及其解法.一、累加法对于形如a n +1=a n +f (n )的递推关系式,我们一般采用累加法来求数列的通项公式.首先把递推关系式转化为a n +1-a n =f (n )的形式,然后将各项f (1),f (2),f (3),…,f (n -1)逐项累加,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),通过正负相消便可求得数列的通项公式.例1.已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n,求a n .解:由已知可得a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=æèöø1-12+æèöø12-13+æèöø13-14+…+æèöø1n -1-1n ,所以a n -a 1=1-1n.因为a 1=12,所以a n =32-1n.累加法较为简单,但适用范围较窄,只适用于求解形如a n +1=a n +f (n )的递推关系式的通项公式.二、累积法对于形如a n +1=f (n )a n 的递推关系式,若要求其数列的通项公式,需把递推关系式转化为a n +1a n =f (n )的形式,然后利用累乘法求解.将各项a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),逐项累乘得到a na 1=f (1)f (2)…f (n -1),就可以求得a n .例2.已知数列{a n }满足a 1=23,a n +1=n n +1·a n ,求a n .解:由a n +1=n n +1·a n得a n +1a n =n n +1,故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1×…×12×23=23n.即a n =23n.在运用累积法解题时,要注意递推关系式a n =f (n )a n -1只适合n ≥2的情形,因此需将n =1的情况单独讨论.三、构造法构造法是由递推关系求数列通项公式的常用方法,该方法具有较强的灵活性.运用构造法解题的关键是通过对递推关系式进行灵活处理,将问题转化为常规的等差、等比数列问题,运用等差、等比数列的通项公式求得原数列的通项公式.例3.在数列{a n }中,a 1=1,a n +1=2a n +3,求a n .解:设a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以b 1=4为首项,2为公比的等比数列.所以b n =4×2n -1=2n +1,即a n =2n +1-3.对于a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型的递推关系式,我们一般采用构造法来求数列的通项公式.首先引入参数,将递推关系式构造成a n +1+t =p (a n +t )的形式,通过对应系数求得t 的值,进而将问题转化为求等比数列的通项公式来解答.例4.已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,3,…,求{a n }的通项公式.解:∵a n +1=3a n2a n +1,∴1a n +1=23+13a n ,∴1a n +1-1=13æèçöø÷1a n -1.又1a n-1=23,∴{}1a n -1是以23为首项、13为公比的等比数列,∴1a n -1=23×13n -1=23n ,∴a n =3n3n +2.对于a n +1=Aa nBa n +C(A ,B ,C 为常数)型的递推关系式,可通过在递推关系式两边同时取倒数,将递推关系式转化为a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型,再进行求解.累加法、累乘法、构造法都是由递推关系式求数列的通项公式的常规方法.由于数列问题中的递推关系式多种多样,所以求数列通项公式的方法也各不相同.同学们在解题的过程中要注意灵活选择与之相应的方法来解题.(作者单位:江苏省苏州市吴江开发区中学)51Copyright©博看网 . All Rights Reserved.。
数列递推公式求通项公式的方法数列是指按照一定规律排列的一组数。
而数列递推公式是指通过前一项或几项的数值,推导出数列中后一项的数值的公式。
而求解数列通项公式,即通过已知的数列的部分项求得数列的通项公式的方法,可以分为以下几种:1.列表法:通过列出数列的前几项进行观察和总结,找到数列的规律,从而推导出数列的通项公式。
这种方法常用于找出简单数列的通项公式,如等差数列和等比数列。
2.递推法:利用数列递推的性质,通过对数列进行递推推导出通项公式。
递推法常用于复杂的数列,需要将数列的前几项与后几项进行比较,找到规律并推导出通项公式。
3.数学归纳法:数学归纳法是一种利用已知的数学命题,在该命题的基础上证明该命题对任意自然数(或整数)都成立的方法。
对于数列来说,可以利用已知的数列部分项的性质,通过数学归纳法证明该数列的通项公式的正确性。
4.差分法:差分法是一种通过对数列进行差分操作,将数列变为新的数列,新数列有可能是个数列递推公式/规律更简单的数列。
然后,根据新数列的通项公式,再通过反差分操作推导出原数列的通项公式。
差分法常用于较为复杂的数列,特别适合于数列中的递推关系较为难以发现的情况。
5.比率法:比率法是一种通过比较数列的相邻项之间的比率或比值的变化规律,推导出数列的通项公式的方法。
比率法常用于等比数列或存在比率规律的数列。
需要注意的是,求解数列通项公式并不是一种机械性的计算过程,而是需要灵活运用数学知识、观察和总结数列的规律,并进行推理和证明的过程。
在实际应用中,也可能需要结合上述多种方法进行综合分析来求解数列的通项公式。
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。
)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。
解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。
2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。
类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。
i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。
例2已知a11,anan1n,求an。
解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。
方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。
类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。
anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。
由递推公式求通项公式类型一 累加相消法(“)(1n f a a n n +=+型”)例1.设数列{}n a 满足),3,2,1(12,111 =++==+n n a a a n n 求{}n a 的通项公式 解:由(1)),3,2,1(121 =+=-+n n a a n n 可知,;11212+⨯=-a a ;12223+⨯=-a a ;1)1(2;1+-⨯=--n a a n n上述等式累加可得,21)1())1(21(2n a n n a a n n =⇒-+-+++⨯=-类型二 累乘相消法(“)(1n f a a n n ⋅=+型”)例2.设数列{}n a 满足),3,2,1(2,111 =⋅==+n a a a n n n ,求{}n a 的通项公式 解:由(2)),3,2,1(21 =⋅=+n a a n n n 可知,212=a a ;2232=a a ;3342=a a112--=n n n a a 上述等式累乘可得,2)1(132122222--=⇒⋅⋅=n n n n n a a a类型三 倒数法 CBa Aa a n nn +=型数列(C B A ,,为非零常数)例3.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a a n nn 求{}n a 的通项公式 解:211211+=+=+nn n n a a a a ∴⎭⎬⎫⎩⎨⎧n a 1是以35为首项,公差为2的等差数列,即351=n a +2(n -1)=316-n ∴a n =163-n 类型四 构建新数列( 待定系数法) (1)q a p a n n +⋅=+1型例4.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a n n ,求{}n a 的通项公式 解 :设)(21x a x a n n +=++,即x a a n n +=+21与递推式比较,可得1=x ,所以递推式转化为)1(211+=++n n a a 则可构造新数列,令1+=n n a b ,有⎩⎨⎧===+=+),3,2,1(221111 n b b a b n n ),3,2,1(122 =-=⇒=⇒n a b n n n n (2)a n +1 = p a n + f (n )型例5.已知数列{a n }中,a 1=1,且a n =a n -1+3n -1,求{a n }的通项公式.解:设a n +p ·3n =a n -1+p ·3n -1则a n =a n -1-2p ·3n -1,与a n =a n -1+3n -1比较可知p =-21. 所以⎭⎬⎫⎩⎨⎧-23n n a 是常数列,且a 1-23=-21.所以23n n a -=-21,即a n =213-n .(3) 11-++=n n n qa pa a 型(其中p ,q 为常数)例6. 已知数列{}n a 满足06512=+-++n n n a a a ,且5,121==a a ,且满足,求n a .解:令)(112n n n n xa a y xa a -=-+++,即0)(12=++-++n n n xya a y x a ,与已知06512=+-++n n n a a a 比较,则有⎩⎨⎧==+65xy y x ,故⎩⎨⎧==32y x 或⎩⎨⎧==23y x 下面我们取其中一组⎩⎨⎧==32y x 来运算,即有)2(32112n n n n a a a a -=-+++,则数列{}n n a a 21-+是以3212=-a a 为首项,3为公比的等比数列,故n n n n a a 333211=⋅=--+,即n n n a a 321+=+,利用类型(2)的方法,可得n n n a 23-=.类型五 取对数 r n n pa a =+1(其中p ,r 为常数)型例6. 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式. 解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n an b ,则12-=n n b b ,{}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n,12log12-=-n a n ,∴1212--=n n a。
`式已知递推公式求通项公].p)i (a [p a p)i (p a pa p)(pa pa p 1p 2n )i (a a 1p .)()(pa a p p1q a }p1q a {p1q a p p1q a p 1q 1p q a 1p q pa a 11n 1i i11n n 1n 1i 1i 1nn 1n nn 1n 1n 1n 1n 1i 1n n 1n 1n n 1n 1n 1n ∑∑∑-=--=+++++-=++++=+=+=≠≥+==+=-+-+-+=-+-≠=+=f f n f f n f n f ,从而利用叠加法易得,,变形为,则两边同时除以若;,,则显然若不是常数,其中为公比的等差数列为首项,是以显然)(,变为,则两边同加上若为公差的等差数列;为首项,,则显然是以若)常见形式:(p x a x a qx a x a x x p p x a 1x a 1x x x x 0b x a -d cx dcx b ax x dca b aa a )2(2n 1n 21n 11n 211n 11n 21212n n 1n 通项公式求解,然后再利用等比数列可以用待定系数法求解,其中则有若通项公式求解,然后再利用等差数列可以用待定系数法求解,其中则有若,,令此方程的两个根为)(,即,令典型例子:不动点法--=--≠+-=-==-+++=++=++++用待定系数法求得、,,则其通项公式为若用待定系数法求得、,)(则其通项公式若,,令此方程两根为,特征方程为性递推式的好方法特征根法是专用来求线特征根法B A Bx Axa x x B A x Bn A a ,x x x x q px x qa pa a .)3(n2n1n 21n1n 21212n 1n 2n +=≠+==+=+=++.4然后用数学归纳法去证的规律猜出一个结果,简单说就是根据前几项)数学归纳法(公式,马上迎刃而解!,只需联系正切二倍角看起来似乎摸不着头脑:东西,看看下面的例子三角函数是个很奇妙的)联系三角函数(2nn 1n a1a 2a 5-=+递推新值的过程。
由递推关系式求通项公式类型大全
递推关系式是用来描述一组数列的递推规律的方程,通常形如an=f(an-1)。
求通项公式是指对于这组数列,求出所有项的公式。
下面是一些常见的递推关系式及其对应的通项公式:
1.an=an-1+c,其中c为常数。
通项公式为:
a1+c(n-1)
2.an=an-1*r,其中r为常数。
通项公式为:
ar^(n-1)
3.an=an-1+an-2,通项公式为:
a1*((1+√5)/2)^(n-1)-a2*((1-√5)/2)^(n-1)
4.an=an-1*an-2,通项公式为:
a1^(n-1)*a2^(n-2)
5.an=an-1+n,通项公式为:
n(n+1)/2
6.an=an-1*n,通项公式为:
n!
7.an=an-1+2^n,通项公式为:
2^n-1
8.an=an-1*(-1)^n,通项公式为:
(-1)^n
注意:上述通项公式均是在满足递推关系式的条件下得出的。
如果递推关系式不合法或者不存在,则无法得出通项公式。
由递推公式求通项的几种常见方法作者:王玉君来源:《成才之路》2011年第13期递推公式是表示数列的一种方法。
由于它比较抽象,是数列这章的难点,也是重点。
而其中渗透的整体思维、化归、分类讨论思想,都是数学中的重要内容。
一、叠加法人教版的等差数列通项公式的导出,为我们提供了一种方法,称之为叠加法。
推导如下:a2-a1=d,a3-a2=d,a4-a3=d……an-an-1=d(n≥2),这样就可把n-1个式子相加,得到an- a1=(n-1),所以an= a1+(n-1)d,当n=1时也适合上式。
由此就导出等差数列通项公式。
只要递推公式满足an+1- an=f(n),都可以用此方法。
例如:已知数列{an}满足a1=1,an+1=an+()n,求通项an.解:由题意,an+1-an=()n,所以a2-a1=,a3-a2=()2……,an-an-1=()n-1(n≥2),把这n-1个式子相加,有an-a1=+()2+……()n-1(n≥2),对右侧求和,整理得an-a1=,所以an=2-()n-1.当n=1时显然也适合上式。
二、叠乘法叠乘法的灵感,来自等比数列通项公式的推导。
过程如下:=q,=q,=q......=q(n≥2),这样可把n-1个式子相乘,得到=qn-1(n≥2)。
显然,当n=1时也适合,所以an=a1qn-1.例如:已知数列{an}满足a1=2,an+1=2n·an,求通项公式an.解:由题意,an≠0,=2n,所以,=2,=22,=23......=2n-1(n≥2),把n-1个式子相乘,得到=2·22·23……2n-1=2(1+2+3+……+n-1)=2,所以an=2·2=2 (n≥2),显然,当n=1时也适合。
所以an=2.只要是满足=f(n)式子,都适合用叠乘法求通项公式。
三、可构造成形式为{an+x}的等比数列,求通项公式an在数列这章,我们只学了等差、等比数列的相应公式,对于其他类型的数列,可借助等差或等比数列公式求出。
由递推公式求通项公式的三种方法
递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接,下面介绍由递推公式求通项公式的几种方法.
1.累加法
[典例1] 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *
).若b 3=-2,b 10=12,则a 8=( )
A .0
B .3
C .8
D .11 [解析] 由已知得b n =2n -8,a n +1-a n =2n -8,所以a 2-a 1=-6,a 3-a 2=-4,…,a 8-a 7=6,由累加法得a 8-a 1=-6+(-4)+(-2)+0+2+4+6=0,所以a 8=a 1=3.
[答案] B
[题后悟道]
对形如a n +1=a n +f (n )(f (n )是可以求和的)的递推公式求通项公式时,常用累加法,巧妙求出a n -a 1与n 的关系式.
2.累乘法
[典例2] 已知数列{a n }中,a 1=1,前n 项和S n =
n +23a n . (1)求a 2,a 3;
(2)求{a n }的通项公式.
[解] (1)由S 2=43
a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.
由S 3=53
a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32
(a 1+a 2)=6. (2)由题设知a 1=1.
当n >1时,有a n =S n -S n -1=n +23a n -n +13
a n -1,
整理得a n =n +1n -1
a n -1. 于是a 2=31a 1,a 3=42a 2,…,a n -1=n n -2a n -2,a n =n +1n -1
a n -1. 将以上n -1个等式中等号两端分别相乘,整理得a n =
n n +1 2. 综上可知,{a n }的通项公式a n =
n n +1 2.
[题后悟道]
对形如a n +1=a n f (n )(f (n )是可以求积的)的递推公式求通项公式时,常用累乘法,巧妙求出a n a 1与n 的关系式.
3.构造新数列
[典例3] 已知数列{a n }满足a 1=1,a n +1=3a n +2;则a n =________.
[解析] ∵a n +1=3a n +2,∴a n +1+1=3(a n +1),
∴a n +1+1a n +1
=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3
n -1, ∴a n =2·3n -1-1.
[答案] 2×3
n -1-1
[题后悟道]
对于形如“a n +1=Aa n +B (A ≠0且A ≠1)”的递推公式求通项公式,可用迭代法或构造等比数列法.
上面是三种常见的由递推公式求通项公式的题型和对应解法,从这些题型及解法中可以发现,很多题型及方法都是相通的,如果能够真正理解其内在的联系及区别,也就真正做到了举一反三、触类旁通,使自己的学习游刃有余,真正成为学习的主人.。