加热炉空气预热器腐蚀_结垢原因及处理方法
- 格式:pdf
- 大小:493.89 KB
- 文档页数:5
换热器结垢腐蚀四大原因及防腐六大措施!化工厂换热器在换热过程中都存在着结垢堵塞和腐蚀问题,影响化工厂安全生产,针对换热器结垢和腐蚀的原因和危害,小7总结了常见的结垢和腐蚀处理措施,为解决换热器结垢和腐蚀问题提供借鉴!换热器在化工生产中占有重要地位,而换热器机组结垢腐蚀,导致传热不够而被迫停车清洗或者换热器的更换,严重时会影响安全生产的进行,更会增加企业运行的成本。
结垢原因1颗粒污垢悬浮于流体的固体微粒在换热表面上的积聚,一般是由颗粒细小的泥沙、尘土、不溶性盐类、胶状物、油污等组成。
当含有这些物质的水流经换热器表面时,容易形成污垢沉积物,形成垢下腐蚀,为某些细菌生存和繁殖提供温床。
当防腐措施不当时,最终导致换热表面腐蚀穿孔而泄漏。
2生物污垢除海水冷却装置外,一般生物污垢均指微生物污垢。
循环水系统中最常见的微生物主要是铁细菌、真菌和藻类。
铁细菌能把溶于水中的Fe2 转化为不溶于水的Fe2O3 的水合物,在水中产生大量铁氧化物沉淀以及建立氧浓差腐蚀电池,腐蚀金属。
且循环水系统中的藻类常在水中形成金属表面差异腐蚀电池而导致沉积物下腐蚀。
块状的还会堵塞换热器中的管路,减少水的流量,从而降低换热效率。
3结晶污垢在冷却水循环系统中,随着水分的蒸发,水中溶解的盐类(如重碳酸盐)的浓度增高,部分盐类因过饱和而析出,而某些盐类则因通过换热器传热表面时受热分解产生沉淀。
这些水垢由无机盐组成、结晶致密,被称为结晶水垢。
3腐蚀污垢具有腐蚀性的流体或者流体中含有腐蚀性的杂质对换热表面腐蚀而产生的污垢。
腐蚀程度取决于流体中的成分、温度及被处理流体的pH 值等因素。
通常,冷却管中的污垢冷却管一般为紫铜管和黄铜管,金属腐蚀主要是较高温度下(40~50℃)的氧腐蚀,污垢以铜或铜合金腐蚀产物和钙镁沉淀物为主,从而造成大量腐蚀污垢。
4凝固污垢流体在过冷的换热面上凝固而形成的污垢。
例如当水低于冰点而在换热表面上凝固成冰。
温度分布的均匀与否对这种污垢影响很大。
空气预热器堵灰及腐蚀的原因及预防措施空气预热器堵灰及腐蚀的原因及预防措施【摘要】回转式空气预热器在运行中常见的问题是堵灰及腐蚀,堵灰及腐蚀严重影响锅炉运行的安全性及经济性。
本文针对我厂#4炉空气预热器在运行中存在的问题,并就其中原因作出简要的分析,提出几点预防建议措施,以供同行参考。
【关键词】空气预热器、堵灰、腐蚀一、概述湛江电力有限公司#4机组装机容量为300MW,汽轮机为东方汽轮机厂制造的亚临界、中间再热、两缸两排汽、凝汽式汽轮机,型号为N300-16.7/537/537/-3(合缸),采用喷嘴调节。
锅炉DG1025/18.2-Ⅱ(5)为东方锅炉厂制造的亚临界压力、中间再热、自然循环单炉膛;全悬吊露天布置、平衡通风、燃煤汽包炉。
锅炉配备两台型号为LAP10320/3883的回转式三分仓容克式空气预热器。
空气预热器还配有固定式碱液冲洗装置和蒸汽、强声波吹灰装置,在送风机的入口装有热风再循环装置。
二、空气预热器运行中存在的主要问题1 空气预热器堵灰运行中,首先发现一次、二次风压有摆动现象,随后摆幅逐渐加大,且呈现周期性变化。
其摆动周期与空气预热器旋转一周的时间恰好吻合,这说明空气预热器有堵塞现象。
这是因为当堵塞部分转到一次风口时,一次风压开始下降;当堵塞部分转到二次风口时,二次风压又开始下降,在堵塞部分转过之后,风量又开始增大。
#4锅炉燃烧较不稳定,空气预热器堵灰时,由于风量的忽大忽小,炉膛负压上下大幅度波动,严重影响锅炉燃烧的稳定性。
2 空气预热器腐蚀空气预热器堵灰及腐蚀是息息相关的。
空气预热器堵灰时,空气预热器受热面由于长期积灰结垢,水蒸汽及SO3容易黏附在灰垢上,加重了空气预热器的腐蚀;而空气预热器腐蚀时,受热面光洁度严重恶化,加重了空气预热器的积灰。
空气预热器堵灰及腐蚀时,运行中表现出空气预热器出口一、二次风温降低,排烟温度升高,锅炉效率降低。
三、空气预热器堵灰及腐蚀的原因分析1 烟气中含有水蒸汽及SO3由于烟气中含有水蒸气,而烟气中水蒸汽的露点(即水露点)一般在30~60℃,在燃料中水份不多的情况下,空气预热器的低温受热面上不会结露。
浅析空气预热器低温腐蚀的原因及预防措施摘要:本文结合本厂实际情况,理论联系实际简要阐述空气预热器结构特性、发生低温腐蚀的原因及运行过程中如何预防等措施。
关键词:空气预热器;低温腐蚀;低氧燃烧前言:我厂锅炉型式:亚临界、自然循环、前后墙对冲燃烧方式、一次中间再热、单炉膛、平衡通风、固态排渣、尾部双烟道、全钢构架的∏型汽包炉,再热汽温采用烟气挡板调节,空气预热器置于锅炉主柱内。
烟气飞灰含量较大,容易磨损,温度低,由于本厂增设脱硝装置,空预器处极易产生硫酸及硫酸铵,对空预器造成腐蚀。
一、空气预热器的内部结构及工作原理1、结构空气预热器主要由转子、蓄热元件、壳体、梁、扇形板、烟风道、密封系统、控制系统、驱动装置、轴承、润滑系统、吹灰和清洗装置组成。
工作原理空气预热器是利用排烟的余热加热空气的热交换器。
空預器可以进一步降低排烟温度,减少排烟热损失:同时提高燃烧所需空气温度,改善燃料着火和燃烧条件,降低各项不完全燃烧损失,提高锅炉机组热效率等。
其内部高效传热元件紧密排列在圆筒形转子中按径向分割的扇形仓格里。
转子周围的外壳与两端连接板连接,形成空气和烟气两个通道。
预热器转子缓慢旋转,烟气和空气交替流过传热元件。
当转子转至烟气通道时,传热元件表面吸收高温烟气的热量:当转子转至空气通道时,传热元件释放出热量加热空气。
如此反复循环,转子每旋转一周就进行一次热交换,通过转子的连续旋转,不断地将热量传给冷空气,提高进入炉膛燃烧的空气温度,以满足锅炉燃烧需要。
空预器按传热方式分为导热式和再生式(密热式或回转式)。
导热式为管式预热器:回转式空气预热器属于再生式,回转式空气预热器分为两种,受热面回转式和烟风罩转动受热面固定不动。
锅炉配有2台50%容量、单级、三分仓容克式空气预热器,型号为xx型,三分仓与分仓的区别在于可以加热压力较高的一次风,以干燥煤粉,并将煤粉吹到炉膛。
另外的二次风直接经过空预器后进入锅炉风箱,用于燃烧。
一般空預器冷端烟、气侧压差为762mm水柱,而三分仓由于多了路一次风,压差般为1016 -1524mm 水柱.三分仓空预器漏风率较大,本空预器设计漏风率投运年内为8%,一年后为10%. 对基本结构元件和密封系统,除由于压差增大而进行了些加强外,三分仓与两分仓空预器基本相同,本厂采用的三分仓式空预器。
浅谈空气预热器的低温腐蚀及预防措施引言空气预热器是电厂锅炉的重要辅机,主要是利用锅炉尾部烟道中的烟气通过其内部散热片,将进入锅炉前的空气预热到一定的温度,用于提高锅炉的热效率,降低能量消耗。
由于锅炉长时间低负荷运行,空气预热器低温腐蚀现象严重,造炉空气预热器受热面的损坏和泄漏,导致引风机负荷增加,限制锅炉出力,严重影响锅炉运行的安全性和经济性。
一、锅炉空气预热器的作用锅炉中煤粉与助燃空气燃烧后产生的高温烟气依次流经不同的辐射对流受热面后进入空预器预热进口冷风,进入炉膛的空气被加热,有利于稳燃和燃尽。
电站锅炉装设空预器的主要作用包括如下几点:首先,降低排烟温度,提高锅炉效率。
在现代燃煤电站中,由于回热循环的存在,锅炉给水经各级加热器加热后温度参数大大提高,如中压锅炉的给水温度为172℃左右,高压锅炉的给水温度为215℃左右,超高压锅炉的给水温度为240℃左右,亚临界压力锅炉的给水温度达到了260℃左右。
因此,烟气在省煤器处与给水换热后的温度仍然较高,要使省煤器后排烟温度降到100℃左右是不现实的,而如果直接排放必然造成相当大的排烟热损失。
装设空气预热器后,20摄氏度左右的冷空气与省煤器出来的高温烟气进行换热,一方面显著地降低了排烟温度,另一方面回收了排烟的热量重新进入炉膛,达到了提高燃料利用率的目的。
其次,入炉风温的提高改善了燃料的着火与燃烧条件,同时有利于降低燃料燃烧不完全的损失,这一点对着火困难的煤种尤其重要。
由于提高了燃烧所需的空气温度,改善了燃料的着火环境和燃烧效率,同时也降低了不完全燃烧热损失q3、q4,锅炉效率得到提高。
其三,可以允许辐射受热面设计数量的减少,降低钢材消耗。
由于炉内理论燃烧温度得到提高,炉内的辐射换热得到强化,在给定蒸发量的前提下,炉内水冷壁可以布置得少一些,这将节约金属材料,降低锅炉造价。
其四,有利于改善引风机的工作条件。
排烟温度降低后,直接改善了引风机的工作条件,同时也降低了引风机的电耗,提高了效率。
空预器冷端腐蚀原因分析及防范措施空气预热器的低温腐蚀主要发生在空气预热器的冷端(即冷风进口处的低温段)。
对回转式空气预热器而言,腐蚀会加重堵灰,使烟道阻力增大,严重影响锅炉的经济运行。
由低温腐蚀会对锅炉造成很大危害,因此必须预防发生低温腐蚀。
一、低温腐蚀的原因烟气进入低温受热面后,随着受热面的不断吸热,烟气温度逐渐降低,其中的水蒸气可能由于烟气温度降低或在接触温度较低的受热面时发生凝结。
烟气中水蒸气开始凝结的温度称为水露点。
纯净水蒸气露点取决于它在烟气中的分压力。
常压下燃用固体燃料的烟气中,水蒸气的分压力p=0.01-0.015Mpa,水蒸气的露点低至45-54℃,一般情况下不易在受热面上发生结露。
而当锅炉燃用含硫燃料时,硫燃烧后全部或大部分生成二氧化硫,其中一部分二氧化硫(占总含量的1%左右,体积分数)又在一定条件下进一步氧化生成三氧化硫(SO3)。
SO3与烟气中水蒸气化合后生成硫酸蒸汽,硫酸蒸气的凝结温度称为酸露点。
酸露点比水露点要高得多,而且烟气中SO3含量越高,酸露点越高,酸露点可达110-160℃。
当受热面的壁温低于酸露点时,这些酸就会凝结下来,对受热面金属产生严重的腐蚀作用,这种腐蚀称为低温腐蚀。
烟气酸露点的高低,表明了受热面低温腐蚀的范围大小及腐蚀程度高低,酸露点越高,更多受热面要遭受腐蚀,而且腐蚀越严重。
因此,烟气中酸露点是一一个表征低温腐蚀是否会发生的指示。
烟气的酸露点与燃料硫含量和单位时间送入炉内的总硫量有关,而后者是随燃料发热量降低而增大的。
两者对露点的影响,综合起来可用折算硫分来反映。
而且折算硫分越高,燃烧生成SO2就越多,SO3也将增多,致使烟气酸露点升高。
当燃用固体燃料时,烟气中带有大量的飞灰粒子。
飞灰粒子含有钙和其他碱金属化合物,它们可以部分地吸收烟气中的硫酸蒸气,从而可以降低它在烟气中的浓度,使得烟气中硫酸蒸气分压力降低,酸露点也降低。
烟气中飞灰粒子数量越多,影响越显著。