平行四边形(培养竞赛新方法十年典藏)
- 格式:doc
- 大小:232.50 KB
- 文档页数:6
名师第十五讲平行四边形平行四边形是一类特殊的四边形,它的特殊性体现在边、角、对角线上,矩形、菱形是特殊的平行四边形,矩形的特殊性体现在有一个角是直角,菱形的特殊性体现在邻边相等,所以,它们既有平行四边形的性质,又有各自特殊的性质.对角线是解决四边形问题的常用线段,对角线本身的特征又可以决定四边形的形状、大小,连对角线后,平行四边形就产生特殊三角形,因此解平行四边形相关问题时,既用到全等三角形法,特殊三角形性质,又要善于在乎行四边形的背景下探索问题,利用平行四边形丰富的性质为解题服务.熟悉以下基本图形、基本结论:例题求解【例1】如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF⊥AC于F,那么PE+PF的值为.(全国初中数学联赛试题)思路点拨分别求出PE、PF困难,△AOD为等腰三角形,若联想“到等腰三角形底边上任一点到两腰距离的和等于腰上的高”这一性质,则问题迎刃而解.注特殊与一般是对立统一的,在一定条件下可以互相转化,相对于一般而言,特殊的事物往往更简单、更直观、更具体.因而人们常常通过特殊去认识一般;另一方面,一般概括了特殊,一般比特殊更为深刻地反映着事物的本质,所以人们也往往通过一般去了解特殊.一般与特殊,是知识之间联系的一种重要形式,知识常常在一般到特殊或特殊到一般的变化过程中,不斩地得到延伸与拓展.【例2】已知四边形ABCD,从下列条件中:(1)AB∠CD,(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有()A.4种 B.9种 C.13种 D. 15种(山东省竞赛题)思路点拨根据平行四边形的判定方法及新的组合方式判定.【例3】】如图,在△ADC中,∠DAC=90°,AD⊥BC,DC、AF分别是∠ABC、∠DAC的平分线,BE和AD 交于G,求证:GF∥AC.(湖北省荆州市中考题)思路点拨从角的角度证明困难,连结CF,在四边形AGFE的背景下思考问题,证明四边形AGFE为特殊平行四边形,证题的关键是能分解出直角三角形中的基本图形.【例4】如图,设P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG ⊥EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC⊥BD,且BC=BD.(全国初中数学联赛试题)思路点拨尽管图形复杂,但证明目标明确,只需证明△CPB≌△DPB,应从图中分离出特殊三角形、特殊四边形,充分运用它们的性质为证题服务.【例5】如图,在等腰三角形ABC中,延长边AB到点D,延长边CA到点E,连结DE,恰有AD=BC=CE=DE.求∠BAC的度数.(北京市竞赛题)思路点拨 题设条件给出的是线段的等量关系,要求的却是角的度数,相等的线段可得到全等三角形、特殊三角形,为此需通过构造平行四边形改变它们的位置.注 课本中平行四边形的判定定理是从边、角、对角线三个方面探讨的,一般情况是,从四边形边、角、对角线三类元素任意选取两类,任意组合就产生许多判定平行四边形的命题.其中有真命题与假命题,对于假命题,要善于并熟悉构造反例.构造反例是学习数学的一种重要技能,可以帮助我们理解概念.培养推理能力,数学史上就曾有许多著名的论断被一个巧妙的反例推翻的实例.若题设条件中有彼此平行的线段或造成平行的因素,则通过作平行线,构造平行四边形,这是解四边形问题的常用技巧,这是由于平行四边形能使角的位置更理想,送线段到恰当的地方,使线段比良性传递.学力训练1.如图,BD 是平行四边形ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行 四边形,还需要增加的一个条件是 (填上你认为正确的一个即可,不必考 虑所有可能情形) (宁波市中考题)2.(1)如图,已知矩形ABCD 中,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若∠DAE :∠BAE =3:1,则∠CAC = ; (河南省中考题)(2)矩形的一个角的平分线分矩形一边为lcm 和3cm 两部分,则这个矩形的面积为 cm 2. (武汉市中考题)3.如图,以△ABC 的三边为边在BC 的同一侧分别作三个等边三角形,即△ABD 、△BCE 、△ACF .(1)四边形ADEF 是 ;(2)当△ABC 满足条件 时,四边形ADEF 为矩形;(3)当△ABC 满足条件 时,四边形ADEF 不存在. (2000年贵州省中考题)4.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+3,则这两边之积为 . (2001年天津市选拔赛试题)5.四边形的四条边长分别是a 、b 、c 、d ,其中a 、c 为对边,且满足cd ab d c b a 222222+=+++,则这个四边形一定是()A.平行四边形 B.两组对角分别相等的四边形C.对角线互相垂直的四边形 D.对角线相等的四边形6.如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为( )A.98 B.196 C.280 D. 284(湖北省荆州市中考题)7.如图,菱形花坛ABCD的边长为6m,∠B=60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( )A.123 m B.20m C. 22m D.24m(吉林省中考题)8.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则( )A.AD〉BC B.AD<BCC.AD=BC D.AD与BC的大小关系不能确定(“希望杯”邀请赛试题)9.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD为边作等边△ADC.(1)求证:△ACD≌△CNBF;(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?证明你的结论. (南通市中考题)10.如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于C,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.(黑龙江省中考题)11.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:CO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当△ABC满足什么条件时,四边形AECF是正方形?12.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中有对四边形面积相等,它们是.(常州市中考题)13.如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+3,∠ABC=60°,则菱形ABCD的面积为.14.如图,矩形ABCD的对角线相交于O,AE平分∠BAD交BC于E,∠CAE=15°,则∠BOE= .15.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为. (山东省竞赛题)16.如图,平行四边形ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是()A.60° B.65° C.70° D.75°(“希望杯”邀请赛试题)17.如图,正△AEF 的边长与菱形ABCD 的边长相等,点E 、F 分别在BC 、CD 上,则∠B 的度数是( )A .70°B .75°C .80°D .95°(重庆市竞赛题)18.如图,正方形ABCD 外有一点P ,P 在BC 外侧,并在平行线AB 与CD 之间,若PA=17,PB=2,PC=5,则PD=( )A .25B .19C .32D .17 (“五羊杯”竞赛题)19.如图,在平行四边形ABCD 中,BC=2AB ,CZ ⊥AB 于E ,F 为AD 的中点,若∠AEF=54°,则∠B=( )A .54°B .60°C .66°D .72°(武汉市选拔赛试题)20.如图,在Rt △ABC 中,∠ABC =90°,∠C=60°,BC =2,D 是AC 的中点,以D 作DE ⊥AC 与CB 的延长线交于E ,以AB 、BE 为邻边作长方形ABEF ,连结DF ,求DF 的长.21.如图,菱形的对角线AC 与BD 交于点O,延长BA 到E ,使AE=21AB,连结OE ,延长DE 交CA 的延长线于F .求证:OE=21DF . 22.阅读下面短文:如图1,△ABC 是直角三角形,∠C=90°,现将△ABC 补成矩形,使△ABC 的两个顶点为矩形一边的两个端点,第三个便点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个:矩形ACBD 和矩形AEFB(如图2).解答问题;(1)设图2中矩形ACBD和矩形AEFB的面积分别为S l、S2,则S1 S2(填“〉”,“=”或“〈");(2)如图3,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出个,利用图3把它画出来;(3)如图4,△ABC是锐角三角形且三边满足BC〉AC>AB,按短文中的要求把它补成矩形,则符合要求的矩形可以画出个,利用图4把它画出来;(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?(陕西省中考题)23.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.(杭州市“求是杯”竞赛题)24.如图,在锐角△ABC中,AD、CZ分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连结PQ、DE.(1)求证;直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC〉90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.(“希望杯”邀请赛试题)。
第十八章四边形
平行四边形
平行四边形的性质(一)
教学目标:
1理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.
2会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3培养学生发现问题、解决问题的能力及逻辑推理能力.
教学重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.
教学难点:运用平行四边形的性质进行有关的论证和计算.
教学方法:观察法、小组合作讨论
课时课型:1课时新授课
教学过程:
一、复习引入:
1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象
2观察图形,说出下列图形边的位置有什么特征
(、BC=80cm,∠B=60°且AE∥BC、AB∥CF,你能根据测得的数据计算出DE的长度和∠
D的度数吗
2、例1 如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少
课堂小结
1、定义:两组对边分别平行的四边形叫做平行四边形.
2、几何语言表述:
3、性质:平行四边形的对边平行且相等。
平行四边形的对角相等。
板书设计:
布置作业:同步练习册
课后反思:
再教改进:。
例1(1)本题先结合平行四边形性质,根据ASA 得出△ABM ≌△CDN ,从而得出DN=BM ,AM=CN ;再由三角形中位线得出CN=MN ,BM=DN=2NF ,同时推翻AM=AC 、S △AMB=21S △ABC .(2)用大五边形面积减去3个三角形面积即可求得结果(三角形ABD 、三角形ACE 、三角形ABC );∴△BDF 、△EFC 均为RT 三角形例2平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定,任取两个进行推理.解:根据平行四边形的判定,符合四边形ABCD 是平行四边形条件的有九种:(1)(2);(3)(4);(5)(6);(1)(3);(2)(4);(1)(5);(1)(6);(2)(5);(2)(6)共九种.例3熟记平行四边形的判定,其中对角线互相平分,是平行四边形,延长AC 后,证明AD ∥BC ,然后再证明三角形全等,证得对角线互相平分,得到结论.证明:延长AC ,在C 上方取N ,A 下方取M ,使AM=AE ,CN=CF ,则由已知可得PM=PN ,易证△PME ≌△PNF ,且△AME ,△CNF 都是等腰三角形. ∴∠M=∠N ,MEP=∠NFP∴∠AEP=∠PFC ∴AD ∥BC ,可证得△PAE ≌△PCF ,得PA=PC , 再证△PED ≌△PFB .得PB=PD . ∴ABCD 为平行四边形.例4(1)先过点E 作EG ∥CD 交AF 的延长线于点G ,由EG ∥CD ,AB ∥CD ,可得,CD ∥GE ,再有BE ∥AG ,那么四边形ABEG 是平行四边形,就可得,AB=GE=CD ,而GE ∥CD ,会出现两对内错角相等,故△EGF ≌△DCF ,即EF=DF .(2)有AC ⊥DC ,∠ADC=60°,可得CD=21AD=21a ,利用勾股定理,可求AC=a 23,而CF=21AC ,那么再利用勾股定理,又可求DF ,而由(1)知,DE=2DF ,故可求∵AD=a∴CD=a 21,AC=a 23 又AC=2CF ,CF=FG ∴AG=a 3∵四边形ABEG 为平行四边形 ∴BE=AG=a 3(3)∵AC ⊥DC ,∴∠G 为Rt 角, 又∵△EFG ≌△DFC∴S ABED =S 正方形ABEG +S △ACD=a a a a 212321213⨯⨯+⨯=2835a 例5(1)(2)(3)13=2×6=124解:由a2+b2+c2+d2=2ac+2bd,可整理为(a-c)2+(b-d)2=0,即a=c,b=d.则这个四边形一定是平行四边形.568在图2中,因为四边形PEAF为平行四边形,所以PE=AF,又三角形FDC为等腰三角形,所以FD=PF+PD=FC,即PE+PD+PF=AC=AB,在图3中,PE=AF可证,FD=PF-PD=CF,即PF-PD+PE=AC=AB.9证明:(1)∵ABCD平行四边形∴OD=OB=1/2BD AD=BC AB=CD又∵BD=2AD∴BC=OB又∵E是OC的中点∴BE⊥OC即BE⊥AC(2)由(1)可得△ABE是直角三角形又∵G是AB的中点∴EG=1/2AB (直角三角形斜边中线等于斜边一半)E,F,分别是OC,OD,的中点∴EF=1/2CD∴EG=EF(3)∵BG∥EF,BG=EF∴∠AGF=∠ABE=∠GFE又∵EG=EF∴∠GFE=∠FGE∴∠FGE=∠AGF③成立101112解::①一组对边相等,一组对角相等的四边形,不能证明另一组对边也相等或平行,故四边形不一定是平行四边形(无角边边全等判定定理);故①错误;②两组对角的内角平分线分别平行的四边形,证明两组对角相等,故四边形是平行四边形,故②正确;证明:∵AF∥CE,BM∥DN∴∠DGA=∠CHB∴∠DAG+∠ADG=∠HCB+∠HBC (1)∠GAE+∠GNA=∠HCM+∠HMC (2)(1)+(2)得∠ADN+∠AND+∠A =∠BMC+∠MBC+∠C∵内角平分和平行∴∠ADN=∠BMC, ∠AND=∠MBC∴∠A =∠C同理∠D =∠B∴四边形为平行四边形③一组对边中点的距离等于另一组对边边长的和的一半的四边形,梯形中两腰中点的连线也可以符合等于上下底的一半,故③错误;④两条对角线都平分四边形的面积的四边形是平行四边形,可证明两组对边平行,故④正确;证明:设四边形ABCD,AC,BD是对角线,AC与BD交点为O过A作AE垂直BD,过C作CF垂直BD,垂足是E,F然后根据对角线平分面积,证明AE=CF再根据"角角边”相等,证明三角形AEO与三角形CFO全等从而得到AO=CO同理得到BO=DO则四边形为平行四边形13平行四边形有两组分别平行的边,因此只需要在第一组中取两条,在第二组中取两条,就可以构成平行四边形,共C23×C25=[(3×2)/2]×[(5×4)/2]=30个14证明:过D,F,B做EF,AB,CD的平行线,∵BC-EF=DE-AB=AF-CD,∴△MPN为正三角形.∴∠NPM=∠PMN=∠MNP=60°.∴∠BMD=∠BNF=∠FPD=120°.又∵AB∥DE,BC∥EF,CD∥AF,∴分割构成3个平行四边形.∴六个内角都相等.15证明:如图所示过B作BM∥AC,过C作CM∥AB,则四边形ABMC为平行四边形,∴CM=AB,BM=AC=BD,BM∥AC,又∵∠DOC=60°,∴∠DBM=∠DOC=60°即三角形DBM为等边三角形,∴BM=AC=DM在△CDM中,CM+CD>DM,即AB+CD>AC.解:过D 作DF ∥BC ,且使DF=BC ,连CF 、EF ,则四边形BDFC 是平行四边形,∴BD=CF ,DA ∥FC , ∴∠EAD=∠ECF , ∵AD=CE , ∴AE=BD=CF ,∴△ADE ≌△CEF (SAS ) ∴ED=EF ,∵ED=BC ,BC=DF , ∴ED=EF=DF∴△DEF 为等边三角形设∠BAC=x °,因为等腰三角形,则∠ADF=∠ABC=2180︒-︒x , ∴∠DAE=180°-x °,∴∠ADE=180°-2∠DAE=180°-2(180°-x °)=2x °-180°, ∵∠ADF+∠ADE=∠EDF=60° ∴2180︒-︒x +(2x °-180°)=60° ∴x=100. ∴∠BAC=100°(1)因为S △ABC =3,所以S 1+S 2+S 3<3 (2)结论成立证明:延长OB 到H 使BH=OE ,延长OA 到G 使AG=OD ,连接HG ∵OA+AG=OA+DO=AD=2 OB+BH=OB+OE=BE=2 ∠AOB=60° ∴△GHO 是等边三角形 ∵OG=OH=HG=2 ∴S △GHO=3在HG 上取点M ,使MG=OC ∵HM+MG=HG=2 OC+OF=CF=2 ∴HM=OF在△MGA 和△COD 中,⎪⎩⎪⎨⎧=︒=∠=∠=OD GA 60COD CO MG G∴△MGA ≌△COD 同理可证:△MHB ≌△FOE ∴S 2=S △MHB ,S 3=S △MGA由图形可知:S △ABO +S △MHB +S △MGA +<S △GHO ∴S 1+S 2+S 3<S △GHO =3 即S 1+S 2+S 3<3例1根据二次根式有意义的条件被开方数为非负数可得出x 2和y 的值,代入即可得出答案.验证了几个数字,感觉该题目不对 或许应该为:例3 (1)原式=)36(3)23(1)23)(36()23(3)36(+++=+++++263623-=-+-=(2)原式=7*35*37*22*57*35*37*22*5+++--+562)32()32()32()75)(32()75)(32(2-=--=+-=+++-=(3)观察规律,将每一个二次根式分为两个二次根式,寻找抵消规律;原式=21(1-31)+ 21(31-51)+ 21(51-71)+…+21(471-491)=21(1-491)=73;例4 (1)32131313231323=-++=+-+++=(2)分两步同理得:原式=24+ 例51根据根式性质:2x-3≥0;3-2x ≥0联立得 x=23,y=2,所以2x+y=52a-b>0;所以 原式=a-b-a=-b 34因为x 》3/2,所以原式=2x-1-2x+3=2 5运用二次根式的性质和绝对值的性质化简.6 因为 b a 1= 所以原式=2)12(121=--+=-aa7根据合并同类项的法则,由x +2y =50,可以得出x 与y 能合并的所有的可能,即可得出的答案8因为32321-=+=a a <1所以原式=33213211)1(1)1(=++--=+-=----aa a a a a9(1)224)22229(=÷-+=(2)233242232312+-=+-++=10(1)设n=1999,从而可将根号里面的数化为完全平方的形式,继而可得出答案.(2)分别将各二次根式配方可得出答案.(3)将分子及分母分别化简,然后运用提公因式的知识将分子及分母简化,继而得出答案.(4)设1997=a ,1999=b ,2001=c ,从而可将原式化简,继而可得出答案11(1)(2)12先分母有理化13 只能观察无详解14151622)223()12(2-+-=223222-+-= 此处后一个根式不能为322-(小于0)=117由条件得 x<0,所以 原式=1-x (可画数轴辅助思考)18()()71033373103-+⨯-⨯+⨯=76632)2121010(3))37(10(3))37(10))(37(10(32==+-=--=---+=192)33()13(323232632222=-+-=-⨯++-⨯+-⨯=20(4)2122(1)将定义的式子根据立方差公式化简,找出一般规律,再代值计算,寻找抵消规律;(2)已知等式右边为整数,左边的两个二次根式必为整数,故设x-116=m2,x+100=n2,两式相减利用平方差公式进行求解.23该题话费时间颇多,林老师好好研究研究,前半段我感觉思路合适,后面感觉怪怪的 暂时将我思路放上 (不好意思 又撂挑子了^^) 原式=2222)01())1(0())1(0()0(--+--+--+-x x 为两线长度之和: 将(1-x ,0)隐射到三象限 ①由直线距离最短 两线斜率相等:xx -=111得 21=x 代入原式=5 ②由斜率相差最大时,两线长度之和最大 即x=0 或x=1时得 原式=1+2因为10<<x ,所以原式成立 24实数的概念与性质20.证明:(1)、当c=0时,因为 bc=ad 所以 a=0,且d ≠0,(Y 分母不能为零), y=db,为有理数。
八年级数学竞赛专题训练19 平行四边形、矩形、菱形阅读与思考平行四边形、矩形、菱形的性质定理与判定定理是从对边、对角、对角线三个方面探讨的,矩形、菱形都是特殊的平行四边形,矩形的特殊性由一个直角所体现,菱形的特殊性是由邻边相等来体现,因此它们除兼有平行四边形的一般性质外,还有特有的性质;反过来,判定一个四边形为矩形或菱形,也就需要更多的条件.连对角线后平行四边形、矩形、菱形就与特殊三角形联系在一起,所以讨论平行四边形、矩形、菱形相关问题时,常用到特殊三角形性质、全等三角形法;另一方面,又要善于在四边形的背景下思考问题,运用平行四边形、矩形、菱形的丰富性质为解题服务,常常是判定定理与性质定理的综合运用.熟悉以下基本图形:例题与求解【例l】如图,矩形ABCD的对角线相交于O,AE平分∠BAD,交BC于E,∠CAE=15°,那么∠BOE=________.D(“祖冲之杯”邀请赛试题) 解题思路:从发现矩形内含的特殊三角形入手.【例2】下面有四个命题:①一组对边相等且一组对角相等的四边形是平行四边形;②一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形;③一组对角相等且这一组对角的顶点所连结的对角线平分另一条对角线的四边形是平行四边形;④一组对角相等且这一组对角的顶点所连结的对角线被另一条对角线平分的四边形是平行四边形;其中,正确的命题的个数是()A.1B. 2C. 3D.4(全国初中数学联赛试题)解题思路:从四边形边、角、对角线三类元素任意选取两类,任意组合就产生许多判定平行四边形的命题,关键在于对假命题能突破正规的、标准位置的图形构造反例否定.【例3】如图,菱形ABCD 的边长为2,BD =2,E ,F 分别是边AD ,CD 上的两个动点且满足AE +CF =2.(1)判断△BEF 的形状,并说明理由; (2)设△BEF 的面积为S ,求S 的取值范围.DACB(烟台中考试题)解题思路:对于(1)由数量关系发现图形特征;对于(2),只需求出BE 的取值范围.【例4】如图,设P 为等腰直角三角形ACB 斜边AB 上任意一点,PE ⊥AC 于点E ,PF ⊥BC 于点F ,PG ⊥EF 于点G ,延长GP 并在春延长线上取一点D ,使得PD =PC . 求证:BC ⊥BD ,BC =BD .AB(全国初中数学联赛试题)解题思路:只需证明△CPB ≌△DPB ,关键是利用特殊三角形、特殊四边形的性质.【例5】在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 的延长线于点F .图3图2图1DFC(1)在图1中证明CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB ,DG (如图3),求∠BDG 的度数.(北京市中考试题)解题思路:对于(1),由角平分线加平行线的条件可推出图中有3个等腰三角形; 对于(2),用测量的方法可得∠BDG =45°,进而想到等腰直角三角形,连CG ,BD ,只需证明△BGC ≌△DGF ,这对解决(3),有不同的解题思路. 对于(3)【例6】如图,△ABC 中,∠C =90°,点M 在BC 上,且BM =AC ,点N 在AC 上,且AN =MC ,AM 与BN 相交于点P . 求证:∠BPM =45°.NMBA(浙江省竞赛试题)解题思路:条件给出的是线段的等量关系,求证的却是角度等式,由于条件中有直角和相等的线段,因此,可想到等腰直角三角形,解题的关键是平移AN 或AC ,即作ME ⊥AN ,ME =AN ,构造平行四边形.能力训练 A 级1. 如图,□ABCD 中,BE ⊥CD ,BF ⊥AD ,垂足分别为E 、F ,若CE =2,DF =1,∠EBF =60°,则□ABCD 的面积为________.第1题A2. 如图,□ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M ,若△CDM 周长为a ,那么□ABCD 的周长为 ________.第2题MB(浙江省中考试题)3. 如图,在Rt △ABC 中,∠B =90°,∠BAC =78°,过C 作CF ∥AB ,连结AF 与BC 相交于G ,若GF =2AC ,则∠BAG 的大小是________.第3题FA(“希望杯”竞赛试题)4. 如图,在菱形ABCD 中,∠B =∠EAF =60°,∠BAE =20°,则∠CEF 的大小是________.第4题ABDC(“希望杯”邀请赛试题)5. 四边形的四条边长分别是a ,b ,c ,d ,其中a ,c 为对边,且满足222222a b c d ab cd +++=+,则这个四边形一定是( )A.两组角分别相等的四边形B. 平行四边形C. 对角线互相垂直的四边形D. 对角线相等的四边形6.现有以下四个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③有一个角为直角且对角线互相平分的四边形为矩形;④菱形的对角线的平方和等于边长的平方的4倍.其中,正确的命题有( )A. ①②B.③④C. ③D. ①②③④7. 如图,在矩形ABCD 中,AB =1,ADAF 平分∠DAB ,过点C 作CE ⊥BD于E ,延长AF ,EC 交于点H ,下列结论中:①AF =FH ;②BO =BF ;③CA =CH ;④BE =3ED .正确的是( )A. ②③B.③④C. ①②④D. ②③④HB(齐齐哈尔中考试题)8. 如图,矩形ABCD 的长为a ,宽为b ,如果12341(S S )2S S ==+,则4S =( )A.38abB.34ab C. 23ab D. 12ab第8题ABE F(“缙云杯”竞赛试题)9. 已知四边形ABCD ,现有条件:①AB ∥DC ;②AB =DC ;③AD ∥BC ;④AD =BC ;⑤∠A =∠C ;⑥∠B =∠D .从中取两个条件加以组合,能推出四边形ABCD 是平行四边形的有哪几种情形?请具体写出这些组合.(江苏省竞赛试题)10. 如图,△ABC 为等边三角形,D 、F 分别是BC 、AB 上的点,且CD =BF , 以AD为边作等边△ADE .(1)求证:△ACD ≌△CBF ;(2)当D 在线段BC 上何处时,四边形CDEF 为平行四边形,且∠DEF =30°,证明你的结论.EACD(江苏省南通市中考试题)11. 如图,在Rt △ABC 中,AB =AC ,∠A =90°,点D 为BC 上任一点,DF ⊥AC 于F ,DE ⊥AC 于E ,M 为BC 中点,试判断△MEF 是什么形状的三角形,并证明你的结论.MBCD(河南省中考试题)12. 如图,△ABC 中,AB =3,AC =4,BC =5,△ABD ,△ACE ,△BCF 都是等边三角形,求四边形AEFD 的面积.E(山东省竞赛试题)B 级1. 如图,已知ABCD 是平行四边形,E 在AC 上,AE =2EC ,F 在AB 上,BF =2AF ,如果△BEF 的面积为22cm ,则□ABCD 的面积是________.第1题B(“希望杯”竞赛试题)2. 如图,已知P 为矩形ABCD 内一点,P A =3,PD =4,PC =5,则PB =________.第2题BC(山东省竞赛试题)3. 如图,在矩形ABCD 中,AB =6cm ,BC =8cm ,现将矩形折叠,使B 点与D 点重合,则折痕EF 长为________.第3题FB C(武汉市竞赛试题)4. 如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,使点D 落在点D '处,CD '交AB 于点F ,则重叠部分△AFC 的面积为 ________.第4题AB(山东省竞赛试题)5. 如图,在矩形ABCD 中,已知AD =12,AB =5,P 是AD 边上任意一点,PE ⊥BD 于E ,PF ⊥AC 于F ,那么PE +PF 的值为________.第5题C(全国初中数学联赛试题)6. 如图,菱形ABCD 的边长为4 cm ,且∠ABC =60°,E 是BC 的中点,P 点在BD 上,则PE+PC 的最小值为________.第6题EDB(“希望杯”邀请赛试题)7. 如图,△ABC 的周长为24,M 是AB 的中点,MC =MA =5,则△ABC 的面积是( )A. 30B. 24C.16D.12第7题BC(全国初中数学联赛试题)8. 如图,□ABCD 中,∠ABC =75°,AF ⊥BC 于F ,AF 交BD 于E ,若DE =2AB ,则∠AED 的大小是( ) A. 60° B. 65° C.70° D.75°第8题B9. 如图,已知∠A =∠B ,1AA ,1PP ,1BB 均垂直于11A B ,1AA =17,1PP=16,1BB =20,11A B =12,则AP+PB 的值为( )A. 15B.14C. 13D.12第9题BA1P 1(全国初中数学联赛试题)10. 如图1,△ABC 是直角三角形,∠C =90°,现将△ABC 补成矩形,使△ABC 的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可画出两个:矩形ACBD 和矩形AEFB (如图2).图1图3EDBAB CB解答问题:(1)设图2中矩形ACBD 和矩形AEFB 的面积分别为1S ,2S ,则1S ________2S (填“>”、“=”或“<”).(2)如图3,△ABC 是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出________个,利用图3画出来.(3)如图4,△ABC是锐角三角形且三边满足BC >AC >AB ,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出________个,利用图4画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?图4ABC(陕西中考试题)11.四边形ABCD 中,AB =BC =CD =DA ,∠BAD =120°,M 为BC 上一点,N 为CD 上一点.求证:若△AMN 有一个内角等于60°,则△AMN 为等边三角形.12.如图,六边形ABCDEF中,AB∥DE,BC∥EF,CD∥AF,对边之差BC-EF=ED-AB=AF-CD>0.求证:该六边形的各角相等.EB(全俄数学奥林匹克试题)专题19 平行四边形、矩形、菱形例1 75° 例2 A 只有命题③正确.例3 (1)△BEF 为正三角形 提示:由△ABD 和△BCD 为正三角形,可证明△BDE ≌△BCF ,得:BE=BF ,∠DBE =∠CBF .∵∠DBC=∠CBF +∠DBF =∠DBE +∠DBF =60°,即∠EBF=60°,故△BEF 为等边三角形. (2)设BE BF EF x ===,则可得:23S x =, 当BE ⊥AD 时,x 有最小值为3.∴()2min 33334S =⨯=. 当BE 与AB 重合时,x 有最大值为2, ∴()2max 3234S =⨯=. ∴3334S ≤≤. 例4 提示:PC=EF=PD ,4545CPB PFC EPG GPA BPD ︒︒∠=+∠=+∠=∠=∠,可证明△CPB ≌△DPB .例5 (1)略 (2)45° (3)60°如图,延长AB 至H ,使AH=AD ,连DH ,则 △AHD 是等边三角形.∵AH=AD=DF ,∴BH=GF , 又∠BHD=∠GFD=60°,DH=DF , ∴△DBH ≌△DGF ,∠BDH=∠GDF , ∴()1206060BDG ADC ADB GDF ADC ADB BDH ︒︒︒∠=∠-∠-∠=∠-∠+∠=-=例6 如图过M 作ME AN ,连NE ,BE ,则四边形AMEN 为平行四边形,得NE=AM ,ME ⊥BC .∵ME=CM ,∠EMB=∠MCA=90°,BM=AC .∴△BEM ≌△AMC ,得BE=AM=NE ,∠1=∠2,∠3=∠4. ∵∠1+∠3=90°,∴∠2+∠4=90°且BE=NE .∴△BEN 为等腰直角三角形,∠BNE=45°. ∵AM ∥NE ,∴∠BPM=∠BNE=45°.A 级1. 1232. 2α3. 26° 提示:作FG 边上中线,连接EC ,则EF=EC=AC .4. 20° 提示:连接AC ,则△AFC ≌△AEB ,△AEF 为等边三角形.5.C6.B7.D8. A 提示:E 、F 分别为AB 、BC 中点.9.从6个条件中任取2个,只有15种组合,其中能推出四边形ABCD 是平行四边形的有以下9种情形:①与③;②与④;⑤与⑥;①与②;③与④;①与⑤;①与⑥;③与⑤;③与⑥. 10. 提示:(2)当D 为BC 中点时,满足题意.11. 提示:连AM ,证明△AMF ≌△BME ,可证△MEF 为等腰直角三角形.12. 6 提示:由△ABC ≌△DBF ,△ABC ≌△EFC 得:AC=DF=AE ,AB=EF=AD .故四边形AEFD 为平行四边形.又∠BAC=90°,则∠DAE =360°-90°-60°-60°=150°,则∠ADF=∠AEF=30°,则F 到AD 的距离为2,故326AEFDS=⨯=.B 级1. 92cm2. 32 提示:可以证明2222PA PC PB PD +=+. 3.152cm 4. 10 提示:可先证:AF=CF .设AF CF x ==,则8BF x =-, ∴()22284x x =-+. ∴5x =. ∴11541022AFC S AF BC ∆==⨯⨯=. 5.6013提示:过A 作AG ⊥BD 于G 可证PE+PF=AG , 由AG BD AB AD =可得:512601313AG ⨯==. 6. 23 提示:A ,C 关于BD 对称,连AE 交BD 于P .∴PE+PC=AE.又∵AE⊥BC且∠BAE=30°,∴AE .7. B8. B提示:取DE中点为G,连结AG,则AG=DG=EG.9. C10.(1)=;图略(2)1;图略(3)3;图略(4)以AB 为边的矩形周长最小,用面积法证明.11.证明:连AC,如图,则易证△ABC与△ADC都为等边三角形.(1)若∠MAN=60°,则△ABM≌△ACN.∵AM=AN,∠MAN=60°,∴△AMN为等边三角形.(2)∠AMN=60°,过M作CA的平行线交AB于P.∵∠BPM=∠BAC=60°,∠B=60°,∴△BPM为等边三角形,BP=BM,BA=BC.∴AP=MC.又∠APM=120°=∠MCN.∠PAM=∠AMC-∠B=∠AMC-60°=∠AMC-∠AMN=∠CMN,∴△PAM≌△CMN.∴AM=MN,又∠AMN=60°.故△AMN为等边三角形.12.提示:如图,分别过点A作AM∥EF,过点C作CP∥AB,过点E作EN∥AF,它们分别交于N,M,P点,得□ABCM、□CDEP、□EFAN,则EF=AN,AB=CM,CD=PE,BC=AM,CP=DE,AF=NE,由条件得△NMP为等边三角形,可推得六边形的每个内角均为120°.AM NPB DABC D EPNMF。
《平行四边形的发现》全国教育创新竞赛优秀奖得主项目概述项目名称:《平行四边形的发现》奖项:全国教育创新竞赛优秀奖项目背景在当前教育环境中,培养学生的创新能力和实践能力已成为教育改革的重要目标。
为了提高学生的学习兴趣和积极性,我们参加了全国教育创新竞赛,以探索新的教学方法和手段。
在数学教学中,我们发现学生对平行四边形的理解和应用存在一定的困难。
为了帮助学生更好地理解和掌握平行四边形的性质和应用,我们设计了一项名为《平行四边形的发现》的教育创新项目。
项目目标通过该项目,我们旨在实现以下目标:1. 提高学生对平行四边形的理解和掌握程度。
2. 培养学生的创新思维和实践能力。
3. 探索新的教学方法和手段,提高教学质量。
项目实施为了实现项目目标,我们采取了以下措施:1. 设计创新的教学活动:我们设计了一系列的教学活动,包括小组讨论、实验探究、数学游戏等,以激发学生的学习兴趣和积极性。
2. 引入现代教育技术:我们利用多媒体演示、在线教学平台等现代教育技术手段,以提供丰富的学习资源和交互式学习环境。
3. 加强学生之间的合作与交流:我们鼓励学生进行小组合作,分享学习心得和经验,以培养学生的团队合作能力和沟通能力。
4. 定期进行评估和反馈:我们通过定期的测试和评估,了解学生的学习进度和困难,及时进行反馈和指导,以确保学生的学习效果。
项目成果经过一段时间的实施,我们取得了以下成果:1. 学生的学习兴趣和积极性得到了提高,对平行四边形的理解和掌握程度明显提升。
2. 学生的创新思维和实践能力得到了锻炼和发展,能够运用平行四边形的性质解决实际问题。
3. 教学方法和手段的创新尝试取得了一定的成功,为今后的教学提供了有益的经验和启示。
总结与展望通过参加全国教育创新竞赛,我们有机会展示和推广我们的教育创新项目《平行四边形的发现》。
我们深感荣幸能够获得优秀奖,这是对我们工作的肯定和鼓励。
在今后的工作中,我们将继续努力,深入研究和探索教育创新的方法和手段,为学生提供更优质的教育资源和教学服务,为教育事业的发展做出更大的贡献。
平行四边形的性质一等奖创新教案一、教学目标:1.掌握平行四边形的定义和相关性质;2.能够判断两条线段是否平行;3.能够应用平行四边形的性质解决问题。
二、教学内容:1.平行四边形的定义;2.平行四边形的性质:对边平行、对角线互相等长、对角线平分、对边互相等分;3.平行四边形的判定:同位角相等、内错角互补。
三、教学过程:1.导入新课:教师出示一幅平行四边形的图形,引导学生观察图形特征,问学生对该图形有什么了解。
2.导入新知:通过讲解,引出平行四边形的定义和相关性质。
主要内容包括:(1)定义:两对对边互相平行的四边形称为平行四边形;(2)性质1:对边平行;(3)性质2:对角线互相等长;(4)性质3:对角线平分;(5)性质4:对边互相等分。
3.深入讲解:讲解平行四边形的判定方法。
(1)同位角相等:对于平行四边形ABCD,若∠A=∠C,则线段AB∥线段CD。
(2)内错角互补:对于平行四边形ABCD,若∠A+∠D=180°,则线段AB∥线段CD。
4.例题演练:(1)将一个三角形中的一边平分,且平分线与三角形的另外两边分别交于线段的中点,证明该三角形是平行四边形。
(2)已知ABCD是一个平行四边形,且∠ABC=120°,求∠ACD的度数。
(3)证明:一个四边形是平行四边形的充分必要条件是该四边形的每一对对边互相平行。
5.拓展应用:让学生解决实际问题,应用平行四边形的性质。
(1)在一平行四边形中,两对相邻角的度数比是5:7,求其中一个角的度数。
(2)在平行四边形中,若两个同位角分别是150°和50°,求另外两个同位角的度数。
(3)已知四边形ABCD是一个平行四边形,且∠BAD=75°,∠ADC=105°,求∠CAB的度数。
6.总结归纳:让学生总结平行四边形的定义和性质以及判定方法,并进行简要归纳。
四、教学手段:1.讲解:教师通过板书、示意图等方式进行讲解,重点突出平行四边形的定义、性质和判定方法。
AB C D《平行四边形》教案唐店学校唐孝山教学目标:1.能准确叙述平行四边形的概念和性质.并能用符号语言表示.2.能初步应用平行四边形的概念及其性质进行计算和证明.教学重点、难点:重点:平行四边形的概念和性质的探索.难点:平行四边形的概念和性质的探索.难点突破策略:以学生的生活经验和已有的数学活动经验为基础,选取易得材料,以实验操作的方法辅以多媒体演示并运用转化的数学思想方法,即如何将平行四边形转化为三角形使问题得到解决.教学过程:一、引言(感受生活):师:生活中有很多四边形是平行四边形,下面我们一起来欣赏一下:师出示图片,与学生共同找出平行四边形)板书课题:平行四边形的性质二、新授1、平行四边形的概念:两组对边分别平行的四边形叫做平行四边形.在平行四边形ABCD中,记法:□ABCD读法:平行四边形ABCD.2、对边:平行四边形相对的边称为对边,相对的角称为对角.对边:AB与CD,AD与BC.对角:∠A和∠C,∠B和∠D.3、平行四边形不相邻的两个顶点连成的线段叫它的对角线.对角线:AC、BD.A D AB CD BC (二)合作交流,探求新知出示 课件(1)观察 猜想 实验 度量(合作完成)平行四边形的对边之间、对角之间以及对角线之间分别有什么关系由此你能得到什么结论探求过程:1、平移:结论:两组对边平行且相等从而推出两组对角相等2、探究:平行四边形的邻角有什么关系结论:平行四边形的邻角互补。
归纳和总结:平行四边形的对边平行且相等.平行四边形的对角相等,邻角互补.4、下面同学们分组做一个实验:(用课下准备好的两个全等的三角形拼图游戏)用两个全等的三角形纸片可以拼出几种形状不同的四边形平行四边形有几种,从拼图可以得到什么启示OA B C D小结:平行四边形可以是由两个全等的三角形组成,因此在解决平行四边形的问题时,通常可以连结对角线转化为两个全等的三角形进行解题.(三)归纳和总结平行四边形的性质:平行四边形的对边平行且相等.平行四边形的对角相等,邻角互补.(四)观察与思考如图:平行四边形ABCD 中(1)图中有几对全等三角形(2)图中有哪些相等的线段(3)图中有哪些相等的角(五)试一试1.已知在□ABCD 中,AB=6cm ,BC=4cm ,四边形ABCD 的周长为____.2.如图所示,□ABCD 的周长为30cm ,CD =6cm ,则AB =___cm ;BC =___cm ;AD =___cm .3.已知在□ABCD 中,①若∠A =70°,则∠B =___;∠C =___;∠D =___.②若∠A +∠C=80°,则∠A=____;∠D =___.五、课堂小结师生共同小结六、布置作业:书本练习第1、2、3题。
第六章平行四边形21平行四边形的判定(一)大方县长石中学陈刚一、学情分析学生已经学习过平行四边形性质,对平行四边形有直观的感知和认识,并初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。
可以采用类比、观察、实验、验证等的方式进行教学设计。
二、教学分析本节课是平行四边形的判定的第一课时,是在学习了三角形的相关知识、平行四边形的概念、性质的基础上进行学习的,在教学内容上起着承上启下的作用。
首先,在探究判定定理的证明方法和运用判定定理时,都用到了全等三角形的相关知识;并且,本节内容还是学生运用整体思维、数学建模思想的最佳课题,培养了学生的创新思维和探索精神。
教学目标知识技能目标1.会利用平行四边形的定义去证明平行四边形的2 种判定方法。
2.理解平行四边形的这两种判定方法,并学会简单运用。
过程与方法目标1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识。
2.在探索判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。
情感态度价值观目标通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情。
教学重点:平行四边形判定方法的探究、运用。
难点:对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用。
三、教学过程设计教学环节本节可分成五个环节:1、复习引入;2、定理探究;3、巩固练习;4、回顾小结;5、布置作业。
第一环节复习引入:问题1(多媒体展示问题)1.平行四边形的定义是什么2.平行四边形还有哪些性质教师提出问题1,2,学生口答得出定义,并从角的角度、边的角度、对角线的角度去归纳总结出平行四边形的性质。
问题2(多媒体展示问题)1.我们知道了平行四边形的性质,那么,可以用什么方法判断一个四边形是平行四边形呢教师提出问题1,学生口答从定义的角度去证明方法判断一个四边形是平行四边形。
《平行四边形》复习课教学设计教学内容分析:主要内容是平行四边形判定以及特殊的平行四边形——矩形、菱形、正方形的判定及应用。
教学目标:知识与技能:建立平行四边形及特殊平行四边形的知识框架,掌握平行四边形及特殊平行四边形的判定,并能熟练应用。
过程与方法:经历应用定理解决问题的过程,掌握解决平行四边形问题的一般方法。
情感态度与价值观:运用图形的变换探索图形特征与性质,体会数学研究和发现的过程,领悟知识的生成,发展与变化,发展空间观念。
教学重点:掌握解决平行四边形问题的一般方法,能够从边、角、对角线三个方面思考问题。
教学难点:平行四边形有关知识的综合运用。
教学过程:本节课设计了五个环节,第一个环节——师生共同完成知识框架的建构,第二个环节——解决问题,第三个环节——探究提高,第四个环节——课堂小结,第五个环节——布置作业。
第一个环节:平行四边形的知识系统教师出示表格,学生完成填空。
判定:知识框架图:练一练:中,已知AB ∥CD ,若要使四边形ABCD 成为平行四边形,则可再增加一个条件: .2已知: 平行四边形 ABCD ,AC 与BD 相交于点O,添加适当的条件 (1)使它成为菱形的条件:____ A (2)使它成为矩形的条件:____ (3)使它成为正方形的条件:___B C 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A AC=BD, A B ∥CD ,AB=CD B AD ∥BC, ∠BAD=∠BCD C AO=BO=CO=DO, AC ⊥BD D AO=CO, BO=DO, AB=BC设计意图:本环节主要是使学生将知识系统化,复习矩形、菱形、正方形判定定理及性质定理,明确平行四边形、矩形、菱形、正方形彼此间的联系。
通过学生解决简单的问题,初步回顾定理的应用,激发起学生学习的兴趣和自信心。
第二个环节:解决问题已知:△ABC 中AB=AC=a ,M 为底边BC 上任意一点, 过点M 分别作AB 、AC 的平行线交AB 于E ,交AC 于F(1 四边形AEMF 是平行四边形吗为什么(2)线段EM 、FM 、AB 之间有什么关系四边形平行四边形矩形菱形正方形DO(3)当M 位于BC 的什么位置时, 四边形AEMF 是菱形并说明你的理由 (4)当△ABC 满足什么条件菱形AEMF 是正方形学生解答第一,二小问应该不会出现问题。
平行四边形
平行四边形是一类特殊的四边形,它的特殊性体现在边、角、对角线上,矩形、菱形是特殊的平行四边形,矩形的特殊性体现在有一个角是直角,菱形的特殊性体现在邻边相等,所以,它们既有平行四边形的性质,又有各自特殊的性质.
对角线是解决四边形问题的常用线段,对角线本身的特征又可以决定四边形的形状、大小,连对角线后,平行四边形就产生特殊三角形,因此解平行四边形相关问题时,既用到全等三角形法,特殊三角形性质,又要善于在乎行四边形的背景下探索问题,利用平行四边形丰富的性质为解题服务.
熟悉以下基本图形、基本结论:
例题讲解:
例1、(1)如图,在平行四边形ABCD 中E 、F 分别是边AD 、BC 的中点,AC 分别交BE 、DF 于点M 、N ,对于下列结论:①△ABM ≌△CDN ;②AM=
13AC ;③DN=2NF ; ④S △AMB =12S △ABC .12AMB ABC S S 其中正确的结论有
(2)如图,在△ABC 中,AB =3,AC =4,BC =5,△ABD 、△ACE 、△BCF 都是 等边三角形,则四边形AEFD 的面积为
例2、已知四边形ABCD,从下列条件中,①AB ∥CD;②BC ∥AD;③AB=CD;④BC=AD;⑤∠A=∠C;⑥∠B=∠D.任取其中两个,可以得出“四边形ABCD 一定是平行四边形”这一结论的情况有()种
A.4 B .9 C.13 D.15
例3、如图,四边形ABCD的对角线AC,BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.求证:四边形ABCD是平行四边形.
例4、如图,四边形ABCD为平行四边形,AD=a,BE//AC,DE交AC的延长线于F点,交BE于E 点.
(1)求证:DF=FE;
(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;
(3)在(2)的条件下, 求四边形ABED的面积.
例5在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
例6、如图,△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P,求∠BPM的度数.
过手训练:
1、如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC于点E,则EC=______.
2、如图,平行四边形ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为
3、如图所示,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,∠NDC=∠MDA,则平行四边形ABCD的周长为
4、已知一个四边形ABCD的边长分别为a,b,c,d,其中a,c为对边,且222222
+++=+则此四边形是
a b c d ab cd
5、如图,在平行四边形ABCD 中,分别以AB 、AD 为边向外作等边三角形△ABE 、△ADF ,延长CB 交AE 于点G (点G 在点A 、E 之间),连接CE 、CF 、EF ,则以下四个结论中,正确的个数是( )
①△CDF ≌△EBC ;②∠CDF=∠EAF ;③△CEF 是等边三角形;④CG ⊥AE .
A .1个
B .2个
C .3个
D .4个
6、在 □ABCD 中,点 A 1 、 A 2 、 A 3 、 A 4 和 C 1 、 C 2 、 C 3 、 C 4 分别是 AB 和 CD 的五等分点,点 B 1 、 B 2 、和 D 1 、 D 2 分别是 BC 和 DA 的三等分点,已知四边形4242A B C D 的面积为1,则 □ABCD 的面积为( )
A .2
B .35
C .53
7、如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)
关系:①AD ∥BC ,②AB=CD ,③∠A=∠C ,④∠B+∠C=180°.
已知:在四边形ABCD 中,______,______;
求证:四边形ABCD 是平行四边形
8、平行四边形ABCD,以AC 为边在其两侧各作一个正三角形ACP 和正三角形ACQ.求证:四边形BPDQ 是平行四边形
课后习题:
1、如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,BD=2AD ,E 、F 、G 分别是OC 、OD 、AB 的中点,下列结论:①∠OBE=12
∠ADO ;②EG=EF ;③GF 平分∠AGE ;④EF ⊥GE ,其中正确的是( )
A .①②③
B .②③④
C .①③④
D .①②④
2、如图,在平行四边形ABCD 中,BC=2AB ,CE ⊥AB ,E 为垂足,F 为AD 的中点,若∠AEF=54°,求B 的度数。
3、给出下列命题:(1)一组对边和一组对角分别相等的四边形是平行四边形;(2)两组对角的内角平分线分别平行的四边形是平行四边形(3)一组对边中点间的距离等于另一组对边长和的一半的四边形是平行四边形(4)两条对角线都平分四边形的面积的四边形是平行四边形.其中,真命题有( )
A 1个
B 2个 C3个 D 4个
4、如图,已知四边形ABCD 中,AC 与BD 教育点O ,AC=BD ,60DOC ∠=, 求证:AB+CD 〉AC
5、在△ABC 中,AB =AC,点P 为△ABC 所在平面内一点,过点P 分别作PE ∥AC 交AB 于点E,PF ∥AB 交BC 于点D,交AC 于点F.
若点P 在BC 边上(如图1),此时PD =0,可得结论:PD +PE +PF =AB.请直接应用上述信息解决下列问题:
当点P 分别在△ABC 内(如图2),△ABC (如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF 与AB 之间又有怎样的数量关系,请写出你的猜想,不需要证明。