实验一金相显微镜的构造与使用..
- 格式:ppt
- 大小:2.10 MB
- 文档页数:20
金相显微镜的构造及使用一、实验目的1.了解普通金相显微镜的构造与使用方法。
2.学习利用金相显微镜进行显微组织分析。
二、金相显微镜的放大原理众所周知,放大镜是最简单的一种光学仪器,它实际上是一块会聚透镜(凸透镜),利用它就可以将物体放大。
但金相显微镜不象放大镜那样由单个透镜组成,而是由两组透镜组成.靠近所观察试样的透镜叫做物镜,而靠近眼睛的透镜叫做目镜.借助物镜与目镜的两次放大,就能将物体放大到很高倍数(~1000倍).图1所示为在显微镜中得到放大物象的光学原理图。
图1 金相显微镜光学原理图金相显微镜总的放大倍数应为物镜与目镜放大倍数的乘积,即:M总=M物ХM目放大倍数用符号“Х"表示,例如物镜放大倍数为25Х,目镜放大倍数为10Х,则显微镜的放大倍数为25Х10=250Х。
显微镜的主要放大倍数通过物镜来保证,物镜的最高放大倍数可达100Х,目镜的放大倍数可达25Х。
放大倍数均分别标注在物镜与目镜上。
在使用显微镜观察试样时,应根据其组织的粗细情况,选择适当的放大倍数。
以细节部分观察得清晰为准。
显微镜的鉴别能力(鉴别率):显微镜的鉴别能力是显微镜也是物镜最重要的特性,它事指显微镜对于试样上最细微部分所能获得清晰映象的能力.物镜的数值孔径,表示物镜的聚光能力,物镜的数值孔径越大,表明物镜的鉴别能力也就是显微镜的鉴别能力越高。
物镜的数值孔径与放大倍数一起刻在镜头外壳上,例如镜头上刻有25/0。
50,这个050即表示物镜的数值孔径.显微镜质量的好坏,主要取决于:⑴放大倍数;⑵透镜的质量;⑶显微镜的鉴别能力.三、金相显微镜的构造及使用(一)金相显微镜的构造金相显微镜最常见的有台式、立式和卧式三大类.金相显微镜通常由光学系统、照明系统和机械系统三大部分组成。
现以4XI型台式金相显微镜为例加以说明。
光学系统:由光源、反光镜、物镜组、目镜及多组聚光镜组组成。
图2 金相显微镜光路图照明系统:由安装在底座上的低压灯泡、聚光镜、反光镜、孔径光栏和安装在支架上的视场光栏和另一聚光镜组成。
实验1 金相显微镜的使用及金相试样的制备一、实验目的1)掌握金相试样制备的基本方法2)掌握金相显微镜的使用方法二、原理概述(一)金相显微镜的构造光学金相显微镜的构造一般包括放大系统、光路系统和机械系统三部分,其中放大系统是显微镜的关键部分。
(二) 使用显微镜时应注意的事项l)操作者的手必须洗净擦干,并保持环境的清洁、并保持环境的清洁、干燥;2)用低压钨丝灯泡作光源时,接通电源必须通过变压器,切不可误接在220V 电源上;3)更换物镜、目镜时要格外小心,严防失手落地;4)调节物体和物镜前透镜间轴向距离(以下简称聚焦)时,必须首先弄清粗调旋钮转向与载物台升降方向的关系。
初学者应该先用粗调旋钮将物镜调至尽量靠近物体,但绝不可接触。
然后仔细观察视场内的亮度并同时用粗调旋钮缓慢将物镜向远离物体方向调节。
待视场内忽然变得明亮甚至出现映象时,换用微调旋钮调至映象最清晰为止。
6)用油系物镜时,滴油量不宜过多,用完后必须立即用二甲苯洗净、擦干;7)待观察的试样必须完全吹干,用氢氟酸浸蚀过的试样吹干时间要长些,因氢氟酸对镜片有严重腐蚀作用。
(三)金相试样制备随着科学技术的发展,研究金属材料内部组织的手段也在不断增加。
然而光学金相显微分析仍然是最基本的方法。
光学金相显微分析的第一步是制备试样,将待观察的试样表面磨制成光亮无痕的镜面,然后经过浸蚀才能分析组织形态。
如因制备不当,在观察面上出现划痕、凹坑、水迹、变形层或浸蚀过深过浅都会影响正确的分析。
因此制备出高质量的试样对组织分析是很重要的。
金相试样制备过程一般包括:取样、粗磨、细磨、抛光和浸蚀五个步骤。
1.取样从需要检测的金属材料和零件上截取试样称为"取样"。
取样的部位和磨面的选择必须根据分析要求而定。
截取方法有多种,对于软材料可以用锯、车、刨等方法;对于硬材料可以用砂轮切片机或线切割机等切割的方法,对于硬而脆的材料可以用锤击的方法。
无论用哪种方法都应注意,尽量避免和减轻因塑性变形或受热引起的组织失真现象。
【精品】金相显微镜的构造及使用金相显微镜是一种用于金属材料组织分析的仪器。
它利用可见光显微镜观察金属材料的微观结构,以揭示其物理、化学以及机械性能的内在联系。
下面,本文将介绍金相显微镜的构造及使用方法。
1. 光学系统金相显微镜的光学系统由物镜、目镜、准直镜、钛酸锂平面透镜、宽带光源等部分组成。
其中,物镜和目镜是金相显微镜的核心部件,具有高放大倍率和高分辨率的特点。
2. 照明系统金相显微镜的照明系统包括透射照明和反射照明两种方式。
其中,透射照明是指将光源直接照在样品上,并将其透过样品后由物镜聚焦到目镜;反射照明则是通过对样品表面进行照射来观察样品的显微组织。
照明系统的设置决定了样品的成像质量,因此需要谨慎调试。
3. 样品台样品台是金相显微镜上用来放置样品的平台,它可以调节样品的高度和角度,使得各种结构的样品都可以方便地进行观察。
同时,样品台还可以安装一些辅助装置,如磨削机、涂片机等。
为了使得样品的组织结构清晰可见,需要对样品进行一定的制备处理。
通常,样品制备包括切割、切片、打磨、腐蚀、电解等步骤,具体操作方法需要根据样品的性质和实验要求来确定。
将制备好的样品放置在样品台上,并利用样品台上的调节装置调整样品的高度和角度,以保证样品在显微镜中的观察角度和位置正确。
3. 调试显微镜调试显微镜是为了使其成像效果达到最佳,一般需要进行以下步骤:(1)选择合适的物镜和目镜,调整两者之间的距离和焦距,使得显微镜的成像质量最佳。
(2)调节样品台的高度和倾斜角度,使得样品的显微组织成像清晰可见。
(3)调整照明系统,使得光源适度而均匀,不过度照射或不足照射。
4. 观察和分析当调试显微镜完成后,可以对样品进行观察和分析了。
观察时需要注意样品台的位置是否正确,以及照明是否适当。
分析时需要结合已知样品的性质和实验目的,比较不同结构的异同之处,并进行进一步的解释。
总结:金相显微镜是金属材料研究的常用工具,它可以揭示材料微观结构的内在联系,为材料制备和设计提供重要的参考。
实验一、金相显微镜的构造及使用(2学时)一、实验目的1、了解金相显微镜的基本原理和构造;2、掌握金相显微镜的使用方法;3、利用金相显微镜进行组织分析。
二、概述三、金相显微镜是一种专门用来观察金属和合金内部组织与缺陷的一种常用设备。
将专门制作的金属和合金试样在金相显微镜下进行放大后观察、研究其内部组织结构及缺陷的方法称为金相分析法, 其是一种常用的组织和缺陷分析方法。
其可用来研究金属材料组织及其化学成分的关系;确定各类金属经不同的加工和热处理后的显微组织;鉴别金属材料质量的优劣等级等。
四、金相显微镜的原理及应用1、基本放大原理如图1-1所示, 图中有两平行凸透镜组成一个透镜组, 物体AB经物镜(对着所观察物体的透镜)和目镜(对着眼睛的透镜)放大后在人眼中形成颠倒放大的物象A‘‘B‘’。
显然显微镜的放大倍数(M)为:M = M物: M目= (L/ f物)×(D/ f目)=250L/(f物×f目)式中: M物: 物镜的放大倍数;M目: 目镜的放大倍数;D: 人眼的明视距离;L: 镜筒的长度;f物: 物镜的焦距;f目: 目镜的焦距。
实际上, 显微镜的放大倍数一般是通过物镜来保证的, , 物镜的最高放大倍数可达100倍, 目镜的放大倍数可达25倍。
显微镜的放大倍数一般用“×”表示, 如物镜的放大倍数为40×, 而目镜的放大倍数为10×, 则显微镜的放大倍数为250倍, 表示为250×。
2、显微镜的构造显微镜的种类很多, 但最常见的为台式、立式和卧式三大类型。
不论何中结构, 其基本由光学系统、照明系统和机械系统三大部分组成。
图1-2分别为XJP-3A型显微镜的光学系统和外观结构图。
灯泡发出一束光线, 经聚光透镜组1的会聚及反射镜的反射。
将光线聚集在孔径光栏上, 经聚光镜组2再度将光线聚集在物镜的后焦平面上, 最后通过物镜用平行光使试样表面得到充分均匀的照明, 从试样散射回来的成象光线再经物镜组、辅助透镜、半反射镜、辅助透镜及棱镜等造成一个被观察的倒立的放大物象。
金相显微镜的构造和使用一、金相显微镜的构造1.光源系统:金相显微镜一般采用显微照明机或者透射照明系统作为光源。
显微照明机具有调节亮度的功能,透射照明系统采用一定的聚光系统进行照明。
2.显微镜头系统:显微镜头系统由目镜和物镜组成。
目镜位于显微镜的上方,一般10倍或者20倍。
物镜一般有多个倍率可选,可以通过旋转选择不同的物镜。
3.镜身系统:包括显微镜的固定座、支架、轴承和显微镜本体等组成。
显微镜的固定座主要用于固定显微镜,支架和轴承可以使显微镜在横向和纵向上进行调节,显微镜本体则是显微镜的主要组成部分。
4.变倍双眼显微镜系统:金相显微镜一般采用双眼显微镜设计,可以让观察者通过双眼同时观察样品,增加舒适度和观察效果。
双眼显微镜还可以通过变倍机构来调节观察倍率。
5.成像系统:金相显微镜一般配备数码相机或者CCD相机,用于拍摄样品的显微照片。
相机可以通过软件进行图像处理和测量分析。
二、金相显微镜的使用步骤1.调节照明系统:根据需要选择合适的照明方式,打开照明系统,并调节适当的亮度。
2.安装样品:将待观察的样品安装在显微镜台上,调节样品位置和方向,使之与物镜成垂直关系。
3.调节焦距:通过旋转调节镜筒,调节焦距,使样品清晰可见。
可以先使用较低倍率的物镜进行初步调焦,再使用较高倍率的物镜进行精细调节。
4.观察样品:通过目镜观察样品,并使用显微镜的调焦机构进行调整,使样品的细节清晰可见。
5.拍摄图片:将样品放置在合适的位置上,使用相机进行拍摄。
可以通过相机的软件进行图像处理和测量分析。
6.关闭显微镜:观察完成后,先关闭照明系统,然后将物镜旋转至最低倍率的位置,最后关闭显微镜。
三、注意事项1.使用显微镜时要小心操作,避免碰撞和摔落。
2.调节焦距时要轻轻旋转,避免损坏显微镜的镜筒。
3.需要定期清洁显微镜的物镜和目镜,以保持显微镜的清晰度。
清洁时使用专用的镜头纸或者棉花棒,避免使用化学溶剂。
4.使用显微镜进行观察时要注意避免光线反射或者干扰,以保证观察的准确性。
实验 金相显微镜的构造和使用及金相试样的制备一、实验目的1、了解光学金相显微镜的构造、原理,学会其正确使用;2、掌握光学金相试样的制备方法及技术要点;3、识别制样过程中常见的缺陷。
二、概述(一)光学金相显微镜光学金相显微镜是研究金相试样观察面显微组织的光学仪器。
利用它可将观察面上肉眼看不到的组织及缺陷放大到100倍以上来进行观察。
1863年索拜(Sorby )第一个将它用于材料研究之中,100多年来,光学金相显微镜在光源和照明方式上已有许多改进。
今天,一台功能完整的光学金相显微镜不仅可进行明场、暗场、偏振光、相衬及干涉相衬观察,还可进行显微硬度测定与显微摄影等。
1、光学金相显微镜的成象原理 光学金相显微镜的成象是依靠两组透镜组合放大而实现的。
与试样接触的第一组透镜称为物镜,与人眼接触的第二组透镜称为目镜。
如图6-1所示,被观察的显微组织WS 置于物镜前焦点F 1外,在物镜后形成一个倒立、放大的实象W 1S 1,且W 1S 1按设计要求正好落在目镜焦点F 2以内,于是人眼可在250mm 明视距离处,看到一个经目镜再次放大的虚象W 2S 2。
因此,显微镜的总放大倍数M 应为物镜放大倍数M 物与目镜放大倍数M 目 与目镜放大倍数M 目的乘积,即目物M M M (1-1)2、光学金相显微镜的结构常见的光学金相显微镜按类型 图1-2 金相显微镜放大原理图 可分为台式、立式及卧室三大类, 如图1-2(a )(b )(c )所示。
各类显微镜的结构大体相似,主要由三个系统组成,即光学系统、照明系统和机械系统。
(1)光学系统光学系统中的主要构件是物镜和目镜(图1-3和图1-4),其作用是将观察面上的显微组织放大呈清晰的图象。
物镜质量的优劣,常用以下特征指标来衡量。
①数值孔径数值孔径(常以NA表示)反映了物镜的聚光能力。
数值孔径大的物镜,聚光能力强,从试样上反射进入物镜的光线就多,因此,组织细节能鉴别得更清楚。
数值孔径与物镜的孔径半角α[图6-5(a)]及物镜与试样间介质折射率n有以下(a)国产XJ-10A型台式金相显微镜;(b)国产XJL-02型立式金相显微镜(c)东德产NEOPHOT21型卧式金相显微镜图6-2 不同类(c)东德产NEOPHOT21型卧式金相显微镜图1-2 不同类型的金相显微镜图1-3 物镜示意图 图1-4 目镜关系:αs i nn NA = (1-2) 式(1-2)表明,当增大α及n 时,数值孔径可提高。
文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。
实验一金相显微镜的使用与金相组织的观察一、实验目的1.了解金相显微镜的构造,各个主要部件的效用。
2.掌握正确使用显微镜的操作及维护方法。
3.观察儿种式样的金相组织二、实验概述(-)金相显微镜的知识及正确使用1.显微镜放大原理:利用透镜将物体的像放大,单个透镜的放大倍数是有限的(一般在20倍以下),因此要考虑用另一透镜组将第一次放大的像再行放大,以得到更高更清晰放大倍数的像,显微镜就是根据这一需求设计的。
显微镜中装有两组放大透镜,靠近物体的一组为物镜,靠近眼睛的一组透镜称为U镜,但实际上显微镜釆用的物镜和□镜都是由复杂的透镜组组成。
图1-1为显微镜成像原理图。
图1-1显微镜成像原理图若将试样AB置于物镜之前距其一倍焦距(FJ略远一些的位置,山物体反射的光线通过物镜折射后得到一个倒立的放大的实像A,B,,在LI镜上观察时,经物镜放大的倒立实像AE,落在镜焦距F2内(在设计时安排好使LI镜的焦点位置在F2以内),目镜又将再次放大,人眼在(250mm)的明视距离处,看到一个经两次放大的倒立的虚像A"B"就是我们在显微镜下的物象。
总的放大倍数为物镜的放大倍数与U镜放大倍数的乘积,M总二M物X M目普通光学金相显微镜主要由三大系统构成:既光学系统,照明系统和机械系统。
下面简单分述其主要构件的功能与特性。
光学系统:主要包括物镜和U镜,物镜是显微镜最重要的部件,成像质量在很大程度上取决于物镜的质量,它的性能包括数值孔径和分辨率,有效放大倍数及像差校正程度。
A:数值孔径:物镜的数值孔径(N.A)表示物镜的收集光线的能力,增强物镜的聚光能力可使成像的质量提高,它的大小通常以进入物镜的光线锥所张开的角度,既孔径角的大小,公式表示为:N.A=ii.sin0式中n—物镜与观察物之间介质的折射率8—为物镜的孔径半角因此提高数值孔径有两个途径:a.增大透镜的直径或减小物镜的焦距。
实验一金相显微镜的构造和使用一、实验目的二、实验仪器三、实验原理操作步骤五.注意事项一、实验目的(1)熟悉金相显微镜的光学原理和构造。
(2 )单目与双目光学金相显微镜」3金相显微镜的基本原理3. 1金相显微镜的光学放大原理金相显微统是依旅光学系统实现放大作用的.其基本原理如图2-1所示.光学系统主要包括物傥.目傥及一些辅助光学窑件.对着被观察物体A B的一组透诡叫物傥01:对着眼睛的一纽透伎叫目镜02.现代显微钱:的物镜和目镜都是由复杂的透纯系统所组成.光学显微镜的放大倍数可iii'jl600-2000倍.当诫观察物体ABE于物镜新焦点毎远处时.物体的反射光线穿过物鏡经折射后.得到一个放大的倒立实傢 A1B1 (称为中间象).若A1B1处于目优似距之内•则通过目傥观察到的物象是经目饋;再次放大了的虚象A I'Bl '•由于正带人眼观察物依时我适宜的距离是 250mn (称为明視距离).因此在显微钱设计上,应让虚象A14M'正好幫在距人眼250mm处.以使观察到的物休影像最淸珈.3. 2金相显微镜的主要性能指标3. 2. 1放大倍数显微镜的放大倍数为物镜放大倍数H 物和目镜放大倍数子M 目 的乘积,即: 式中,f 物一物镜的焦距,f 目一目镜的焦距; —显微镜 的光学镜筒长度;D —明视距离( 250mm ) . f 物和f 目越短或L 越 长,则显微镜的放大倍数越高。
有的小型显微镜的放大倍数需再乘 一个镜筒系数,因为它的镜筒长度比一般显微镜短些.显微镜的主要放大倍数一般是通过物镜来保证、物镜的最 高放大倍数可达100倍、目镜的放大倍数可达25倍.在物镜和目镜 的镜筒上,均标注有放大倍数,放大倍数常用符号“x”表示,如 100 x , 200 x 等.3. 2. 2鉴别率金相显微镜的寮别率是指它能溝晰地分辩试样上两点间最小距离耐勺能力.d 值越,卜,鉴別率趣高.根据光学衍射原理,试样上的某一点通过场傩成孳后,我 们看到并不是一个真正的点象,而是具有一定尺寸的白色圆斑.四周国绕着许多 衍射孙.占试祥上两个相邻点的距离极近时.成象后由于部分重迭而不能分淸为 两个点.只有当试样上两点距离达到某一血时,才能将两点分抻淸楚・显微镜的鉴别率取决于使用光线的波长(入)和物旎的数值孔径(/)・而与 目镜无关,其施可由下式计算:Ad =——2A在一般显微镜中,光源的波长可通过加滤色片来改变,例如: 蓝光的波长(久=0・44“)比黄绿光(久".55")短,所以鉴别率 较黄绿光高25%.当光源的波长一定时,可通过改变物镜的数 值孔径』来调节显微镜的鉴別率.L D3. 2. 3物镜的数值孔径物镜的数值孔径表示物镜的聚光能力,如图2-2所示.数值孔径大的物镜聚光能力强,能吸收更多的光线,使物象更清晰,数值孔径河由下式计算:4 = n • sin (p 式中,物镜与试样之间介质的折射率;一物镜孔径角的一半,即通过物镜边缘的光线与物镜轴线所成夹甬C哋大或0越大,则』越大,物镜的鉴别率就越高。
材料科学基础实验指导书实验一金相显微镜的基本原理、构造及使用实验二金相试样的制备实验三铁碳合金平衡组织分析实验四1钢的热处理工艺2硬度计的使用实验五1碳钢热处理后的显微组织观察,2合金钢的显微组织分析实验六铸铁的显微组织分析四川大学制造学院材料成型及控制工程系2014/6/23实验一 金相显微镜的基本原理、构造及使用一、实验目的熟悉金相显微镜的原理、构造,使用和维护,为掌握金相显微分析方法打下理论和实践基础。
二、实验说明金相显微分析是用金相显微镜观察金属内部组织以及微不夹杂物,微裂纹和微小缺陷(这些都是用肉眼、放大镜看不见的,至少是看不清楚的)以分析判断金属材料的治炼,加工工艺的正确性和金属材料性能的优劣。
金相显微分析是材料科学和主要研究手段,所以金相显微镜就成了金相分析的主要工具。
(一)显微镜的基本原理显微镜的光学原理如图1—1所示,光学系统包括物镜、目镜及一些辅助光学零件,物镜和目镜分别由两组透镜组成,对着物质AB 的一组透镜组成物镜O 1,对着人眼的一组透镜组成目镜O 2。
现代显微镜的物镜、目镜都由复杂的透镜系统组成。
物镜使物体AB 形成放大的倒立实象B A ''(称中间象),目镜再将B A ''放大成仍然倒立的虚象B A '''',其位置正好在人眼的明视距离处(即距人眼250mm 处)。
我们在显微镜目镜中看到的就是这个虚象B A ''''。
图1—1 显微镜的光学原理示意图显微镜的主要性质如下:1.显微镜的放大倍数放大倍数由下式来确定:目物目物f D f L M M M =⨯=式中:M —显微镜放大倍数M 物—物镜的放大倍数M 目—目镜的放大倍数f 物—物镜的焦距f 目—目镜的焦距L —显微镜的光学镜筒长度D —明视距离(250mm )f 物、f 目越短或L 越长,则显微镜的放大倍数越大。
在使用时,显微镜的放大倍数就是物镜和目镜的放大倍数的乘积。
金相显微镜的结构及使用实验一、实验目的了解金相显微镜的工作原理、结构及使用方法。
二、金相显微镜的结构和使用金相显微镜通常由光学系统、照明系统和机械系统三大部分组成。
现以XJB-1型台式金相显微镜为例加以说明。
XJB-1型金相显微镜的光学系统如图1所示,由灯泡发出的光线经聚光透镜组及反光镜聚集到孔径光栏,再经聚光镜聚集到物镜的后焦面,最后通过物镜平行照射到试样的表面。
从试样表面反射回来的光线经物镜组和辅助透镜,由半反射镜转向,经过辅助透镜及棱镜形成一个倒立的放大实像,该像再经过目镜放大,就成为在目镜视场中能看到的放大映像。
XJB-1型金相显微镜的外形如图2所示,现分别介绍其各部件的功能及使用。
照明系统:在底座内装有一低压灯泡作为光源,聚光镜、孔径光栏及反光镜等均安置在圆形底座上,视场光栏及另一聚光镜则安在支架上,它们组成显微镜的照明系统,使试样表面获得充分均匀的照明。
图1 XJB-1型金相显微镜的光学系统图2 XJB-1型金相显微镜外形结构显微镜调焦装置:在显微镜的两侧有粗调焦和微调焦手轮,粗调手轮的转动可使载物台的弯臂作上下移动,微调手轮使显微镜沿滑轮缓慢移动,在右侧手轮上刻有分度格,每一格表示物镜座上下微动0.002mm。
载物台(样品台):用于放置金相样品,观察面需向下。
载物台和下面托盘之间有导架,用手推动,可使载物台在水平面上作一定范围的十字定向移动,以改变试样的观察部位。
孔径光栏和视场光栏:孔径光栏装在照明反射镜座上面,调整孔径光栏能够控制入射光束的粗细,以保证物像达到清晰的程度。
视场光栏设在物镜支架下面,其作用是控制视场范围,使目镜中视场明亮而无阴影。
物镜转换器:转换器呈球面状,上有三个螺孔,可安装不同放大倍数的物镜,旋动转换器可使各物镜镜头进入光路,与不同的目镜搭配使用,以获得各种放大倍数。
目镜筒:目镜筒呈45°倾斜安装在附有棱镜的半球座上,还可将目镜转向45°呈水平状态以配合照相装置进行金相摄影。
实验1. 金相显微镜的构造与使用一、原理概述:金相分析是人们通过金相显微镜来研究金属和合金显微组织大小、形态、分布、数量和性质的一种方法。
显微组织是指如晶粒、包含物、夹杂物以及相变产物等特征组织。
利用这种方法来考查如合金元素、成分变化及其与显微组织变化的关系:冷热加工过程对组织引入的变化规律;应用金相检验还可对产品进行质量控制和产品检验以及失效分析等。
1.金相显微镜的成象原理简介人眼对客观物体细节的鉴别能力是很低的,一般是在0.15~0.30mm 间。
因此,观察认识客观物体的显微形貌,必需藉助显微镜。
显微镜放大的光学系统由两级组成。
第一级是物镜,细节AB 通过物镜得到放大的倒立实角A 1B 1。
A 1B 1的细节虽已为被区分开,但其尺度仍很小,仍不能为人眼所鉴别,因此,还需第二次放大。
第二级放大是通过目镜来完成。
当经第一级放大的倒立实象处于目镜的主焦点以内时,人眼可通过目镜观察到二次放大的A 3B 3的正立虚象。
(1) 物镜的成象:根据几何光学可知,当被观察的物体处于该透镜的一倍焦距与二倍焦距之间时,物体的反射光通过物镜经折射后在透镜的另一侧可以得到一个放大的倒立实像。
为了充分发挥物镜的能力,一般设计时是让被观察物体处于很接近于焦点处,因此计算其放大倍数时可以用物镜的焦距f 。
见图1-1。
11A B LM AB f ''=≈物物式中:f 物——接物镜焦距;L ——F 1到实象间的距离;M 物——物镜放大倍数。
(2) 目镜的成象同样据几何光学成象规律可知,当被观察物体处于该透镜的一倍焦距以内时,人眼通过透镜观察,可以在250mm 远处看到一个放大了的正立虚象(250mm在这里称为明视距离)。
见图1-2。
目镜的放大倍数250M f目目式中:f 目——目镜的焦距; 250——人眼的明视距离(mm)/; 目——目镜的放大倍数。
M显微镜的成象(3) 被观察物体的细节经物镜放大后的实象落到目镜主焦点以内后,人眼观察可看到经两次放大后的虚象。
金相显微镜的构造与使用实验指导书一、实验目的1、了解金相显微镜的构造;2、掌握金相显微镜的使用方法。
二、实验原理概述(一)金相显微镜的构造光学金相显微镜的构造一般包括放大系统、光路系统和机械系统三部分,其中放大系统是显微镜的关键部分。
1、放大系统(1)显微镜放大成象原理显微镜放大基本原理如图1-1所示。
由图可见,显微镜的放大作用由物镜和目镜共同完成。
物体AB位于物镜的焦点F1以外,经物镜放大而成为倒立的实象A1B1,这一实象恰巧落在目镜的焦点F2以内,最后由目镜再次放大为一虚象A2B2,人们在观察组织时所见到的象,就是经物镜、目镜两次放大,在距人眼约150mm明视距离处形成的虚象。
由图1-1可知:物镜的放大倍数M物=目镜的放大倍数M目=显微镜的总放大倍数M=M物×M目=说明显微镜的总放大倍数M等于物镜放大倍数和目镜放大倍数的乘积。
目前普通光学金相显微镜最高有效放大倍数为1600~2000倍,常用放大倍数有100、450倍和650倍。
另外,参照图1-1。
如果忽略AB与F1、A1B1与F2间距,依相似三角形定理可求出:M物==式中,D为光学镜筒长度;f为物镜焦距。
因光学镜筒子长度为定值,可见,物镜放大倍数越高,物镜的焦距越短,物镜离物体越近。
(2)透镜象差透镜在成象过程中,由于受到本身物理条件的限制,会使映象变形和模糊不清。
这种象的缺陷称为象差。
在金相显微镜的物镜、目镜以及光路系统设计制造中,虽将象差尽量减少到很小的范围,但依然存在。
象差有多种,其中对成象质量影响最大的是球面象差、色象差和象域弯曲三种。
一. 1)球面象差由于透镜表面为球面,其中心与边缘厚度不同,因而来自一点的单色光经过透镜折射后,靠近中心部分的光线偏折角度小,在离透镜较远的位置聚集;而靠近边缘处的光线偏折角度大,在离透镜较近的位置聚集,因而必然形成沿光轴分布的一系列的象,使成象模糊不清,这种现象胜负为球面象差。
球面象差主要靠用凸透镜和凹透镜所级成的透镜级来减小。