黄土特性
- 格式:docx
- 大小:14.90 KB
- 文档页数:2
黄土的物理力学性质§2-1 黄土的物理性质试验用黄土采用甘肃兰(州)海(石湾)高速公路工程现场扰动土,其物理性质主要由它的物理性质指标来体现,其物理性质指标主要有:孔隙率、天然含水量、容重和液塑限等。
由于黄土的生成与存在条件比较特殊,它的孔隙率比普通土的孔隙率要大。
一般黄土中存在肉眼易见的孔隙,这些孔隙多为铅直圆孔,这类孔隙通称为大孔隙。
大孔隙比例的多少在一定程度上决定了黄土湿陷性的大小,大孔隙多的黄土湿陷程度大;反之则小。
试验所用黄土的天然含水量很低,一般在10%以下。
含水量在剖面上的变化与黄土层的厚度和埋藏深度没有直接关系。
黄土的容重、比重取决于黄土的矿物成分、结构和含水量,而黄土的颗粒分散度、矿物成分、形状和弹性在一定程度上决定了黄土的液塑性。
黄土的物理性质随成岩时代、成岩地区的不同而表现出一定的差异。
为了得到该黄土的物理性质,我们根据《公路土工试验规程》(JTJ 051-93)的要求,分别采用联合液塑限仪、烘箱和重型击实等方法进行了有关指标的测定,测定结果如表2-1所示。
一.主要成分分析组成黄土的矿物约有60种,其中轻矿物(d﹤0.005mm)含量占粗矿物(d ﹥0.005mm)总量的90%以上。
黄土中粘土矿物(d﹤0.005mm)以不同的方式同水和孔隙中的水溶液相互作用,显示出不同的亲水性,故粘土矿物的成分和比例,在某种程度上体现了黄土的湿陷性。
水溶盐的种类和含量与黄土的湿化、收缩和透水性关系密切,直接影响着黄土的工程性质。
水溶盐包括易溶盐、中溶盐和难溶盐三种。
易溶盐(氧化物,硫酸镁和碳酸钠)极易溶于水或与水发生作用。
它的含量直接影响到黄土的湿陷性。
中溶盐(石膏为主)的存在状态决定其与水的作用情况。
以固体结晶形态存在时,溶解性小,但当以次生结晶细粒分布于孔隙中时,易溶解,在这种情况下,会对黄土的湿陷性有一定的影响。
难溶盐(碳酸钙为主)在黄土中既起骨架作用,又起胶结作用,这取决于其赋存的状态。
黄土地区路基1.黄土地区路基工程的特点黄土是指第四世纪以来在干旱和半干旱地区沉积的,以粉粒为主,富含钙质的粘性土,呈棕黄色、灰黄或黄褐色。
黄土覆盖世界大陆面积的12%左右,分布于温带沙漠外缘的半干旱地区、中纬度森林、荒漠草原地带,呈现断续分布。
中国黄土的分布面积,比世界上任何一个国家都大,而且黄土地形在中国发育得最为完善,规模也最为宏大。
中国西北的黄土高原是世界上规模最大的黄土高原;华北的黄土平原也是世界上规模最大的黄土平原。
中国黄土总面积达63.1万平方公里,占全国土地面积的6%。
黄土的工程特性:①、黄土的孔隙比一般为0.7~1.1,具有肉眼可见的大孔隙,并具有垂直节理,可保持天然垂直边坡;②、黄土的颗粒组成以粉粒为主,质地均匀,不含大于0.25mm颗粒;③、黄土含有10%~30%的碳酸钙,有的黄土中含有大量钙质结核;④、黄土天然含水率低,干燥时比较坚固,遇水容易崩解,剥蚀。
⑤、有些黄土具有湿陷性,受水浸湿后易溶盐的溶解破坏了土粒间的胶结作用,黏聚力减弱,在自重或外荷载作用下产生湿陷性沉陷。
⑥、黄土土质依据土的塑性指标进行分类。
当塑性指数不大于10时,应定为砂质黄土;当塑性指数大于10时,应定为黏性黄土。
黄土的时代及其工程性质由于黄土特有的性质和黄土类型复杂,黄土地区的路基工程具有以下特点:(1)黄土地貌有真独特的形态、形成所谓塬、梁、岇的地貌景观。
由于冲沟发育。
黄土地区山高谷深。
因此,黄土地区路基多高填深挖,工程数量浩大。
(2)黄土路堑边坡容易产生变形。
常见的变形有剥落、冲蚀、溜坍和崩塌,所以恰当的根据工点黄土类型和特性选择路堑边坡形式及边坡坡度是防止发生上述变形关键。
(3)黄土高路堤容易产生下沉,这一方面是由于黄土湿陷性造成的,另一方面也是由于黄土天然含水量小,难以达到要求的压实密度的缘故。
(4)黄土路堤边坡在雨水作用下容易产生冲蚀。
(5)由于黄土具有垂直节理、多孔隙及丰富的易溶盐,使黄土产生陷穴。
黄土特性黄土或黄土状土是一种多孔隙、弱胶结的第四纪沉积物。
我国黄土分布广范,6.6%的国土面积被黄土覆盖,黄土主要分布在我国中西部地区,其中以西北地区的黄土地层最厚,最完整。
黄土具有颜色淡黄至褐黄、大孔隙、结构疏松、具直立节理(破坏时能保持直壁)、常含有盐类(主要为碳酸盐与硫酸盐)、成分均匀无层理和遇水具有湿陷性等显著特点。
3.1.1典型物理化学性质黄土的颗粒粒径大部分为0.25~以下,主要以粉粒(0.05~0.005~)为主,含量多大于50%,一般土颗粒粒径大小在0.002一200~之间。
黄土的粘粒部分(<0.005~)基本上由粘土矿物组成,如蒙脱石、高岭石、绿高岭石和水云母。
根据粘土矿物的含量百分比,可将黄土分为蒙脱石黄土、蒙脱石一高岭石黄土和蒙脱石一水云母黄土。
粘土矿物成分和比例在某种程度上体现着黄土的湿陷性,因为各种粘土矿物的亲水性不同。
如高岭石和水云母等能促使黄土湿陷的发生与发展,而蒙脱石、绿高岭石和水云母等具有特殊的膨胀性,可以阻止湿陷过程的发展。
黄土粉细砂粒部分(0.1一0.05~),其矿物同水不起作用,不影响湿陷过程。
在粗粒造岩矿物中,石英、长石和碳酸盐含量较大,对湿陷性无重大影响,而细散粘粒对湿陷过程起重大积极作用,因其具有大的比表面积,会使黄土膨胀、收缩或湿陷,具有不同的力学性质,如压缩、强度等。
粉粒在黄土颗粒组成中占绝对优势,而粒径为0.05~0.01~粗粉粒含量最大,一般在50%~60%范围,其浸水活动性也最强。
因此有人认为粉粒含量>70%者为重粉质黄土,50%一70%者为中粉质黄土,<50%者为轻粉质黄土。
随着浸水,其团粒破坏特征亦不同,所表现的湿陷性亦不同。
主要成分:黄土中轻矿物含量占矿物总含量的90%一%%,主要由石英、长石和云母等组成;黄土中的重矿物含量较少,含量在4%~10%之间;黄土的物理力学性质主要由粘土矿物(伊犁石)的多少来决定。
而一般土中的粘土与粗矿物成分所占的比例并无规律,或大或小。
黄土的湿陷性黄土是中国古老的土壤形态,也是一种质量较高的土质。
它具有良好的工程性能和物理力学性质,并具有良好的湿陷性和胶结强度。
黄土的湿陷性是指它对水的吸收量、饱和度和水的渗透率。
从理论上讲,它的湿陷性取决于其粒度、纹理、可塑性和含水率的不同,这些性质都是由它的组成物质决定的。
黄土具有良好的湿陷性,主要取决于它的碎石含量。
较小的碎石能减少其含水量,使它更容易湿陷;而较大的碎石则能提高其含水量,减少它的湿陷性。
此外,纹理也会影响黄土的湿陷性,例如晶粒细小的土壤具有较高的湿陷性,而粗粒细小的土壤则具有较低的湿陷性。
另外,黄土的可塑性也会影响湿陷性。
可塑性较低的土壤结构更完整,湿陷性较强;可塑性较高的土壤具有较差的结构,湿陷性较低。
此外,含水率也是影响黄土的湿陷性的参数,黄土的含水率越高,它的湿陷性就越强;黄土的含水率越低,它的湿陷性就越弱。
由于黄土的湿陷性的复杂性,需要通过实验和统计学推断,以确定其不同组成物质和不同粒级结构对湿陷特性的影响。
然而,这些实验需要涉及较大的研究领域,且结果可能存在偏差,因此在进行实验之前,必须了解土壤结构和参数。
通过理解黄土的湿陷性,可以用来设计和优化基础和地基的结构,以最大限度地提高其稳定性,特别是在黄土地区常见的湿润环境中。
黄土的湿陷性对于许多领域都有重要的实际意义,它不仅可以用于基础和地基的设计,还可以应用于农业、水利和污水处理等领域。
深入研究其影响因子,研究它们对黄土湿陷性的影响,可以有效地提高土壤的湿陷性,提供良好的工程性能。
《黄土的湿陷性》是一个广泛存在的问题,考虑到其复杂的结构和性能,必须通过实验和统计学推断来研究这一问题。
为了最大限度地提高湿土的稳定性,必须全面了解黄土的湿陷性,研究其影响参数和结构,以有效地改善黄土的性能。
黄土的名词解释黄土是一种广泛分布于世界各地的特殊类型的土壤。
它在许多地区都起着重要作用,不仅对环境和生态系统具有巨大影响,而且对人类社会与经济发展也有着重大意义。
黄土的形成和特点使其成为值得研究和关注的重要课题。
一、黄土的形成黄土是由多种化学、物理和生物等因素共同作用下形成的特殊土壤类型。
其形成过程主要包括岩石分解、风积作用和水流沉积三个阶段。
1. 岩石分解:在形成黄土的地区,岩石经过长时间的风化、侵蚀和溶解等作用,逐渐破碎成颗粒状物质。
这些颗粒包括石英、长石、云母等矿物成分,它们在风与水的作用下逐渐颗粒变小。
2. 风积作用:黄土的形成往往与风力有密切关系。
强大的风力携带颗粒状物质在空中运动,并在风力减弱的地方沉积下来。
黄土通常形成在盆地、河谷、土丘等相对低洼的地方,风力能够较为容易地将颗粒物质沉积。
3. 水流沉积:除风力以外,水流也是黄土形成的重要因素之一。
当地下水流经过含有黏土颗粒的岩石地层时,黏土颗粒会在水流的冲刷下被搬运到其他地方,并在沉积过程中形成黄土。
二、黄土的特点黄土具有独特的化学、物理和生物特性,使其在土地利用和环境保护方面具有重要意义。
1. 化学特性:黄土含有丰富的矿物质成分,包括石英、长石、云母等。
这些矿物质不仅为黄土赋予了独特的黄色外观,还赋予了其优良的透水性和保水性。
2. 物理特性:黄土具有较强的吸水性和保水性,适度的透气性和排水性。
这使得黄土能够在干旱和湿润条件下保持土壤水分的稳定,并为植物生长提供良好的土壤环境。
3. 生物特性:黄土含有大量的有机物质和微生物,这对黄土的肥力和生态功能具有重要影响。
黄土中的有机物质可以提供植物所需的养分,促进植物生长。
同时,微生物在黄土中的存在也可以促进土壤的有机物分解和循环,维持土壤生态系统的平衡。
三、黄土的应用由于其独特的物理和化学特性,黄土在许多方面都有重要的应用和价值。
1. 农业利用:黄土是重要的农业土壤类型之一。
它的透水性和保水性使得黄土适合作为农作物的栽培土壤。
“黄土”在历史上有何重要意义?一、黄土的形成与特点黄土是一种特殊的土壤类型,多分布于中国的黄土高原地区。
它形成于长时间的风化侵蚀和水力冲刷作用下,由于黄土中富含黏土矿物质和砂粒,使得其具有独特的性质和特点。
二、黄土在农业上的重要意义1. 黄土富含养分,适宜农作物生长:黄土中富含有机质和矿物质,且土壤质地疏松,保水能力强,便于根系伸展,有利于作物的生长和养分的吸收。
2. 黄土保持水分和抗旱能力强:黄土的颗粒结构使得其在干旱条件下能够更好地保持水分,减轻了水分蒸发和土壤干燥的程度,有助于农作物的生长和幸运能力。
3. 黄土调节土壤温度:黄土的疏松性和保水能力使得其能够有效调节土壤温度,使其保持在适宜的范围内,有利于作物的生长和发育。
4. 黄土对于土壤层次结构的形成起到重要作用:黄土在长期的风化侵蚀和水力冲刷作用下,形成了层次分明的土壤剖面,有利于土壤中不同层次的养分供应和保持。
三、黄土在生态环境中的重要意义1. 黄土是重要的水源涵养地:黄土地区的地貌特殊,地表多为黄土裸露,具有很强的蓄水和渗水能力,能够有效涵养降水,维持地表和地下水的平衡。
2. 黄土保护植被和生物多样性:黄土地区独特的地貌和土壤特性,为植物提供了适宜的生长环境,保护了众多珍稀植物的生存空间,维护了植物种群的多样性。
3. 黄土对于防止土壤侵蚀起到重要作用:黄土具有很好的抗风蚀和抗水蚀能力,可以有效地减少土壤的侵蚀和流失,保护了水源和生态环境的稳定性。
四、黄土在科学研究和文化遗产保护中的重要意义1. 黄土记录了地球历史演变过程:黄土层中保存了丰富的古生物遗存和地质信息,对于研究地球历史变迁过程、古气候演变等具有重要意义。
2. 黄土成为考古学发展的重要依据:黄土层保存了丰富的考古遗存,为人类了解古代文明提供了重要线索和证据。
3. 黄土作为文化遗产的保护与利用:黄土地区拥有丰富的文化遗产资源,如敦煌莫高窟等,对于文化遗产的保护与利用具有重要意义。
中国黄土及其古气候意义中国黄土是世界上最肥沃的土壤之一,也是世界上最有代表性的土壤之一。
黄土的形成时间长,具有很大的古气候意义。
下面将从黄土的形成、特点和古气候意义三个方面来详细介绍中国黄土及其古气候意义。
一、黄土的形成黄土是中国特有的一种土壤类型,主要分布在黄河中下游地区。
黄河的泥沙主要来源于青藏高原,积聚在黄土高原地区,经过腐殖质的加工,最终形成了黄土。
黄土严格来说属于壤土,是由风化的黄棕色的细粒状泥土组成。
黄土的形成非常缓慢,需要很长时间,大约几千年甚至上万年才能形成一层几米甚至几十米的黄土。
二、黄土的特点1. 肥沃:黄土是世界上最肥沃的土壤之一,土层深厚,土质肥沃,有机质含量高,透水性能好,非常适合农作物的生长。
2. 农业适宜:黄土地区的农田水土保持性能好,适宜进行农业生产。
黄土地区是中国的粮食生产大省,也是中国的粮食仓库。
3. 古老:黄土地区是中国的古老文明之一,有着丰富的历史文化底蕴,古老的建筑,古老的民俗文化,吸引着无数的游客前来参观。
三、古气候意义黄土的形成需要几千年甚至上万年的时间,因此黄土中蕴含着丰富的古气候信息,对于研究古气候具有非常重要的意义。
1. 古气候记录:黄土是古气候记录的最佳载体之一,含有丰富的气候信息,包括年降水量、年气温、气候变化等。
通过分析黄土的成分和沉积结构,可以还原古气候的变化规律,为研究气候变化提供了重要依据。
2. 古气候事件:黄土也记录了许多重要的古气候事件,比如冰期和间冰期的交替变化,季风气候的形成和演变,气候变化与古生态的关系等。
通过黄土的研究,可以揭示出许多重要的古气候事件,对于研究全球气候变化的机制具有重要的意义。
3. 气候变化影响:黄土地区的气候变化对当地的生态环境和农业生产有着重要的影响。
通过研究黄土的古气候信息,可以更好地了解气候变化对生态环境和农业生产的影响,为生态环境保护和农业生产提供科学依据。
中国黄土是世界上最肥沃的土壤之一,也是世界上最有代表性的土壤之一。
最全黄土高原黄土地貌知识黄土地貌黄土地貌一黄土的分布与特性1黄土的分布从全球来看,黄土主要分布在中纬度干旱或半干旱的大陆性气候地区。
(即:现代的温带森林草原、草原及荒漠草原地区)这是由于内陆干旱荒漠区、半荒漠区的强大反气旋从荒漠中部向荒漠边缘移动,把大量粉沙和尘土吹送到草本灌木的草原地区逐渐堆积下来形成的。
黄土分布相当广泛,特别在欧亚大陆上,几乎从大西洋到太平洋西岸成断续带状地分布着。
我国黄土主要分布在干旱区和半干旱区,位于北纬34-45°之间,呈东西向带状分布。
我国黄土总面积约63.5万平方千米(原生黄土为38.1万平方千米,次生黄土为25.4万平方千米)。
我国黄土高原分布区其中,黄河中下游的陕西北部、甘肃中部和东部、宁夏南部和山西西部是我国黄土分布最集中的地区,不仅分布面积广,而且厚度大(最厚可达200m)。
由于这个地区的地势较高,形成有名的黄土高原。
黄土地貌2黄土的特性黄土:是一种灰黄色或棕黄色的特殊的土状堆积物。
它们具有以下的特性:①质地均一②黄土富含碳酸钙在干燥状态下,钙质可以使土粒固结,但遇水碳酸钙会发生溶解,而使土粒分离,成分散状。
因此,钙质多的黄土层易受水侵蚀。
③黄土结构疏松,多孔性是黄土区别于其他土状堆积物的主要特征之一。
陕西洛川马兰黄土A和离石黄土B结构1:粗粒、2:细粒、3:孔隙④黄土无沉积层理,但垂直节理很发育,直立性很强。
(厚层黄土常因此形成陡峻的崖壁、土柱,并可维持百年而不崩塌)二黄土的成因黄土的成因主要有风成说、水成说和风化残积说三种观点,其中以风成说的历史最长,影响最大,拥护者也多。
1风成说黄土风成说认为,像亚洲中部(包括我国北方地区在内)的黄土,是由内陆干旱荒燥、半荒燥区强大的反气旋风从中部吹向外围,匠心地理整理·把大量的黄土物质吹送到生长草本灌木的草原地带,逐渐堆积而成的,故称荒漠黄土。
可以从以下几方面的表现来说明:①黄土分布区以北依次出现沙漠和戈壁,三者逐渐过渡,并成带状排列。
中国黄土的特性黄土是最新的地质时期(距今约200万年左右的第四纪时期)形成的土状堆积物,所以其性质比较疏松、特殊。
典型的黄土为黄灰色或棕黄色的尘土和粉沙细粒组成,质地均一,以手搓之易成粉末,含多量钙质或黄土结核,多孔隙,有显著的垂直节理,无层理,在干燥时较坚硬,一被流水浸湿,通常容易剥落和遭受侵蚀,甚至发生坍陷。
所以在黄土地区进行各种工程建设时,如果对黄土的特性不了解,往往会给工程带来严重的损失和破坏。
因此,黄土的特性很早就引起了科学工作者和工程技术人员的注意,并在长期的实践和研究中,已经把黄土的主要特性归结为5个方面。
(1)多孔性由于黄土主要是由极小的粉状颗粒所组成,而在干燥、半干燥的气候条件下,它们相互之间结合得很不紧密,一般只要用肉眼就可以看到颗粒间具有各种大小不同和形状不同的孔隙和孔洞,所以通常有人将黄土称为大孔土。
一般认为黄土的多孔性与成岩作用、植物根系腐烂和水对黄土的作用等有关,更重要的是与特殊的气候条件有关。
典型的黄土孔隙度较高,而黄土状岩石的孔隙度较低。
(2)垂直节理发育当深厚的黄土层沿垂直节理劈开后,所形成的陡峻而壮观的黄土崖壁是黄土地区特有的景观。
垂直节理发育,就是典型黄土和黄土状岩石所具有的普遍而特殊的性质。
关于黄土垂直节理的成因,曾引起许多学者的兴趣。
目前较多的人认为,垂直节理的形成主要是由于黄土在堆积加厚的过程中受重力的影响,土粒间的上下间距变得愈来愈紧密,而土粒间的左右间距却保持原状不变。
这样水和空气即沿着抵抗力最小的上下方向移动,也就是说沿着黄土的垂直管状孔隙不断地作升降运动并反复进行,这就造成了黄土垂直节理发育的倾向。
(3)层理不明显凡是沉积岩一般都应该具有层理,因为任何成因的沉积岩的形成都必须经过沉积物逐步堆积的过程。
黄土既然也属于沉积岩的范畴,为什么层理却不明显或不清楚呢?很多学者把黄土无层理或层理不明显,作为黄土风成的标志,而有层理的黄土则认为是水成的依据。
中国土质分类
中国土壤分类主要依据土壤的颜色、成分、结构、质地、水分状况、酸碱度、肥力等特征进行分类。
根据中国土壤分类系统,中国的土壤主要分为以下几个类别:
1. 黄土:黄土是中国最常见的土壤类型之一,分布广泛。
它主要由粒径较大的砾石、沙粒和细粒的粘土组成,呈黄色。
黄土具有较好的排水性和保水性,肥力较高。
2. 红壤:红壤是中国南方常见的土壤类型,呈红色。
它主要由铁氧化物和含铝的粘土组成,具有良好的透水性和保水性。
红壤肥力较高,适合种植作物。
3. 灰褐土:灰褐土分布广泛,主要分布在中国中部和东北部地区。
它主要由深灰色的粉砂、砂和少量的粘土组成,具有良好的透水性和保水性。
灰褐土肥力一般,适合种植农作物。
4. 棕壤:棕壤主要分布在中国东北地区,呈棕色。
它主要由深褐色的粘土和有机质组成,具有较好的保水性和肥力。
棕壤适合种植茶叶、水稻等作物。
5. 湿地土壤:湿地土壤主要分布在中国南方和东北沿海地区,呈黑色。
它主要由有机质和淤泥组成,具有较好的肥力和保水性。
湿地土壤适合种植水稻、蔬菜等作物。
除了以上几种主要类型外,中国还有其他土壤类型,如盐碱土、沙质土、石质土等。
不同类型的土壤适合不同的农作物种植,因此土壤分类对于农业生产和土地利用具有重要意义。
黄土的主要成分
黄土是一种常见的土壤类型,主要由以下成分组成:沙、粉砂、黏土和有机质。
这些成分在不同比例下形成了黄土的特征和性质。
黄土中的沙是指粒径大于0.05毫米的颗粒。
沙的存在使得黄土具有较好的透水性和通气性。
它们能够有效排除土壤中的多余水分,防止土壤积水,同时也有利于植物根系的生长和发育。
粉砂是指粒径在0.05毫米到0.002毫米之间的颗粒。
粉砂的存在使得黄土更加细腻柔软,有利于土壤的保水和保肥能力。
这种颗粒在黄土中占比较高,对土壤的肥力起到了重要的作用。
黏土是黄土的重要组成部分,也是黄土中颗粒最细小的成分。
黏土颗粒的直径小于0.002毫米,具有较强的吸附能力和保水能力。
黏土能够吸附并保持土壤中的养分和水分,为植物的生长提供了良好的条件。
黄土中还含有一定量的有机质。
有机质是植物和动物的残体、排泄物以及微生物的分解产物,是土壤中的重要营养物质来源。
有机质能够增加土壤的肥力,改善土壤结构,提高土壤的保水能力和通气性。
黄土的主要成分包括沙、粉砂、黏土和有机质。
这些成分相互作用,为黄土提供了良好的透水性、保水性和肥力。
黄土广泛分布于中国的黄土高原地区,对农业生产和土地利用具有重要意义。
了解黄土
的成分和特性,对于科学合理地利用和管理黄土资源具有重要的指导意义。
“黄土”为什么被称为“黄土”?一、黄土的形成机制黄土,又称黄色土壤,是我国北方地区常见的一种地质现象。
黄土的形成是由于长期以来的风蚀作用、干旱气候和特定的土地地质构造等因素的综合影响。
在黄土形成的过程中,风沙将岩屑颗粒吹至远离原矿点的地方,经过多年的积累和侵蚀作用,岩屑颗粒堆积形成了厚厚的黄色土壤。
二、黄土的地质特征黄土主要由细粒颗粒组成,颗粒大小多在0.002~0.05毫米之间,具有良好的透水透气性和较强的保水能力。
黄土的颜色呈黄色或淡黄色,土质细腻,质地松散。
由于风力的作用,黄土具有明显的层理结构,呈现出层状或板状的形态。
三、黄土的资源价值黄土作为一种独特的自然资源,在农业生产、水土保持和建筑材料等方面都具有重要的价值。
首先,在农业生产中,黄土具有良好的保水保肥能力,适合种植农作物。
其次,由于黄土的透水性好,可以减少水源的外流,提高水资源的利用率。
此外,由于黄土的石质含量较高,具有较强的抗压强度和耐久性,使其成为一种理想的建筑材料。
四、黄土在科学研究上的重要性近年来,人们在对黄土进行研究的过程中发现,黄土层中保存了大量的历史地质信息和生物化石,可以为地质和生物学研究提供重要的线索。
通过分析黄土中的特定成分和性质,可以了解到地球历史上的气候变迁、地壳运动等重要信息,对于认识地质演变过程具有重要的科学价值。
综上所述,黄土之所以被称为“黄土”,是由于其在外观上呈现出明显的黄色,同时其形成机制、地质特征、资源价值以及科学研究上的重要性使得其成为了一种独特而重要的自然现象。
通过对黄土的进一步研究和探索,我们可以更好地认识地球的演变历程,同时为科学研究和农业生产等领域提供有益的参考和支持。
黄土地貌地理百科黄土地貌是发育在黄土地层(包括黄土状土)中的地形。
黄土是第四纪时期形成的陆相淡黄色粉砂质土状堆积物。
中国是世界上研究黄土地貌最早的国家。
以下是店铺为大家整理的黄土地貌地理百科,欢迎阅读与收藏。
黄土的特性为流水侵蚀创造了有利的条件。
因此,流水是黄土地貌形成和发展的重要营力。
此外,还有重力剥蚀、潜蚀和风蚀等。
黄土地貌可分为沟谷地貌和沟(谷)间地地貌两大类。
1、黄土沟谷地貌按形态特征,黄土沟谷可分为细沟、浅沟、切沟、冲沟和河沟等几种。
(1)细沟与浅沟细沟是由坡面上的一些集中细流冲刷而成,在已开垦的地面最易形成,对耕作不利。
随着地面水流汇集成较大的股流,冲刷力增大而成浅沟。
浅沟横剖面呈宽浅的V字形,深只有几十厘米,多出现在梁峁坡上。
(2)切沟与冲沟流水进一步集中和侵蚀,浅沟变为切沟。
切沟切入黄土可达数米,长可达数十米,切沟纵剖面起伏较大,横剖面呈尖锐的V形,有明显的沟缘,流水下切非常活跃。
切沟进一步发展成为冲沟。
冲沟是黄土区沟谷中的重要类型,是流水强烈侵蚀和沟坡块体运动等作用的'产物。
冲沟纵剖面呈凹形,上陡下缓,起伏不平,横剖面呈V字形,向下游逐渐扩宽,有明显的沟缘。
流水对沟谷的下切和旁蚀及其引起沟坡的崩塌和滑坡,使沟谷不断增宽,可见重力作用也是沟谷发育的重要因素。
若冲沟的沟底已停止加深,沟坡受旁蚀、滑坡与坡面流水等作用也逐渐变得平缓稳定时,沟谷就发育成为浅U字形的坳谷(坳沟)。
(3)河沟河沟是沟谷与河谷的过渡类型。
纵剖面较平缓,横剖面略呈梯形,旁蚀作用较活跃,沟内有常流水,有时发育曲流和阶地。
河沟可由冲沟发展而来,但我国黄土地区的河沟大都是黄土堆积时已形成的古凹地或古谷地上发育起来的,所以,大型沟谷多是在古地形基础上进一步发展而成的继承性沟谷。
2、黄土沟(谷)间地地貌黄土地区沟间地地貌主要是源、梁、峁。
这些地貌类型分布在冲沟、河沟等大沟谷之间,并由大沟谷分割而成。
塬是黄土覆盖的范围较广的平坦高地。
黄土特性
黄土或黄土状土是一种多孔隙、弱胶结的第四纪沉积物。
我国黄土分布广范,6.6%
的国土面积被黄土覆盖,黄土主要分布在我国中西部地区,其中以西北地区的黄土地层
最厚,最完整。
黄土具有颜色淡黄至褐黄、大孔隙、结构疏松、具直立节理(破坏时能
保持直壁)、常含有盐类(主要为碳酸盐与硫酸盐)、成分均匀无层理和遇水具有湿陷性等
显著特点。
3.1.1典型物理化学性质
黄土的颗粒粒径大部分为0.25~以下,主要以粉粒(0.05~0.005~)为主,含量多大于50%,一般土颗粒粒径大小在0.002一200~之间。
黄土的粘粒部分(<0.005~)基本上由粘土矿物组成,如蒙脱石、高岭石、绿高岭石和水云母。
根据粘土矿物的含量百分比,可将黄土分为蒙脱石黄土、蒙脱石一高岭石黄土和蒙脱石一水云母黄土。
粘土矿物成分和比例在某种程度上体现着黄土的湿陷性,因为各种粘土矿物的亲水性不同。
如高岭石和水云母等能促使黄土湿陷的发生与发展,而蒙脱石、绿高岭石和水云母等具有特殊的膨胀性,可以阻止湿陷过程的发展。
黄土粉细砂粒部分(0.1一0.05~),其矿物同水不起作用,不影响湿陷过程。
在粗粒造岩矿物中,石英、长石和碳酸盐含量较大,对湿陷性无重大影响,而细散粘粒对湿陷过程起重大积极作用,因其具有大的比表面积,会使黄土膨胀、收缩或湿陷,具有不同的力学性质,如压缩、强度等。
粉粒在黄土颗粒组成中占绝对优势,而粒径为0.05~0.01~粗粉粒含量最大,一般在50%~60%范围,其浸水活动性也最强。
因此有人认为粉粒含量>70%者为重粉质黄土,50%一70%者为中粉质黄土,<50%者为轻粉质黄土。
随着浸水,其团粒破坏特征亦不同,所表现的湿陷性亦不同。
主要成分:黄土中轻矿物含量占矿物总含量的90%一%%,主要由石英、长石和云母等组成;黄土中的重矿物含量较少,含量在4%~10%之间;黄土的物理力学性质主要由粘土矿物(伊犁石)的多少来决定。
而一般土中的粘土与粗矿物成分所占的比例并无规律,或大或小。
化学性质:黄土中的化学成份主要为A12O3和5102,二者含量占总量的60%,其他化学成分还有CaO、Feo和FeZO等。
一般土中的这些化学组成并无规律。
微观结构:黄上由结构单元(单矿物、集合体和凝块)、胶结物(粘粒、有机质和CaCO3)和空隙(大孔隙、架空孔隙和粒间孔隙等)三部分组成,它表明从空间结构体系的力学强度和稳定性角度分析,构成黄土结构体系的支柱是骨架颗粒。
骨架颗粒形态表征传力性能和变形性质,骨架颗粒的连接形式直接影响土结构体系的胶结强度,骨架颗粒的排列方式决定结构体系的稳定性。
而一般土的微观结构则表现为单粒结构、片架结构和片堆结构等形式。
3.1.2物理力学性质
黄上物理力学性质的特殊性表现为压密性、振陷性和湿陷性这三个方面。
黄土在动
静荷载及浸水后,均可引起振陷变形、湿陷变形和压密变形,振陷变形与湿陷变形分别以振动和浸湿作为诱发因素,使黄土的结构破坏而发生附加湿陷,有时则表现为黄土液化。
黄土的湿陷性变形具有突变性、不可逆性和非连续性。
黄土与其他一般土相同,一定压应力作用下黄土会出现弹性变形、压密变形、塑性变形和蠕变变形。
对于经振动压实后的黄土其性质与一般土有明显的不同,其主要表现为:
1、湿陷性。
压实黄土的湿陷性,随干容重和压实功的减小而增大,随含水量增加
而减小。
2、饱和度、渗透性和压缩性。
压实黄土的基本性质因含水量的不同而有很大区别,
表现为:其饱和度随含水量的增大而显著减小;渗透系数在最佳含水量附近有一个峰值;
当含水量稍大于最佳含水量时,土体随含水量的增加压缩性显著减小,土体的稳定性也因水份增加而减弱。
3、抗剪强度。
压实黄土的抗剪强度随含水量和压实度的不同有一定的变化规律。
表现为:①与含水量呈曲线变化关系,且在最佳含水量附近达到最大值;②随压实度的增大而增大,基本呈线性增长关系。
不同黄土的物理力学性质常随其成岩时代、成岩地区表现出一定的差异。
一般新近堆积黄土(g)的干重度较小,孔隙比较大,压缩变形大,渗透性强,干燥状态具有一定结构强度,浸水饱和后结构破坏,粘聚力迅速减小,且变化幅度大,呈现较强的湿陷性,晚更新世黄土(g)的物理力学性质相似于新近堆积黄土,它们的结构强度均偏低易变,遇水湿陷影响大,滑坡、冲蚀、土粒流失屡见不鲜,是黄河中游地区控制水土流失的主要土类,是湿陷性黄土的主要埋藏地层;
不同地层时代黄土的物理力学性质的变化趋势如表3.1,
由表可以看出其性质随生成之早晚而表现出一定的规律性。
从方位上看,无论高原或阶地,由西北向东南,黄土的重度、含水量和强度都是由小变大,而渗透性,压缩性和湿陷性都是由大变小,颗粒组成也是由粗变细,粘粒含量由少变多,易溶盐由多变少等情况[z]。