对勾函数图象性质
- 格式:docx
- 大小:266.52 KB
- 文档页数:6
对勾函数的性质及运用一、对勾函数by ax x =+)0,0(>>b a 的图像与性质:1. 界说域:),0()0,(+∞⋃-∞2. 值域:),2[]2,(+∞⋃--∞ab ab3.奇偶性:奇函数,函数图像整体呈两个“对勾”的外形,且函数图像关于原点呈中间对称,即0)()(=-+x f x f4. 图像在一.三象限, 当0x >时,b y ax x =+≥ab 2(当且仅当bx a =取等号),即)(x f 在x=ab时,取最小值ab 2由奇函数性质知:当x<0时,)(x f 在x=ab -时,取最大值ab 2-5.单调性:增区间为(∞+,ab),(ab -∞-,),减区间是(0,ab ),(ab -,0)二、对勾函数的变形情势类型一:函数by ax x =+)0,0(<<b a 的图像与性质1.界说域:),0()0,(+∞⋃-∞2.值域:),2[]2,(+∞⋃--∞ab ab3.奇偶性:奇函数,函数图像整体呈两个“对勾”的外形.4.图像在二.四象限, 当x<0时,)(x f 在x=ab 时,取最小值ab 2;当0x >时,)(x f 在x=ab -时,取最大值ab 2-5.单调性:增区间为(0,ab ),(ab -,0)减区间是(∞+,a b),(a b -∞-,),类型二:斜勾函数by ax x =+)0(<ab①0,0<>b a 作图如下1.界说域:),0()0,(+∞⋃-∞2.值域:R3.奇偶性:奇函数4.图像在二.四象限,无最大值也无最小值.5.单调性:增区间为(-∞,0),(0,+∞). ②0,0><b a 作图如下:1.界说域:),0()0,(+∞⋃-∞2.值域:R3.奇偶性:奇函数4.图像在二.四象限,无最大值也无最小值.5.单调性:减区间为(-∞,0),(0,+∞). 类型三:函数)0()(2>++=ac x c bx ax x f .此类函数可变形为bx c ax x f ++=)(,可由对勾函数x c ax y +=高低平移得到演习1.函数x x x x f 1)(2++=的对称中间为类型四:函数)0,0()(≠>++=k a k x ax x f此类函数可变形为kk x ak x x f -+++=)()(,则)(x f 可由对勾函数x a x y +=阁下平移,高低平移得到演习 1.作函数21)(-+=x x x f 与xx x x f +++=23)(的草图2.求函数421)(-+=x x x f 在),2(+∞上的最低点坐标3. 求函数1)(-+=x xx x f 的单调区间及对称中间类型五:函数)0,0()(2>≠+=b a bx axx f .此类函数界说域为R ,且可变形为x b x axbx a x f +=+=2)( a.若0>a ,图像如下:1.界说域:),(+∞-∞ 2. 值域:]21,21[b a ba ⋅⋅-3. 奇偶性:奇函数.4. 图像在一.三象限.当0x >时,)(x f 在b x =时,取最大值ba2,当x<0时,)(x f 在x=b -时,取最小值b a 2-5. 单调性:减区间为(∞+,b ),(b -∞-,);增区间是],[b b -演习1.函数1)(2+=x xx f 的在区间[)2,+∞上的值域为b. 若0<a ,作出函数图像:1.界说域:),(+∞-∞ 2. 值域:]21,21[ba ba ⋅⋅- 3. 奇偶性:奇函数.4. 图像在一.三象限.当0x >时,)(x f 在b x =时,取最小值ba 2-,当x<0时,)(x f 在x=b -时,取最大值b a 25. 单调性:增区间为(∞+,b ),(b -∞-,);减区间是],[b b -演习1.如2214xa x +=-+()1,2x ∈-,则的取值规模是类型六:函数)0()(2≠+++=a mx c bx ax x f .可变形为)0()()()()(2>++++=+++++=at s m x t m x a m x t m x s m x a x f ,则)(x f 可由对勾函数x tax y +=阁下平移,高低平移得到演习 1.函数11)(2+++=x x x x f 由对勾函数x x y 1+=向(填“左”.“右”)平移单位,向(填“上”.“下”)平移单位. 2.已知1->x ,求函数1107)(2+++=x x x x f 的最小值;3.已知1<x ,求函数199)(2--+=x x x x f 的最大值 类型七:函数)0()(2≠+++=a c bx ax mx x f演习1.求函数21)(2++-=x x x x f 在区间),1(+∞上的最大值;若区间改为),4[+∞则)(x f 的最大值为 2.求函数232)(22++++=x x x x x f 在区间),0[+∞上的最大值类型八:函数ax b x x f ++=)(.此类函数可变形为尺度情势:)0()(>-+-++=+-++=a b ax a b a x ax ab a x x f演习1.求函数13)(-+=x x x f 的最小值;2.求函数15)(++=x x x f 的值域;3.求函数32)(++=x x x f 的值域 类型九:函数)0()(22>++=a ax b x x f .此类函数可变形为尺度情势:)()()(22222o a b ax a b a x ax ab a x x f >-+-++=+-++=演习 1.求函数45)(22++=x x x f 的最小值;2. 求函数171)(22++=x x x f 的值域。
对勾函数图象性质对勾函数 :数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一 ) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+ (接下来写作f(x)=ax+b/x )。
当 a≠0, b≠0时, f(x)=ax+b/x 是正比例函数 f(x)=ax 与反比例函数 f(x)= b/x 叠“加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当 a , b 同号时,f(x)=ax+b/x 的图象是由直线y= ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:a>0 b>0 a<0 b<0对勾函数的图像( ab 同号)当 a ,b 异号时, f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)对勾函数的图像(ab 异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0 , b>0 。
之后当a<0,b<0 时,根据对称就很容易得出结论了。
1(二 ) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:当 x>0 时,。
当 x<0 时,。
即对勾函数的定点坐标:(三 ) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四 ) 对勾函数的单调性y(五 ) 对勾函数的渐进线O Xy=ax由图像我们不难得到:(六 ) 对勾函数的奇偶性:对勾函数在定义域内是奇函数,二、类耐克函数性质探讨函数y ax b,在 a0或b0时为简单的单调函数,不予讨论。
对勾函数图象性质对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+bx 的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+bx (接下来写作f(x)=ax+b/x )。
当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)a>0 b>0 a<0 b<0 对勾函数的图像(ab 同号) 对勾函数的图像(ab 异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:当x>0时,f (x )=ax +bx ≥2√ab (当且尽当ax =bx 时取等号),此时x =√ba 。
当x<0时,f (x )=ax +bx ≤−2√ab (当且尽当ax =bx 时取等号),此时x =−√ba 。
(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
对勾函数简介对勾函数:图像,性质,单调性对勾函数是数学中一种常见而又特殊的函数,见图示。
对勾函数是一种类似于反比例函数的一般函数,又被称为“双勾函数”、"勾函数"等。
也被形象称为“耐克函数”所谓的对勾函数(双曲线函数),是形如f(x)=ax+b/x的函数。
由图像得名。
当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b>0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根)奇函数。
令k=sqrt(b/a),那么:增区间:{x|x≤-k}和{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k} 变化趋势:在y轴左边,增减,在y轴右边,减增,是两个勾。
均值不等式对勾函数性质的研究离不开均值不等式。
说到均值不等式,其实也是根据二次函数得来的。
我们都知道,(a-b)^2≥0,展开就是a^2-2ab+b^2≥0,有a^2+b^2≥2ab,两边同时加上2ab,整理得到(a+b)^2≥4ab,同时开根号,就得到了平均值定理的公式:a+b≥2sqrt(ab)。
现在把ax+b/x套用这个公式,得到ax+b/x≥2sqrt(axb/x)=2sqrt(ab),这里有个规定:当且仅当ax=b/x时取到最小值,解出x=sqrt(b/a),对应的f(x)=2sqrt(ab)。
我们再来看看均值不等式,它也可以写成这样:(a+b)/2≥sqrt(ab),前式大家都知道,是求平均数的公式。
那么后面的式子呢?也是平均数的公式,但不同的是,前面的称为算术平均数,而后面的则称为几何平均数,总结一下就是算术平均数绝对不会小于几何平均数。
这些知识点也是非常重要的。
导数求解其实用导数也可以研究对勾函数的性质。
不过首先要会负指数幂的换算,这也很简单,但要熟练掌握。
举几个例子:1/x=x^-1,4/x^2=4x^-2。
明白了吧,x为分母的时候可以转化成负指数幂。
对勾函数一、定义对勾函数是由两个幂函数相加得到的,对勾函数是一种类似于反比例函数的一般双曲函数,其标准形式为f(x)=ax+(其中ab>0)。
由于函数图像形似两个中心对称的对勾,因此得名“对勾函数”,又被称为“双勾函数”、“勾函数”、“对号函数”、“双飞燕函数”等。
在许多情况下,为了简化分析,常取a=b=1,即函数形式为f(x)=x+。
研究初等函数的一般路径,背景—概念—图象—性质—应用二、图象及性质图像特征:1、对勾函数的图像是分别以y 轴和直线y=ax 为渐近线的两支曲线。
2、图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。
3、函数图像整体呈两个“对勾”的形状,且关于原点呈中心对称。
定义域:,即除了x=0外,所有实数都是其定义域内的元素。
值域:。
单调性:函数在(−∞,−1)∪(1,+∞)上单调递增,在(1,0)∪(0,1)上单调递减。
奇偶性:对勾函数是奇函数,即满足f(−x)=−f(x)。
x 122严禁复制三、题型1、基础计算题给定对勾函数表达式,求函数在特定点的值或特定区间的最值。
2.、图像结合题根据对勾函数的图像,判断函数在哪些区间内满足特定条件(如大于某值、小于某值)。
利用图像分析函数与直线、其他曲线的交点情况。
3.、综合应用题求最值问题:利用对勾函数的性质,可以快速求解形如ax+(ab>0)的函数的最值问题。
不等式证明:在不等式证明中,对勾函数的性质也常被用来进行放缩或构造反例。
实际问题建模:在某些经济学问题中,如成本分析、收益最大化等,也可能涉及到对勾函数的应用。
4、参数变化分析:探讨参数a 和b 变化时,对勾函数图像和性质的变化规律。
5、复杂函数组合将对勾函数与其他函数(如二次函数、指数函数等)组合,分析新函数的性质和应用。
四、解题步骤1、对勾函数求最值问题的解题步骤(1)理解函数形式确认函数f(x)=ax+的形式,注意a 和b 都是正数且不相等。
对勾函数图象性质对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x)。
当a≠0,b≠0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y= b/x构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:a>0 b>0 a<0 b<0对勾函数的图像(ab同号)当a,b异号时,f(x)=ax+b/x的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)对勾函数的图像(ab异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到: 当x>0时,。
当x<0时,。
即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四) 对勾函数的单调性(五) 对勾函数的渐进线由图像我们不难得到:(六) 对勾函数的奇偶性 :对勾函数在定义域内是奇函数, 二、类耐克函数性质探讨 函数xbax y +=,在时或00==b a 为简单的单调函数,不予讨论。
对勾函数的性质及应用一、对勾函数b y ax x =+)0,0(>>b a 的图像与性质:1. 定义域:),0()0,(+∞⋃-∞2. 值域:),2[]2,(+∞⋃--∞ab ab3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即0)()(=-+x f x f 4. 图像在一、三象限, 当0x >时,by ax x=+≥ab 2(当且仅当b x a ,即)(x f 在x=a b 时,取最小值ab 2由奇函数性质知:当x<0时,)(x f 在x=ab -时,取最大值ab 2-5. 单调性:增区间为(∞+,a b ),(a b -∞-,),减区间是(0,a b ),(ab -,0)二、对勾函数的变形形式 类型一:函数by ax x=+)0,0(<<b a 的图像与性质 1.定义域:),0()0,(+∞⋃-∞ 2.值域:),2[]2,(+∞⋃--∞ab ab3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状.4.图像在二、四象限, 当x<0时,)(x f 在x=ab 时,取最小值ab 2;当0x >时,)(x f 在x=ab -时,取最大值ab 2-5.单调性:增区间为(0,ab ),(a b -,0)减区间是(∞+,a b ),(ab -∞-,),类型二:斜勾函数by ax x=+)0(<ab ①0,0<>b a 作图如下1.定义域:),0()0,(+∞⋃-∞2.值域:R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单调性:增区间为(-∞,0),(0,+∞).②0,0><b a 作图如下:1.定义域:),0()0,(+∞⋃-∞2.值域:R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单调性:减区间为(-∞,0),(0,+∞).类型三:函数)0()(2>++=ac xcbx ax x f 。
对勾函数的性质及应用 一、对勾函数b y ax x =+)0,0(>>b a 的图像与性质: 1. 定义域:),0()0,(+∞⋃-∞2. 值域:),2[]2,(+∞⋃--∞ab ab3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即0)()(=-+x f x f4. 图像在一、三象限, 当0x >时,b y ax x=+≥ab 2(当且仅当b x a=取等号),即)(x f 在x=a b 时,取最小值ab 2由奇函数性质知:当x<0时,)(x f 在x=ab -时,取最大值ab 2- 5. 单调性:增区间为(∞+,ab ),(a b -∞-,),减区间是(0,a b ),(a b -,0)二、对勾函数的变形形式类型一:函数b y ax x=+)0,0(<<b a 的图像与性质 1.定义域:),0()0,(+∞⋃-∞2.值域:),2[]2,(+∞⋃--∞ab ab3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状.4.图像在二、四象限, 当x<0时,)(x f 在x=ab 时,取最小值ab 2;当0x >时,)(x f 在x=ab -时,取最大值ab 2- 5.单调性:增区间为(0,a b ),(a b -,0)减区间是(∞+,ab ),(a b -∞-,),类型二:斜勾函数b y ax x=+)0(<ab ①0,0<>b a 作图如下1.定义域:),0()0,(+∞⋃-∞2.值域:R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单调性:增区间为(-∞,0),(0,+∞).②0,0><b a 作图如下:1.定义域:),0()0,(+∞⋃-∞2.值域:R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单调性:减区间为(-∞,0),(0,+∞).类型三:函数)0()(2>++=ac x c bx ax x f 。
对勾函数图象性质
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
对勾函数图象性质
对勾函数:数学中一种常见而又特殊的函数。
如图
一、对勾函数f(x)=ax+ b
x
的图象与性质
对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像
对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+b
x
(接下来
写作f(x)=ax+b/x)。
当a≠0,b≠0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y= b/x构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:
当a,b异号时,f(x)=ax+b/x的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)
一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二)对勾函数的顶点
对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:
当x>0时,f(x)=ax+b
x ≥2√ab(当且尽当ax=b
x
时取等号),此时x=
√b a。
当x<0时,f(x)=ax+b
x ≤−2√ab(当且尽当ax=b
x
时取等号),此时x=
−√b
a。
即对勾函数的定点坐标:A:(√b
a ,2√ab)、B:(−√b
a
,−2√ab)
a>0 b>0 a<0 b<0
对勾函数的图像(ab同
对勾函数的图像(ab异号)
(三) 对勾函数的定义域、值域
由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四)
对勾函数的单调性
(五)
对勾函数的渐进线
(六)
对勾函数的奇偶性 :对勾函数在定义域内是奇函数,
二、类对勾函数性质探讨
函数x
b
ax y +=,在时或00==b a 为简单的单调函数,不予讨论。
在时且00≠≠b a 有如下几种情况:(1)0,0<>b a (2)0,0><b a (3)0,0>>b a (4)0,0<<b a 设ax y =1,x b
y =
2,则x
b ax y y y +=+=21,其定义域为{}0,|≠∈x R x x 且 (1)0,0<>b a 时,ax y =1,x
b
y =2在),0(),0,(+∞-∞上分别单调递增。
故x
b
ax y y y +
=+=21
在),0(),0,(+∞-∞为单调递增函数。
(2)0,0><b a 时,ax y =1,x
b
y =
2在),0(),0,(+∞-∞上分别单调递减。
X
故x
b
ax y y y +
=+=21在),0(),0,(+∞-∞为单调递减函数 (3)0,0>>b a 图像略
1当0>x 时,01>=ax y ,02>=
x b
y ab x
b ax x b ax y y y 2221=⋅≥+=+=。
当且仅当x b
ax =
,即a
b x =取等号。
2当0<x 时 01<=ax y ,02<=
x
b
y ab x
b ax x b ax x b ax y y y 22)(21-=⋅-≤-+--=+
=+=,当且仅当x b
ax =,即a
b x -=(因为0<x ,故舍掉a b x =)取等号。
4)0,0<<b a
1当0>x 时,01<=ax y ,02<=x
b y ab x
b
ax x
b ax x
b ax y y y 22
)(21-=⋅
-≤-+--=+=+=。
当且仅当x b
ax =
,即a
b x =取等号。
2当0<x 时 01>=ax y ,02>=
x
b
y ab x
b
ax x b ax y y y 2221=⋅=≥+
=+=,当且仅当x b
ax =
,即a
b x -=取等号。
四、对勾函数练习: 1.若 x>1.求1
1
-+
=x x y 的最小值 2. 若 x>1. 求12
22-+-=x x x y 的最小值
3. 若 x>1. 求1
1
2-+-=x x x y 的最小值
4. 若 x>0. 求x
x y 2
3+
=的最小值
5.已知函数)),1[(22+∞∈++=
x x a
x x y (1) 求的最小值时,求)(2
1
x f a =
(2)若对任意x ∈[1,+∞],f(x)>0恒成立,求a 范围
6.: 方程sin 2
x -asinx+4=0在[ 0 ,
2π
]内有解 ,则a 的取值范围是__________
7. 函数()1027y x x x =+
≤≤的最小值为____________;函数()10
27y x x x
=-≤≤的最大值为_________。
8.函数x
x y 4
32-
-=的最大值为 。
9、若14<<-x ,则2
22
22-+-=x x x y 的最值是 。
10.函数x x y 22
sin 4sin 9
+=
的最小值是 。
11.若不等式222
9t
t a t t +≤≤+在(]2,0∈t 上恒成立,则a 的取值范围是 。
12. 求函数()()11
1612>+++=x x x
x x x f 的最值。
13. 的值域时,求,
当1
42)()10(+=∈x x
x f x 14. 的值域求3
1
)(2
2++++=x x x x x f。